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Abstract

Background: DNA damage response (DDR) defects imply genomic instability and favor tumor progression but
make the cells vulnerable to the pharmacological inhibition of the DNA repairing enzymes. Targeting cellular
proteins like PARPs, which cooperate and complement molecular defects of the DDR process, induces a specific
lethality in DDR defective cancer cells and represents an anti-cancer strategy. Normal cells can tolerate the DNA
damage generated by PARP inhibition because of an efficient homologous recombination mechanism (HR); in
contrast, cancer cells with a deficient HR are unable to manage the DSBs and appear especially sensitive to the
PARP inhibitors (PARPi) effects.

Main body: In this review we discuss the proof of concept for the use of PARPi in different cancer types and the
success and failure of their inclusion in clinical trials.
The PARP inhibitor Olaparib [AZD2281] has been approved by the FDA for use in pretreated ovarian cancer patients
with defective BRCA1/2 genes, and by the EMEA for maintenance therapy in platinum sensitive ovarian cancer
patients with defective BRCA1/2 genes. BRCA mutations are now recognised as the molecular targets for PARPi
sensitivity in several tumors. However, it is noteworthy that the use of PARPi has shown its efficacy also in non-
BRCA related tumors. Several trials are ongoing to test different PARPi in different cancer types. Here we review the
concept of BRCAness and the functional loss of proteins involved in DDR/HR mechanisms in cancer, including
additional molecules that can influence the cancer cells sensitivity to PARPi. Given the complexity of the existing
crosstalk between different DNA repair pathways, it is likely that a single biomarker may not be sufficient to predict
the benefit of PARP inhibitors therapies. Novel general assays able to predict the DDR/HR proficiency in cancer cells
and the PARPi sensitivity represent a challenge for a personalized therapy.

Conclusions: PARP inhibition is a potentially important strategy for managing a significant subset of tumors. The
discovery of both germline and somatic DNA repair deficiencies in different cancer patients, together with the
development of new PARP inhibitors that can kill selectively cancer cells is a potent example of targeting therapy
to molecularly defined tumor subtypes.

Keywords: DNA damage response, PARP enzymes, PARP inhibitors, Cancer, BRCA1/2 and BRCAness, Clinical trials,
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Methodology: sources and search terms
Literature from a range of sources, including PubMed
and MEDLINE, were searched to identify recent reports
regarding “DNA damage repair and PARP inhibitors” in
addition to other terms relevant to this Review, includ-
ing “Breast cancer and PARP”, “synthetic lethality”,
“cancer and PARP inhibitors”, and “BRCAness”. The ref-
erence lists of key articles identified were also searched
for additional relevant publications. The ClinicalTrials.-
gov database was searched using the term “PARP inhibi-
tors” to identify relevant clinical trials.
The key points of this review are:

# The poly(ADP-ribose) polymerases (PARPs) family.
# Repair of single-strand and double-strand breaks in
DNA damage.
# Homologous recombination repair (HRR)
mechanisms.
# Defects in DNA Damage Response in cancer.
# BRCA1 or BRCA2 mutations.
# Synthetic lethal concept
# Molecular defects which cause the lack of
homologous recombination and produce sensitivity to
inhibitors of PARP activity.
# Chromosomal instability and DNA repair foci
# in vitro and ex vivo assays to predict the efficacy of
PARP inhibitors.
# Success and failure of PARP inhibitors in Clinical
Trials.

Background
DNA damage response (DDR) is the cellular reaction to
exogenous and endogenous genotoxic injuries that may
produce DNA single strand breaks (SSBs) and DNA
double strand breaks (DSBs). While SSBs are repaired by
mechanisms of nucleotide excision repair (NER) or base
excision repair (BER), or mismatch repair (MMR), DSBs
are repaired either by the mechanism of homologous

recombination (HR), which utilizes the sister chromatid
as a template for a correct replacement of the DNA se-
quence, or by the mechanism of non-homologous end
joining (NHEJ), which is more prone to errors [1, 2].
The cellular choice of using HR or NHEJ is largely
dependent on the phases of the cell cycle; NHEJ is
present throughout the cell cycle, whereas HR predomi-
nates in the S and G2 phases, in order to ensure the
high-fidelity preservation of genetic information [3]. If
the repairing process does not occur correctly, the
DNA injuries result in mutations and chromosomal
aberrations which alter the cellular behavior and lead
to cancer.
Genes that encode for enzymatic or scaffolding proteins

involved in the “core” DDR activities [BER, MMR, HR and
NHEJ) are: XPA-XPG, RPA, ERCC1, DNA glycosylase,
APE1, DNA polymerase β/δ/ε, XRCC1, DNA ligase 1/3,
DNA ligase IV, Ku70/80, RAD50/MRE11/NBS1, BRCA1,
BRCA2, and RAD51 (Fig. 1) [4–9].
Additionally, as a result of a computational analysis

nearly 400 proteins have been identified in the regula-
tion of the DDR processes [10–13], namely: the damage
sensing kinases ATM/ATR, that activate a phosphoryl-
ation cascade signaling in response to the DSBs [14, 15];
DNA-PK, that cooperates with ATR and ATM to phos-
phorylate proteins involved in the DNA damage check-
points and is required for NHEJ [16]; the kinases
CHEK1 and CHEK2, that are responsible for slowing
down the cell cycle progression to allow DNA repair
[17]; and the nuclear phosphatase PTEN, that controls
the transcription and the nuclear localization of the re-
combinase RAD51 [18–20]. Furthermore, ubiquitination,
sumoylation, acetylation and methylation processes pro-
vide an additional layer of complexity targeting stability
and efficiency of DDR proteins machinery [10, 12].
Since almost 56% of the identified 400 proteins are in-

volved in multiple DDR pathways, a functional defect or
loss of a single DDR protein may affect multiple DNA

Fig. 1 Diagram of targeted DDR pathways. In the lower part of the figure the DDR mechanisms and the related proteins involved are
represented. In the upper part of the figure the targeting strategy for the corresponding defective DDR mechanisms are shown
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repair processes [11]. Defects in DDR seem to be posi-
tively selected in cancer cells to support the enhanced
proliferation rate [21–23]. However, molecular alter-
ations in the DNA repairing process make the cells more
vulnerable to the pharmacological inhibition of the DNA
repairing enzymes [24–30]. The concept of promoting
the killing of cancer cells by simultaneously targeting
cellular signals that cooperate and complement molecu-
lar defects to obtain cell death represents an anti-cancer
strategy based on the concept of synthetic lethality
(Fig. 2) [31–33].
Cancer cells defective in the DSBs repair molecules in-

volved in DDR can be targeted specifically by blocking
SSBs repair by inhibiting PARP enzymes [34–41].

Main body
PARP enzymes and defects in DNA damage response in
cancer
The Poly ADP-ribose polymerase (PARP) family com-
prises 17 members including PARP1, PARP2, PARP3,
tankyrases 1 and 2 (PARP5a and 5b), all of which have
been identified on the basis of their homology in the
catalytic domain [42–48]. The most studied protein of
the PARP family is PARP1, a nuclear protein with en-
zymatic and scaffolding properties, that contains an
amino-terminal DNA binding domain (DBD, a central
auto-modification domain (AMD), crucial for protein-
protein aggregation, and a carboxyl-terminal catalytic
domain (CD). The activity of the PARP1 enzyme seems
to be critical in the BER but also in the HR and NHEJ
mechanisms [46, 49–51]. The PARP1 enzyme transfers the
first ADP-ribose from nicotinamide adenine dinucleotide
(NAD+) to the proteic residues (glutamate, aspartate and
lysine) and generate an ADP-ribose unit chain (PAR), act-
ing as a “writer” of a poly ADP-ribosylation [52, 53]. This
process of “PARylation” occurs covalently on target pro-
teins (transPARylation) and on the PARP enzyme itself

(autoPARylation) producing a negative charge that alters
the protein structure and function. The presence of PAR
chains at the break-sites of DNA favors the non-covalent
recruitment of DNA repair proteins like XRCC1, DNA lig-
ase 3, DNA polymerase β, and the MRE11-Rad50-NBS1
(MRN) complex, for DNA resection and single strand for-
mation, which in turn allow for RAD51 loading to initiate
HR [43, 54–56].
PARP1 and PARP2 are the enzymes most extensively

studied and are known to be stimulated by DNA dam-
age, although PARP2 contributes to only 5–10% of the
total PARP activity in response to DNA damage [57–60].
Tankyrases 1 and 2 are mostly involved in telomere and
mitotic spindle-related functions, as well as in the regu-
lation of Wnt signaling [61]. Overall, the PARP enzymes
regulate DDR but also tumor growth and progression
through transcriptional/epigenetic regulation and mRNA
processing and stability [43, 62–68]. Thus, targeting
PARP activity can cooperate and complement molecular
defects of DDR that have been exploited therapeutically
for different cancer treatments [69–72].
A wide variety of hereditary human cancers show germ-

line alterations of genes involved in the DDR process.
Germline mutations within BRCA1 carriers predispose to
early onset of breast and ovarian cancer; mutations in
BRCA2 genes lead to the late onset of different tumors
(gastric, colon, pancreatic and melanoma) beyond breast,
ovarian and prostate cancer; mutations in the ATM,
NBS1, BLM, and WRN genes occur in lymphoma and
leukemia; the RAD54 and CtIP genes are mutated in non-
Hodgkin’s lymphoma and colon cancer; the MLH1 and
MSH2 genes are mutated in hereditary non-polyposis
colorectal cancer (HNPCC); the RAD51B gene is mutated
in lymphoma and uterine leiomyoma and finally the
RECQL4 gene is mutated in skin cancer and osteosarcoma
[73–80]. Beside the DDR defects identified in hereditary
human cancer, recent studies based on computational

Fig. 2 Synthetic Lethality of PARP-inhibitors in BRCA Tumors. Poly(ADP-ribose) polymerases (PARPs) repair DNA SSBs through the BER pathway.
PARP inhibitors, such as olaparib, prevent repair of the SSBs, resulting in the generation of DNA DSBs. Cancer cells with a deficient homologous
recombination (BRCA1/BRCA2 mutations) required for the repair of the DSBs do not compensate for the increased DNA damage caused by the
inhibition of PARP enzymes and appear to be especially sensitive to treatment with these drugs
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analysis have shown that almost 95% of DDR genes are
mutated in coding regions at least in 15 different types of
sporadic tumors [11], suggesting that mutations in DDR
genes should be further investigated as possible driver
mutations in cancer.

The activity of PARP inhibitors: success and failure of
PARPi in Clinical Trials
The use of PARP enzyme inhibitors in cancer cells
which are defective for BRCA1 and BRCA2, two pro-
teins that localize the RAD51 recombinase to the sites of
damaged DNA and promote HR repair, represent the
best and most successful synthetic lethal approach in
cancer therapy.
The PARP inhibitors bind the catalytic domain of

the PARP protein, mostly as antagonists of the PARP
cofactor β-NAD+. Because of the binding of the in-
hibitors, the PARP enzymes could be inhibited in the
catalytic activity, with the final result of converting
SSBs into DSBs and determining cell death in DSB
repair deficient cells [81–88].
There are a total of nine drugs related to PARP target-

ing in the pipeline of drug development, some of them
having a selective activity on PARP1 and PARP2, others
affecting both PARP1 and PARP2 [89].
AG-014699 Rucaparib (Clovis/Pfizer), used for intra-

venous and oral administration, is the first inhibitor that
has been introduced in clinical trials in association with
chemotherapy and is now in Phase III for maintenance
treatment after chemotherapy [90–92]. AZD2281 Ola-
parib (kuDOS/LynparzaTM, AstraZeneca), used for oral
administration, is the first inhibitor identified as single
antitumoral agent in cancer associated with the BRCA1
or BRCA2 mutations [93, 94]. Notably, in December
2014 Olaparib was approved by the US Food and Drug
Administration (FDA) for its use in pretreated ovarian
cancers with defective BRCA genes and by the European
Medicines Agency (EMEA) for maintenance therapy in
BRCA-mutated/platinum sensitive ovarian cancer pa-
tients. ABT-888 Veliparib [Abbvie], used for oral admin-
istration, is now in Phase III evaluation in combined
therapy in advanced or recurrent solid tumors, also be-
cause of its property to reach the Central Nervous
System (CNS) [95, 96]. BSI-201 Iniparib (BiPar/Sanofi),
used for intravenous administration, was the first inhibi-
tor that has entered Phase III studies and, besides the
discrepancies between the phase II and III studies, has
shown antitumor activity mostly in combined therapy
with gemcitabine and carboplatinum [97–99]. MK-4827
Niraparib (Merck/Tesaro), used for oral administration,
is a potent inhibitor of PARP1 and PARP2 and is cur-
rently being tested in Phase III clinical trials as mainten-
ance therapy in ovarian cancer and as a treatment for
breast cancer [100–102]. BMN-673 (BioMarin), used for

oral administration, is more potent than Olaparib and
is used in combined therapy in Phase III evaluation
[103, 104]. Finally, a few drugs developed more recently
like CEP-9722/8983 (Cephalon) and E7016 or E7449
(Eisai/MGI Pharma) are used for oral administration
and are now being tested in Phase I toxicity studies in
combined therapy [88, 105, 106]
By limiting the DDR competence, PARP inhibitors

complement the mechanisms of action of chemotherapy
and radiotherapy. Thus, as chemosensitizer, PARPi, has
entered clinical assessment in combination with temozo-
lomide [90, 107], DNA crosslinkers (e.g. cisplatin) [108],
or cleave the sugar-phosphate backbone (e.g. bleomycin)
[109]. Thus, several clinical trials with different PARP in-
hibitors have been conducted and are still ongoing to
test the efficacy of PARPi as a single agent or in com-
bination with radiotherapy and/or chemotherapy
[https://clinicaltrials.gov/]. Clinical trials that are in
progress to test PARPi efficacy have been recently sum-
marized by Lord and Ashworth [110].
In 2005 a Phase I clinical trial assessing Olaparib as a

single agent showed an objective response rate (ORR) of
47% and a disease control rate (DCR) of 63% in patients
with BRCA mutations [94]. Next, Phase II studies con-
firmed the efficacy of Olaparib as a single agent in breast
and ovarian cancer patients with BRCA mutations [111].
Significantly, the best response to Olaparib has been re-
ported in ovarian cancer patients with BRCA mutations
who have demonstrated a sensitivity to platinum treat-
ment; patients who had a platinum-sensitive disease
were Olaparib responsive with a rate of 69%, whereas
those who were platinum-refractory had a response rate
of 23% [111]. Thereafter, clinical trials were designed to
define both the utility of Olaparib as a single agent in
chemotherapy-refractory tumors, and as maintenance
therapy in platinum-sensitive diseases. Carriers of BRCA
mutations, responsive to previous platinum therapy, have
shown better outcomes in PFS (8.4 months vs 4.8 months)
with the Olaparib maintenance therapy [112–114].
Currently, Phase III clinical trials are in progress aimed

at assessing the use of several PARP inhibitors (e.g.
Olaparib, Niraparib, Recuparib, Veliparib, and BMN-673)
in the maintenance therapy of platinum treated ovarian
and breast cancer, as single agents in therapeutic settings
of adjuvant and standard-of-care chemotherapy for ad-
vanced diseases. Additionally, Phase III clinical trials are
ongoing to assess the efficacy of PARP inhibitors in com-
bined treatments, in therapeutic settings of neoadjuvant
strategy and in advanced diseases [https://clinicaltrials.-
gov/].
The positive results obtained in breast and ovarian

and prostate cancer patients with BRCA mutations
[111–115] have encouraged the use of PARP inhibitors
in tumors with BRCA-like features (*BRCAness
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phenotype*). Thus, the efficacy of PARPi has been evalu-
ated in Triple Negative Breast Tumors and High-Grade
Serous Ovarian Cancer (TNBC/HGS-OVCa) that exhib-
ited a 60-gene signature in common with BRCA mutated
tumors [110, 116–121]. Moreover, clinical correlation sug-
gested that the BRCA status conferred sensitivity to plat-
inum chemotherapy and this can be used as a marker for
HR defects to predict PARP-inhibitors sensitivity [122].

Predicting PARPi sensitivity beyond BRCA1/2 mutations
and “BRCAness”
The identification of biomarkers that can predict the
PARP inhibitor sensitivity of cancer cells is urgently re-
quired. Germline BRCA mutations are recognised as the
molecular targets for PARPi sensitivity in breast, ovarian
and prostate cancer. However, it is noteworthy that
PARPi efficacy has also been reported in non-BRCA re-
lated tumors [123]. Thus, PARP inhibitors may have a
utility beyond the relatively small proportion (5–10%) of
cancer patients carrying BRCA mutations [102, 124].
Tumors displaying a DNA repair dysfunction, regard-

less of the leading genetic lesion, might exhibit a BRCA-
like behavior, according to the concept of “BRCAness”
[110, 116], and might therefore benefit from PARPi
treatment [122, 125–128]. However, the predictive value
of a “BRCAness” signature, besides BRCA1 and BRCA2
mutations, still requires prospective large-scale clinical
validation before entering conventional clinical practice.
Genomic alterations, gene mutations or functional loss
of proteins involved in DDR mechanisms, such as
ATM, ATR, CHEK1, CHEK2, DSS1, RAD51, MRE11A/
NBS1, Fanconi anemia complementation group (FANC
family of genes), EMSY, PALB2, XRCC2, XRCC3, or
PTEN, could represent predictive markers in cancer
patients to tailor a personalized treatment with PARP
inhibitors [129–141].
Nevertheless, additional molecules appear to be able

to influence the sensitivity to PARPi, namely the gene
fusions TMPRSS2:ERG, detected in more than 50% of
prostate cancers, and the EWSR1:FLI1 translocation, de-
tected in Ewing’s sarcoma in more than 90% of patients
[142, 143].
To date, a few additional proteins have been proposed

as novel predictive biomarkers of PARP inhibitor sensi-
tivity like cyclin dependent kinase CDK12, the excision
repair cross-complementation group 1 ERCC1, and the
proapoptotic protein CCDC6.
CDK12 attenuation in the high-grade serous ovarian

cancer model [HGS-OVCa] is sufficient to confer a sen-
sitivity to PARP1/2 inhibition [144, 145].
ERCC1 low expression in the NSCLC model is suffi-

cient to determine a synergistic effect with PARP inhib-
ition [146, 147].

CCDC6 loss or low expression in different cancer
models impairs RAD51 foci formation, limits γH2AX
foci formation by modulating the activity of the histone
phosphatase PP4C and sensitizes the cancer cells to
PARPi treatment [148–151].
Moreover, kinases, such as CDK5, MAPK12, PLK3,

PNKP, STK22c, STK36, and deubiquitinases, such as
USP1 and USP11, can produce synthetic lethal effects
with PARPi in genetic perturbation screens performed
following different approaches [152–157].
In Table 1 we report the altered genes which have

been described so far to confer PARPi sensitivity in dif-
ferent in vitro and in vivo cellular models.
The complexity of the existing crosstalk between DNA

repair pathways suggests that a single biomarker may
not be sufficient to predict the benefit of PARP inhibitor
therapies. Therefore, DNA microarrays, real-time quan-
titative reverse transcriptase [qRT]-PCR, protein micro-
arrays, mass spectrometry, immunohistochemistry and
immunofluorescence assays represent powerful tools in
order to identify predictive biomarkers measured at
baseline or in progress of therapy in cancer patients en-
rolled on PARPi clinical studies.

Assays that can measure HR proficiency and PARP activity
in vivo
The development of novel assays that are able to predict
the HR proficiency in cancer cells represents an important
challenge in the design of a personalized therapy. Several
assays that can evaluate the HR proficiency in cancer cells
need to be validated in prospective clinical trials for their
value to predict the response to targeted therapies, Since
genomic instability may represent a lifetime record of
DNA repair deficiency, the genomic structural rearrange-
ment signatures, identified in functional BRCAness,
should be examined in tumor types other than ovarian
and triple-negative breast cancers. [158–164].
It has been reported that the measure of telomeric al-

lelic imbalances (NtAl), that counts the number of sub-
telomeric regions with allelic imbalance,in combination
with the measure of loss of heterozygosity (ARD-LOH),
that measures the number of regions with LOH which
are larger than 15 Mband with the measure of large
scale transition (LST), that counts the number of
chromosomal breaks between adjacent regions of at least
10 Mb, can identify in 15 different tumor types a gen-
omic scar signature in SNP array data and allow the se-
lection of DNA repair-deficient cancers, to candidate
cancer patients to platinum chemotherapy and PARPi
[158]. On this basis Myriad Genetics used SNP profiling
to develop a HR deficiency (HRD) assay which combines
the mentioned three different DNA-based metrics of
genomic instability [165]. The HDR assay can be per-
formed using DNA extracted from FFPE tumor tissues
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Table 1 Genetic alterations that predict PARPi sensitivity

Altered gene PARP inhibitors in vitro/in vivo systems Study

BRCA2 NU1025 and AG14361 Chinese hamster cell
V-C8 and V-C8 + B2
(BRCA2 defective and BRCA2
complemented)
Human breast cancer cells
MCF-7 or MDA-MB-231
(BRCA2 siRNA)

Bryant H. et al., Nature 2005.
.

KU0058684 and KU0058948 Mouse ESC
(lacking BRCA2 wt)
HeLa
(RNAi)

Farmer H. et al, Nature 2005
McCabe N. et al., Cancer Res. 2006

Olaparib (AZD2281) Ovarian cancer patients
ClinicalTrial NCT00753545
Prostate cancer patients
ClinicalTrial, NCT01682772

Ledermann J. et al., N Engl J Med. 2012.
Mateo J. et al., N. Engl. J. Med. 2015.

ATM KU0058684 and KU0058948
Olaparib (AZD2281)

HeLa
(RNAi)
Prostate cancer patients
ClinicalTrial, NCT01682772

McCabe N. et al., Cancer Res. 2006.
Mateo J. et al., N. Engl. J. Med. 2015.

ATR KU0058684 and KU0058948 HeLa
(RNAi)

McCabe N. et al., Cancer Res. 2006

FANC A/F KU0058684 and KU0058948
Olaparib (AZD2281)

Mouse fibroblast
(FANC KO)
Prostate cancer patients
ClinicalTrial, NCT01682772

McCabe N. et al., Cancer Res. 2006
Mateo J. et al., N. Engl. J. Med. 2015.

CHK2 KU0058684 and KU0058948
Olaparib (AZD2281)

HeLa
(RNAi)
Prostate cancer patients
ClinicalTrial, NCT01682772

McCabe N. et al., Cancer Res. 2006
Mateo J. et al., N. Engl. J. Med. 2015.).

BRCA1 KU0058684 and KU0058948
Olaparib (AZD2281)

Mouse ESC
(lacking BRCA2 wt)
HeLa
(RNAi)
Ovarian cancer patients
ClinicalTrial NCT00753545
Prostate cancer patients
ClinicalTrial, NCT01682772

Farmer H. et al, Nature. 2005.
McCabe N. et al., Cancer Res. 2006.
Ledermann J. et al., N Engl J Med. 2012.
Mateo J. et al., N. Engl. J. Med. 2015.

PALB2 Olaparib (AZD2281)
BMN 673

Human fibroblast EUFA1341
(express PALB2 mutant)
Wilms tumor KT-10 cells
(express truncated PALB2)

Buisson R. etal., Nat Struct Mol Biol. 2010.
Smith MA. et al., Pediatr Blood Cancer. 2015.

RAD51B/C KU0058684 and KU0058948
Olaparib (AZD2281)

HeLa
(RNAi)
Prostate cancer patients
ClinicalTrial, NCT01682772

McCabe N. et al., Cancer Res. 2006.
Mateo J. et al., N. Engl. J. Med. 2015.

RAD54 KU0058684 and KU0058948 Mouse ESC
(lacking Rad54 wt)

McCabe N. et al., Cancer Res. 2006.

ERCC1 olaparib
(AZD-2281), niraparib
(MK-4827),
BMN 673
olaparib
(AZD-2281),
veliparib
(ABT-888)

Non Small Cell Lung Cancer
A549
(ERCC1 deficient clones)
Non Small Cell Lung Cancer
HCC827, PC9
(ERCC1 low expression)

Postel-Vinay S. et al., Oncogene 2013.
Cheng H. et al., Carcinogenesis 2013.

CtIP BMN 673
KU0058948

Myeloid leukemia cell K562 (expressing CtIP-T) Gaymes TJ. et al., Haematologica. 2013.

MRE11 BMN 673
KU0058948

Hystiocitic Linphoma U937 cell
(expressing MRE11-Δ57)

Gaymes TJ. et al., Haematologica. 2013.

NBS1 KU0058684 and KU0058948 Human immortalized fibroblast McCabe N. et al., Cancer Res. 2006.
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and thus has been translated into clinic for perspective
studies (ARIEL2 NCT#01891344)
Furthermore, a biological rationale driven (mutations

in BRCA1/2) genomic instability score has been devel-
oped by integrating somatic mutations and copy number

changes reported in the TCGA of 325 ovarian cancers.
The identified score has been demonstrated to correlate
with homozygous deletion of core HR genes in 67 HR
deficient non BRCA samples compared to 152 control
samples. The identified score has been also correlated

Table 1 Genetic alterations that predict PARPi sensitivity (Continued)

DSS1 KU0058684 and KU0058948 HeLa
(RNAi)

McCabe N. et al., Cancer Res. 2006.

RPA1 KU0058684 and KU0058948 HeLa
(RNAi)

McCabe N. et al., Cancer Res. 2006.

PTEN (KU0059436) Olaparib Colorectal tumour cell
HCT116 (truncated PTEN) endometroid
adenocarcinoma cells HEC1A (truncated PTEN)
Breast, prostate, melanoma, glioma and bladder cells
HCC70, MDA-MB-468, PC3, RPMI-7951, A172,
UM-UC3 and (PTEN deficient expression)

Mendes-Pereira, A. et al., EMBO Mol. Med. 2009.

(KU0059436) Olaparib Prostate cancer patients ClinicalTrial, NCT01682772 Mateo J. et al., N. Engl. J. Med. 2015.

ETS/ERG (KU0059436) Olaparib
MK-4827

Solid tumors ClinicalTrial, NCT00777582
Solid tumors ClinicalTrial, NCT00749502

Brenner JC. et al, Cancer Res. 2011.

XRCC2/XRCC3 (3-AB)
(ISQ)
(NU1025) (AG14361)

Chinese hamster ovary cell irs1/irs1SF Bryant H. et al., Nature 2005.

CDK1 AG14361 and
AG014699

Non Small Cell Lung Cancer
NCI-H1299/A549
CDK1 (RNAi)

Johnson N. et al., Nat Med. 2011.

CDK12 veliparib
(ABT-888)

Ovarian cancer
OVCAR-3, OVCAR-5, OVCAR-8
CDK12 (RNAi)

Joshi, P.M. et al., J. Biol. Chem. 2014.
Bajrami,I. . et al., Cancer Res. 2014.

olaparib
(AZD-2281)

Ovarian cancer
PEO1, OV56, COV504;
OV90 cells
CDK12-(RNAi)

(KU0059436) Olaparib Prostate cancer patients
ClinicalTrial, NCT01682772

Mateo J. et al., N. Engl. J. Med. 2015.

CDK5 KU0058948 Breast cancer
CAL51 cells
CDK5 (RNAi)

Turner, N.C. et al., EMBO J. 2008.

PLK3 KU0058948 Breast cancer
CAL51 cells
PLK3 (RNAi)

Turner, N.C. et al., EMBO J. 2008.

PNKP KU0058948 Breast cancer
CAL51 cells
PNKP (RNAi)

Turner, N.C. et al., EMBO J. 2008.

STK22C KU0058948 Breast cancer
CAL51 cells
STK22C (RNAi)

Turner, N.C. et al., EMBO J. 2008.

STK36 KU0058948 Breast cancer
CAL51 cells
STK36 (RNAi)

Turner, N.C. et al., EMBO J. 2008.

USP1 KU0058948 Breast cancer
CAL51 cells
USP1 (RNAi)

Turner, N.C. et al., EMBO J. 2008.

USP11 olaparib
(AZD-2281)

Bone osteosarcoma
U2OS cell
USP11 (RNAi)

Wiltshire TD. et al., J Biol Chem. 2010.

CCDC6 olaparib
(AZD-2281),

Non Small Cell Lung Cancer
H1975 cells
CCDC6 (RNAi)

Morra F. et al., Int J Cancer 2015.
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with the outcome of response to treatment of platinum
in ovarian cancer patients [166].
Several studies support the use of panel testing for a

comprehensive analysis of mutations, expression changes
of multiple genes in prospectively designed trials for the
selection of patients likely to respond to platinum and
PARPi. However, there is currently no gold standard
method of testing for DDR cancer cell proficiency and
cancer sensitivity to platinum or PARPi.
Assessing the number of nuclear foci of RAD51,

FANCD2 and γH2AX may help to establish DDR cellu-
lar competence, before, during and after treatment with
IR and PARP inhibitors, to predict tumor sensitivity or
acquired resistance to treatments.
Therefore, the detection of RAD51 foci by IHC and IF,

in ex vivo samples or in tumor biopsies during neoadju-
vant therapy, may be predictive of HR defects and sensi-
tivity to PARPi, given that PARP inhibition or loss results
in an increasing RAD51 foci formation in HR intact cells
[167]. This approach of RAD51 foci formation has been
applied in ex vivo samples in primary ovarian cancer
cultures to predict sensitivity toRucaparib, showing a
negative predictive value of 100% and a positive predictive
value of 93% [168]. The analysis of RAD51 foci formation
in FFPE samples of breast cancer biopsied after neoadju-
vant therapy also has appeared to be predictive of a re-
sponse to chemotherapy [169].
The FANCD2 foci formation may be assayed to pre-

dict the sensitivity of cancer cells to cisplatin and PARPi,
given that PARP inhibitors, chemotherapy and radiother-
apy induce FANCD2 nuclear foci formation [170–172].
Additionally, a high-throughput screening system

based on the IF of γH2AX (Rapid Automated Biodosi-
metry Tool) may help to screen patients sensitive to
PARPi treatment, given that PARP inhibitors increase
γH2AX foci in Circulating Tumor Cells [173–175]. Re-
cently, the evaluation of RAD51 and γH2AX nuclear foci
in ex vivo samples, as well as of the PARP activity, has
been applied in some clinical studies [168, 176, 177].
Ongoing clinical trials with PARPi [ABT-888], either as

a single agent or in combination therapy, aim to identify
suitable patients for PARPi sensitivity, beside BRCA muta-
tions, that show HR or MMR deficiency (NCT01237067,
NCT02660034, NCT02576444, NCT02286687, NCT0189
1344, NCT02354131) by measuring γH2AX and FANCD2
foci formation in FFPE tumor samples [167, 172, 177]
(NCT01017640; NCT01251874).
Tumor cells defective in the HR process might also

show a compensatory induction of PARP expression.
However, PARP1 protein levels do not differ between
isogenic pairs of HR deficient and proficient cancer cells
[178]. An enhanced PARP1 expression does not mean
an enhanced PARP activity [179–182]. Since the PARP
activity is associated with the levels of PAR, the

detection of low levels of PAR may indicate an intrinsic
low activity of PARP with a limited potential of PARP in-
hibitor efficacy. Therefore, the prediction of PARPi effi-
cacy could possibly be evaluated by assays that quantify
the intrinsic PARP activity in cancer cells. An Enzyme
Linked Immunosorbent Assay (ELISA) may be applied for
a quantitative and sensitive assessment of PAR (poly[AD-
P]ribose) polymer levels in tumor specimens and in
peripheral blood to assess the enzyme proficiency and to
predict PARPi sensitivity [176].

Conclusions
Emerging data suggest that PARP inhibition is a poten-
tially important strategy for managing a significant subset
of tumors. The discovery of both germline and somatic
DNA repair deficiencies in different cancer patients, to-
gether with the development of PARP inhibitors that can
kill cancer cells with these defects, is a potent example of
targeting therapy to molecularly defined tumor subtypes.
The assessment of genomic instability assays and of nu-
clear foci status, together with the levels of DNA repairing
proteins may predict the outcomes of PARPi treatment in
different cancer types [183–187]. In the near future, the
systematic evaluation of PAR levels, γH2AX, FANC and
RAD51 foci with genomic instability features in tumor
biopsies before, during and after treatment might help to
identify patient populations who can be classified as re-
sponders or non-responders to PARP inhibitors. However,
the heterogeneity of the tumor could always limit the
evaluation of specific biomarkers, especially when the
analysis is performed on a small amount of tissue (tissue
microarrays, TMA) by IHC or FFPE.
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