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Abstract

Background: RING finger protein 38 (RNF38), a member of the RNF protein family, has just emerged as a vital
driver of cancer progression. However, the oncogenic mechanisms of RNF38 remain unexplored.

Methods: Using frozen tumor tissue and tissue microarray from hepatocellular carcinoma (HCC) patients, we tried
to probe the expression of RNF38 in HCC and its clinical value. Then the biological functions of RNF38 were
analyzed in vivo and vitro. Stable isotope labeling with amino acids (SILAC) in cell culture and co-immunoprecipitation
proteomic analyses were combined to reveal the potential mechanism of RNF38 in HCC progression.

Results: We report that RNF38 expression was markedly higher in HCC tissues than in peritumor tissues.
Correspondingly, RNF38 overexpression promoted the HCC cell migration and invasion and inhibited apoptosis both in
vitro and in vivo. And elevated RNF38 expression induced HCC cell epithelial-mesenchymal transition by facilitating
transforming growth factor-β (TGF-β) signaling via ubiquitinating and degrading neuroblast differentiation-associated
protein (AHNAK), a well-established inhibitor of TGF-β signaling. Furthermore, AHNAK interference restored the HCC
cell invasion and metastasis deprived by RNF38 downregulation. Clinically, elevated RNF38 and transforming growth
factor beta receptor 1 (TGFBR1) expression was related to short overall survival (OS) and high cumulative recurrence
rates in HCC patients.

Conclusions: High levels of RNF38 promote HCC by facilitating TGF-β signaling and are a novel marker for predicting
the prognosis of HCC patients and a potential therapeutic target in HCC.
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Introduction
Hepatocellular carcinoma (HCC) is still among the leading
causes of cancer-related death worldwide, especially in
China [1, 2]. The high rate of relapse and early invasion
and metastasis are the major reasons for the poor
outcomes of HCC patients. Currently, except for curative
surgical therapy, effective means of controlling HCC pro-
gression are lacking. During the past decade, targeted drugs

such as sorafenib and regorafenib have been put into clin-
ical use [3]. However, most patients realize a limited benefit
due to drug resistance [4]. Thus, revealing the molecular
mechanism of HCC progression and identifying new key
markers or targets for the diagnosis and treatment of HCC
patients is extremely urgent.
Ubiquitination is a complex yet significant process that

controls a vast array of cellular functions, including cell
metabolism, survival, differentiation, as well as the cell
cycle. Among the multiple steps in the ubiquitination
process, E3 ubiquitin ligases (E3s) control precise sub-
strate recognition by mediating the transfer of ubiquitin
from E2-ubiquitin-binding enzymes (E2s) to substrates,
and thus govern the fate or subcellular localization of ubi-
quitinated proteins [5]. E3s are frequently dysregulated in
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tumors, resulting in the dysfunction of tumor suppressor
genes or oncogenes which further participate in cellular
transformation or tumor progression [6, 7]. RING finger
(RNF) proteins, the largest class of E3s with RNF domains
containing eight conserved cysteine and histidine residues,
play various roles in human physiology and pathologies
[8], especially cancer progression [9]. For example, RNF43
frequently mutates in colorectal and endometrial cancers
[10] and in liver fluke-associated cholangiocarcinoma [11].
RNF38, a member of the RNF protein family, is abundant
in the human testis, and its dysfunction is involved in a
variety of human disorders, particularly neoplasms [12].
Indeed, the human RNF38 gene is located on the short
arm of chromosome 9, which is a region enriched with
drivers of chronic myelogenous leukemia (CML) [13, 14].
Additionally, RNF38 was identified to ubiquitinate TP53
in HEK293T cells [15], and upregulated RNF38 expression
was recently found to promote non-small cell lung cancer
cell invasion and metastasis by inducing cell epithelial-
mesenchymal transition (EMT) [16]. Thus, there is a
growing need to determine the detailed molecular mech-
anism of RNF38 in cancer.
In this study, we aimed to determine the expression of

RNF38 in HCC tissues and the potential prognostic value
of RNF38, particularly the definitive mechanism by which
RNF38 induces the invasion and metastasis of HCC.

Methods and materials
Patients samples and follow up
A total of 200 HCC patients who underwent complete
surgical excision between January 2006 and December
2008 at Zhongshan Hospital Fudan University (Shanghai,
China) were enrolled randomly in the study. The diagnosis
of HCC was confirmed independently by two pathologists.
Neoplastic and matched normal tissues were obtained
after surgery and were further used for tissue microarray
(TMA) construction. The fresh tumor samples were ac-
quired from Zhongshan Hospital (Shanghai, China). The
study was approved by the Institutional Review Board of
Zhongshan Hospital Fudan University, and informed con-
sent was obtained from the patients prior to the study.

Immunohistochemistry (IHC), immunoblot (IB), and real-
time quantitative PCR (qRT-PCR) analyses
The IHC protocol and qualitative criteria for the intensity
of staining were used as shown in our previous study [17].
And the IHC details were listed in the Additional file 1.
The integrated optical density (IOD) values were assessed
by Image-Pro Plus software. IB analysis was performed in
our earlier study [18]. Relative protein expression was ana-
lyzed by Image J software. The information for the primary
antibodies was listed in Additional file 2: Table S1. For
qRT-PCR, RNA was extracted from tissue or cell lines as
previously described [19], with SYBR Green Realtime PCR

Master Mix (Yeasen, Shanghai, China). The PCR primers
used were as follows: RNF38, forward: 5′-AACACGGAG
AGCAGTTCCAC-3′ and reverse: 5′-CCTGGCATACGT
CTTCAACA-3′. GAPDH, forward: 5′-GGTATGACAAC
GAATTTGGC-3′ and reverse: 5′-GAGCACAGGGTACT
TTATTG-3′. AHNAK, forward: 5′-GAGGTCTTCCAGG
CATTGGTGTTC-3′ and reverse: 5′-GGCAGGTTCA CA
TCACATCCAGAG-3′. TGFBR1, forward: 5′-GCAGAGC
TGTGAAGCCTTGAGAG-3′ and reverse: 5′- ATGCCTT
CCTGTTGACTGAGTTGC-3′.

Cell lines and transfection
The human HCC cell lines HCCLM3, Huh7, PLC/PRF/
5, and HepG2 were obtained from the Chinese Academy
of Science Cell Bank (Shanghai, China). All cell lines
were cultured in DMEM supplemented with 10% fetal
bovine serum and 1% antibiotics at 37 °C in a humidified
incubator with 5% CO2.
All vectors were purchased from Shanghai Genomeditech

Company (Shanghai, China). The HCCLM3 cell line was
transfected with RNF38 short hairpin RNA (shRNA) lenti-
viral vectors and the corresponding control vectors, and
the HepG2 cell line was transfected with RNF38 cDNA
lentiviral vectors and the corresponding control vectors.
The AHNAK small interfering RNA (siRNA) was also con-
structed by Shanghai Genomeditech Company (Shanghai,
China). The RNF38 shRNA target sequences were as
follows: shRNA1: 5′- GUCUCGACAUAAUUCCAUU-3′,
shRNA2: 5′-CAUGGGAGAUGACAUCAAA-3′. The AH
NAK siRNA target sequences were as follows: siRNA1, for-
ward, 5′-CUGCUGCUGCCCAACUGGC tt-3′, reverse,
5′-GCCAGUUGGGCAGCAGCAGtt-3′; siRNA2, forward,
5′-GGCGUCUUGUGC AGGAGGtt-3′, reverse, 5′-CCUC
CUGCACAAAGACGCCtt-3′; siRNA3, forward, 5′-GCUG
CC CAACUGGCAGGGUtt-3′, reverse, 5′ ACCCUGCCA
GUUGGGCAGCtt-3′. The antibiotic-resistant transfected
cells were selected by adding puromycin to the culture
medium for 7 days.

Cell migration, Matrigel invasion, and cell proliferation
assays
The cell migration and matrigel invasion assays were
performed as described in our previous report [20]. For
the cell proliferation assay, 2 × 103 cells were incubated
in 96-well plates, and at the prescribed time, the OD
value was determined by a cell counting kit-8 (CCK-8)
assay (Yeasen, Shanghai, China).

Immunofluorescent staining and flow cytometry assays
Immunofluorescence staining was performed as described
in our previous study [21]. Flow cytometric analysis was
performed to calculate the rate of HCC cell apoptosis.
The cell samples were stained with annexin V-FITC/PI,
cells in the lower-right quadrant were Annexin V positive
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and defined as early apoptotic cells, and cells in the
upper-right quadrant were Annexin V positive and PI
positive and defined as late apoptotic cells. Both quadrants
were included to evaluate the capability of the cells to
resist apoptosis.

Tumor growth in vivo
Four-week-old nude mice were acquired from the Shang-
hai Institute of Material Medicine and were raised in the
specific pathogen-free animal laboratory. A total of 5 × 106

HCC cells were injected to generate subcutaneous tumors
in the nude mice. Tumor growth was measured every 5
days after the injection until the 32nd day. Tumors were
measured in two dimensions, as described in our earlier
study [20]. Serial sections of mice lungs were stained with
H&E, and the metastatic rate was calculated as previously
described [21]. The Mice experiments conformed to the
requirements of the Animal Ethics Committee of
Zhongshan Hospital, Fudan University.

Coimmunoprecipitation (co-IP)
First, cold RIPA lysis buffer (50mM Tris (pH 7.4), 150mM
NaCl, 1% Triton X-100, 1% sodium deoxycholate, and 0.1%
SDS) containing 1 μm complete protease inhibitor (Roche)
was added to cultured cells. Next, the mixture was placed
on a low-speed rotating shaker for 30min at 4 °C. Then,
the supernatant was transferred to new tubes after centrifu-
gation at 13,000 g and 4 °C for 15min. Subsequently, the
precleared lysates were incubated with primary antibody
(RNF38, 1:100; AHNAK, 1:100 or, IgG (homologous
control antibody) 1:100) preabsorbed protein A- and
G-sepharose beads overnight at 4 °C. The precipitates were
cleaned with the RIPA buffer three times. The whole im-
munoprecipitates were boiled in 1× SDS loading buffer
(Beyotime, P0015A) for 5min, and the proteins were re-
solved by SDS-PAGE on 10% separating gel. Finally, immu-
noblots were probed with the appropriate antibody and
detected by ECL.

Stable isotope labeling by amino acids in cell culture
(SILAC)
Briefly, HepG2-NC cells were maintained in normal
DMEM nutrient medium with 10% FBS, which is called
light from here on. And HepG2-RNF38 cells maintained
with nutrient media containing L-lysine-2HCl (13C6,

15N2)
(Thermo Scientific™, 88,432), which is deemed to be heavy
from here on. The reverse reaction was set up under the
same conditions, but HepG2-NC cells were maintained in
heavy acid and HepG2-RNF38 were maintained in light
acid. The whole system was cultivated in the SILAC
medium for 10 passages to achieve full labeling before
harvesting. The cells were lysed by modified RIPA buffer
(50mM Tris-HCl, pH 7.8, 150mM NaCl, 1% NP-40,
0.25% sodium deoxycholate and 1mM EDTA) [22] and

mixed in a one to one ratio. The lytic cells were centri-
fuged in 4 °C. The supernatant was aspirated, and the mix-
ture lysate was digested by trypsin, and fractionated by
high-performance liquid chromatography (HPLC) and an-
alyzed by LC-MS/MS. For these two reactions, we calcu-
lated the ratio of light to heavy or heavy to light peptides.
And a 1.5 fold change cutoff for the peptide prophet prob-
ability used to filter the dataset. And the detail of defferen-
tial proteins are listed in Additional file 3: Table S2 and
Additional file 4: Table S3

Liquid chromatography coupled with tandem mass
spectrometry (LC-MS/MS)
Immunoprecipitates or SILAC mixture was subjected to
LC-MS/MS (Q-Extacive Plus, Thermo Scientific) ana-
lysis. The details of the LC-MS/MS method are de-
scribed in the Additional file 1.

Ubiquitination assay and cycloheximide (CHX) chase
assay
For the ubiquitination assay, HCCLM3-NC and
HCCLM3-shRNA2 cells were treated with MG132
(5 μmol, Selleck, China). Next, these two cell lines were
subjected to co-IP and the IB analysis was used to detect
ubiquitin. For CHX chase assay was used to observe the
half-life of AHNAK. HCCLM3-NC and
HCCLM3-shRNA2 cells were treated with CHX (50 μg/
mL) for the indicated times, and IB was performed.

Statistical analysis
SPSS software 21.0 was used for statistical analyses. Stu-
dent’s t-test was used to compare quantitative data between
two groups. The relationship between the two proteins was
assessed by the Pearson correlation coefficient. The
Kaplan-Meier method and the log-rank test were used to
analyze the overall survival and cumulative recurrence rate.
p < 0.05 was considered statistically significant.

Results
RNF38 is overexpressed in HCC tissues and associated
with poor prognosis in HCC patients
We first examined the levels of RNF38 protein and mRNA
in 36 pairs of HCC and adjacent nontumor tissues and
found that the RNF38 protein expression was higher in
HCC tissues than in normal tissues (Fig. 1a, p = 0.033).
This finding was also true for the mRNA expression (Fig.
1b, p = 0.036). These results were consistent with those
availabe in a public database (www.oncomine.org), that
showed that RNF38 was overexpressed in several gastro-
intestinal cancers (Additional file 5: Figure S1 A-D). IHC
staining of tissues from 200 HCC patients showed that
RNF38 expression was significantly higher in tumors than
in peritumor tissues (Fig. 1c, left panel). Moreover, the
RNF38 expression in HCC samples was considerably
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Fig. 1 RNF38 is overexpressed in HCC patients and associated with HCC patients’ poor prognosis. a. The expression of RNF38 protein in HCC
tumor tissues and matched normal tissues was verified by western blot. b. The expression of RNF38 mRNA was verified by qRT-PCR. c. The
expression of RNF38 was measured by IHC in TMAs including 200 HCC patients, and typical photos were presented. d. Prognostic analysis of
RNF38 expression in 200 HCC patients. Scale bar: 100 μm. *,p < 0.05
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variable among patients (Fig. 1c, right panel). Further ana-
lyses indicated that high levels of RNF38 expression were
significantly correlated with large tumor size (p = 0.008),
the absence of tumor encapsulation (p = 0.004), the pres-
ence of embolus (p = 0.030), and advanced TNM stage
(p = 0.019, Table 1). Moreover, patients with high RNF38
expression (n = 98) had shorter survival times and a high
rate of recurrence than those with low RNF38 expression
(n = 102, Fig. 1e). Importantly, Cox regression analysis in-
dicated that tumor size, embolus, and the RNF38 staining
level are independent prognostic factors for HCC patients
(Table 2). All in all, these results suggest that RNF38 could
be a key promoter of HCC progression.

High levels of RNF38 promote HCC cell motility, and
invasion and inhibit HCC cell apoptosis both in vitro and
in vivo
To understand the effect of RNF38 on HCC development,
we determined the RNF38 expression in four HCC cell
lines (Fig. 2a) and transfected RNF38 shRNA into
HCCLM3 cells and RNF38 vectors into HepG2 cells.
Stable expression of RNF38 was confirmed by western
blotting and qRT-PCR (Fig. 2b). The CCK-8 assay revealed
that RNF38 knockdown inhibited the HCC cell growth
rate (Fig. 2c, both p < 0.001,). Moreover, the migration and
invasion assays showed that overexpression of RNF38 pro-
moted the motility of HCC cells (Fig. 2d, p < 0.001 and
Fig. 2e, p < 0.001, p = 0.0046). Furthermore, flow cytome-
try indicated that RNF38 downregulation enhanced the
rate of apoptosis inhibition (Fig. 2f, p = 0.0121, p =
0.0076). Subsequently, a subcutaneous xenograft model
was established to analyze the function of RNF38 in vivo.
One week after inoculation, tumors were palpable, and
the growth curve suggested that HCCLM3-NC cells
(398.32 ± 16.85mm3) exhibited higher proliferation ability
than HCCLM3-shRNA2 cells (217.79 ± 19.69mm3). In
contrast, HepG2-RNF38 cells group (671.43 ± 107.14
mm3) had a higher proliferative ability than HepG2-NC
cells (170.43 ± 37.96mm3, Fig. 2g and h). Moreover, the
lung metastasis rate was examined by H&E staining (Fig.
2i, upper panel), and the results showed that the Incidence
of pulmonary metastasis was 80% (4 of 5) in the group of
animals injected with HCCLM3-NC cells, which markedly
higher than that in the HCCLM3-shRNA2 group (20%, 1
of 5). Furthermore, the metastasis rate was 0% (0 of 5) in
HepG2-NC group, and 100% (5 of 5) in the HepG2-
RNF38 group. (Fig. 2i, lower panel).

High levels of RNF38 induce EMT in HCC cells
The role of EMT in cancer metastasis is now widely
accepted [23]. Here, we found that HCCLM3-shRNA2 and
HepG2-NC cells joined closely like epithelial cells, while
the other two groups of cells appeared spindle-like, and
fibroblastic (Fig. 3a). Next, we determined the levels of

Table 1 Correlation between RNF38 and clinicopathological
characteristics in 200 HCC patients

Variables Number of patients

RNF38high RNF38low P value

Gender

Female 12 15 0.611

Male 86 87

Year

< 52 43 53 0.253

≥ 52 55 49

Hepatic cirrhosis

Yes 87 91 0.921

No 11 11

HbsAg

Positive 79 86 0.491

Negtive 19 16

HCV

Positive 0 2 0.498a

Negtive 98 100

AFP

< 20 33 43 0.217

≥ 20 65 59

Tumor size (cm)

< 5 46 67 0.008 (**)

≥ 5 52 35

Tumor number

Single 83 85 0.793

Multiple 15 17

Tumor encapsulation

Complete 61 43 0.004 (**)

None 37 59

Tumor differentiation

I + II 66 79 0.110

III + IV 32 23

Edmondson-Steiner Grade

I + II 58 62 0.817

III 40 40

Embolus

Absence 60 77 0.030 (*)

Present 38 25

TNM stage

I 61 79 0.019 (*)

II + III 37 23

Note: a, Fisher test; AFP, alpha-fetoprotein; p < 0.05 was considered significant;
**p < 0.01; *p < 0.05
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several EMT markers in cell lines with different RNF38 ex-
pression levels and found that the E-cadherin expression
was higher in HCCLM3-shRNA2 cells than in HCCLM3-
NC cells and in HepG2-NC cells than in HepG2-RNF38
cells, while the expression of snail and vimentin was lower
in HCCLM3-shRNA2 cells than in HCCLM3-NC cells and
in HepG2-NC cells than in HepG2-RNF38 cells (Fig. 3b).
Semi-quantitative IB analysis results are shown in Fig. 3c.
Furthermore, The EMT phenotype was further confirmed
by immunofluorescence (Fig. 3D). Importantly, IHC
analysis of the serial sections showed that cancer cells from
aggressive margins had higher levels of RNF38, vimentin
and snail and loss of E-cadherin in both HCC and
transplanted tumor tissues, strongly suggesting that cells
with elevated RNF38 expression underwent EMT (Fig. 3e
and f). The above results indicate that RNF38 fosters the
progression of HCC by inducing EMT in HCC cells.

AHNAK is a substrate of RNF38 in HCC cells
Here, we performed SILAC to determine the change in
total protein in cells with different RNF38 expression levels
(Fig. 4a) and found that 518 proteins were upregulated, and
399 proteins were downregulated (Fig. 4b). These results
were further confirmed by selecting 8 proteins randomly
for western blot analysis (Fig. 4c). The functional analysis
indicated that the differentially expressed proteins were
enriched primarily in the Gene Ontology (GO) terms of cell
migration, transforming growth factor beta receptor
pathway, cell cycle, cell proliferation, negative regulation of
apoptotic process, cell chemotaxis, and positive regulation

of epithelial to mesenchymal transition, and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways of
cell cycle, central carbon metabolism in cancer, Wnt path-
way, proteoglycans in cancer, focal adhesion, regulation of
actin cytoskeleton, adherens junction, and TGF-β pathway
(Fig. 4d). Then, co-IP was used to isolate and identify the
interactome of RNF38 in protein lysate from HCC cells ex-
pressing high levels of RNF38. In this assay, 58 and 74 pro-
teins were isolated from HCCLM3-NC and HepG2-RNF38
cell lines, respectively (Fig. 4e). In addition, eight proteins
including RNF38, AHNAK, tripartite motif containing 21
(TRIM21), dermcidin (DCD), scaffold protein involved in
DNA repair (SPIDR), CD109 molecule (CD109), trans-
forming growth factor beta receptor associated protein
1(TGFBRAP1), ubiquitin protein ligase E3 component
n-recognin 5(UBR5) overlapped in the two different cell
lines (Fig. 4e). Interestingly, TRIM21 and UBR5 are E3 li-
gases [24, 25], CD109 and TGFBRAP1 are well-known reg-
ulators in the TGF-β pathway that act as oncogenes [26,
27]. Due to the obvious downregulation of AHNAK in cells
overexpressing RNF38, we tried to elucidate the relation-
ship between RNF38 and AHNAK protein in HCC cell.
Co-IP combined with immunoblotting showed that en-
dogenous RNF38 forms a complex with AHNAK (Fig. 4f)
and immunoblotting revealed that although the overexpres-
sion of RNF38 resulted in the downregulation of AHNAK
protein expression (Fig. 4g), RNF38 expression was not re-
lated to AHNAK mRNA expression (Fig. 4h). Additionally,
IF analysis showed that the high level of RNF38 was nega-
tively associated with the AHNAK protein level (Fig. 4i). A

Table 2 Univariate and multivariate analyses of factors associated with overall survival and cumulative recurrence

Factors overall survival cumulative recurrence

Univariate Mulvariate Univariate Mulvariate

P value HR 95%Cl P value P value HR 95% Cl P value

Gender (Female vs. Male) 0.060 NA 0.127 NA

Age (years) (≥53 vs. < 53) 0.888 NA 0.469 NA

Liver cirrhosis (yes vs. no) 0.930 NA 0.127 NA

HBsAg (positive vs. negative) 0.183 NA 0.622 NA

HCV (positive vs. negative) 0.983 NA 0.793 NA

Serum AFP, ng/mL (≥20 vs. < 20) 0.065 NA 0.011 NS

Tumor differentiation (III/IV vs. I/II) 0.197 NA 0.069 NA

Edmondson-Steiner Grade (I/II vs. III) 0.191 NA 0.018 NS

Tumor encapsulation (yes vs. no) 0.195 NA 0.043 NS

TNM stage (I/II vs. III/IV) 0.005 NS 0.086 NA

Tumor size (diameter, cm) (≥5 vs. < 5) 0.001 1.587 1.043–2.414 0.031 0.001 1.823 1.247–2.665 0.002

Embolus (Absence vs. Present) < 0.001 2.232 1.472–3.385 < 0.001 < 0.001 NS

Tumor number (multiple vs. single) 0.045 NS 0.002 2.121 1.366–3.294 0.001

RNF38 staining (high vs. low) < 0.001 2.046 1.321–3.171 0.001 0.001 1.642 1.117–2.415 0.012

Abbreviations: 95% CI 95% confidence interval, AFP alpha-fetoprotein, TNM tumor node metastasis, HBsAg hepatitis B surface antigen, HCV hepatitis C virus, HR
hazard ratio, NA not adopted, NS not significant
Cox proportional hazards regression model
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a ubiquitination assay and a CHX chase assay, indicated a
decrease of RNF38 that obviously abrogated the AHNAK
ubiquitination after MG132 (5 μmol) treatment for 10 h
(Fig. 4j). Furthermore, the physical interaction between
RNF38 and AHNAK was examined, the confocal imaging
showed that RNF38 (green) and AHNAK (red), whose ex-
pression partially overlapping, indicated that they interacted
with each other (Additional file 6: Figure S2). Furthermore,
the downregulation of RNF38 prolonged the half-life of the
AHNAK protein (Fig. 4k). These data suggest that the
AHNAK protein is a substrate of RNF38 and that RNF38
promotes AHNAK degradation.

RNF38 facilitates TGF-β/Smad2/3 signaling in HCC cells by
degrading AHNAK protein
The SILAC results indicated that the RNF38 might be
involved in the TGF-β pathway, and previous studies have
demonstrated that AHNAK could influence several signal-
ing pathways, especially the TGF-β pathway [28–30]. Here,

we tried to determine the signaling related to RNF38
expression. As shown in Fig. 5a, the expression of the phos-
phorylated Drosophila mothers against decapentaplegic
protein 2/3 (p-Smad2/3) was reduced by RNF38 knock-
down, but there were no significant changes in the expres-
sion of phosphorylated AKT or ERK1/2, indicating that a
high level of RNF38 might promote HCC progression
mainly via TGF-β1/Smad signaling. Thus, we further deter-
mined the role of RNF38 in TGF-β pathway. After treating
four cell lines with TGF-β1 (5 μm) for 0 h, 2 h, 4 h, 8 h, we
chose the 8 h as the optimal treatment time for the subse-
quent study (Fig. 5b). The four cell lines were treated with
TGF-β1 (5 μm, 8 h) and/or LY2109761 (10 μm, 2 h), a
TGF-β/smad2/3 inhibitor, and we found that compared
with the control cells, RNF38 silenced cells showed a de-
creasing trend in the response to TGF-β stimulation, which
was rescued by LY2109761 treatment (Fig. 5c). Addition-
ally, to assess whether an increase of AHNAK protein ex-
pression by RNF38 knockdown also led to decreased
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phospho-Smad2/3 levels, we reintroduced siAHNAK in
HCCLM3-shRNA2 and compared the phosphorylation
level of Smad2/3 among in HCCLM3-NC, HCCLM3-
shRNA2, and HCCLM3-shRNA2-siAHNAK cells (Add-
itional file 7: Figure S3). Immunoblotting showed that inter-
ference of AHNAK restored phospho-smad2/3 levels in
RNF38-depleted cells (Fig. 5d). Importantly, the functional
test revealed that suppressing AHNAK in HCCLM3-
shRNA2 cells dramatically restored HCC cell invasiveness
(Fig. 5e) and remodeled the cell morphology from epithelial

cells to mesenchymal cells (Fig. 5f). These results imply
that RNF38 contributes to the invasion and EMT of HCC
cells by ubiquitinating and degrading AHNAK to abrogate
the inhibition of TGF-β signaling (Fig. 6).

RNF38 expression and TGF-β signaling in the prognosis of
HCC patients
In most cell types, the canonical TGF-β pathway induces
Smad phosphorylation via TGFBR1, which is activated
by TGFBR2 upon ligand binding and forms a tetrameric
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receptor heterocomplex with TGFBR2 [31]. To further
reveal the role of RNF38 in TGF-β signaling in HCC pa-
tients, we randomly selected 15 HCC tissues in which

determine the expression of RNF38 and TGFBR1, an im-
portant molecule in the TGF-β pathway, at the protein
and mRNA level (Fig. 7a and c), and the Pearson
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correlational analysis showed that no correlation be-
tween RNF38 and TGFBR1 expression at either the pro-
tein (R = 0.1006, p = 0.72; Fig. 7b) or mRNA level
(R = -0.1754, p = 0.53; Fig. 7d). Moreover, we randomly
chose the 102 of 200 patients and validated the expres-
sion of RNF38, TGFBR1, and AHNAK by IHC. The
results revealed that both RNF38 and AHNAK were

present in the cytoplasm of HCC cells, and that positive
TGFBR1 staining was mainly localized in the membrane
and cytoplasm of cancer cells (Fig. 7e). The correlation
between RNF38 and TGFBR1 protein expression in
these patients was analyzed via a scatter plot, the results
suggested that there was no significant correlation
between RNF38 and TGFBR1 expression (p = 0.55, R =
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0.05938, Fig. 7F). Unexpectedly, patients with high levels
of both RNF38 and TGFBR1 exhibited a trend of poor
prognoses (Group 1, patients with both RNF38 and
TGFBR1 high (n = 31). Group 2, patients with either
RNF38 or TGFBR1 high (n = 46), Group 3, patients with
both RNF38 and TGFBR1 low (n = 25). (Fig. 7g). In
addition, the expression of RNF38 significantly correlated
with the expression of AHNAK (Additional file 8: Figure
S4A). The scatter plot revealed a significant inverse correl-
ation between the relative IOD values for RNF38 and
AHNAK (Additional file 8: Figure S4B), indicating that
the higher the RNF38 expression was, the lower AHNAK
density. Furthermore, the 5-year OS and recurrence curve
indicated that the AHNAK-high group (n = 54) had a
higher rate of survival and a lower rate of recurrence than
the AHNAK-low group (n = 48). (p = 0.02, p = 0.03, re-
spectively. Additional file 8: Figure S4B). Additionally, we
divided the patients into three groups according to posi-
tive staining intensity in our previous study [20]: Group 1
comprised patients with low RNF38 and high AHNAK
(n = 30). Group 2, patients with RNF38 and AHNAK ex-
pression either both low or both high, Group 3, patients
with high RNF38 and low AHNAK expression (n = 36).
Then, we investigated the impact of combined RNF38 and
AHNAK expression on survival and recurrence. Group 3
had the lowest overall survival rate (33.9% vs 67.5 and
83.4%) and highest recurrence rate (75.9% vs 70.5 and
39.0%) than others group (33.9% vs 67.5 and 83.4%,
Additional file 8: Figure S4C and 4D). In conclusion, co-
expression of RNF38 and TGFBR1 is an independent
prognostic parameter for OS and cumulative recurrence.

Discussion
HCC is a cancer with high invasion and metastasis po-
tential, which contributes to the low survival rate of
HCC patients. In the present study, we identified RNF38
as a novel driver in HCC progression via the induction
of EMT. First, we discovered that RNF38 expression was
elevated in HCC tissues and that a high level of RNF38
was positively associated with the HCC malignant pheno-
type in a large sample of clinical specimens. Next, we re-
vealed via an experimental approach combining SILAC
and co-IP that RNF38, an E3 ligase, regulated AHNAK
protein expression. Moreover, we demonstrated that high
levels of RNF38 powerfully regulate TGF-β signaling.
Finally, we showed that RNF38 combined with TGFBR1
expression was an independent predictor of recurrence
and survival in HCC patients. The intricate signaling
network orchestrated by TGF-β signaling to modulate the
different stages of HCC indicated that RNF38 might play
a unique role in the molecular pathogenesis of HCC.
Here, we provided sufficient evidence to demonstrate

that RNF38 promotes HCC progression; notably, cells
with high levels of RNF38 tended to exhibit the mesen-
chymal phenotype both in vitro and in vivo. Combined
with the report that the mutation of RNF38 has been
found in hepatitis B virus-positive HCC cells based on a
cDNA microarray assay [32], our results indicate that
RNF38 might promote HCC progression via diverse
mechanisms. Furthermore, as an E3 ligase, RNF38 may
have complex biological functions due to its diverse sub-
strates. We combined SILAC and co-IP with transcrip-
tome analysis to show that RNF38 functions by the

Fig. 6 Model of high level of RNF38 on TGF-β/Smad signaling. RNF38 overexpression ubiquitinate and degrade AHNAK, which inhibit the p-Smad
enteintor the nucleus
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ubiquitylation of AHNAK, which is a protein belonging
to the AHNAK family that consists of two giant proteins
[33]. Although AHNAK was originally revealed to be

involved in promyelocytic leukemia [34], it is currently
known to be related to solid tumor development. For in-
stance, AHNAK negatively regulates cell growth via
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TGF-β signaling as a tumor suppressor in breast cancer
[28]. Recently, a report suggested that the knockdown of
AHNAK in a melanoma cell line led to the loss of
cadherin-1 and was associated with poor patient out-
comes [29], providing evidence that upregulated RNF38
induced a reduction in E-cadherin levels rather than dir-
ectly interacting with E-cadherin. The results of the
present study revealed that AHNAK acts as a tumor
suppressor that is ubiquitinated by RNF38 at the protein
level but is not affected at the mRNA level. These find-
ings offer novel insight into the inactivation of this
tumor suppressor. Furthermore, the correlation analysis
indicated a strong negative correlation between RNF38
and AHNAK protein levels in tumor tissues from HCC
patients. Clinically, the RNF38/AHNAK complex
predicted poor outcomes of HCC patients. Thus, we
concluded that a high level of RNF38 might strongly
promote HCC.
The TGF-β evokes an intricate signaling network in

HCC progression [35], and the dysfunction of this signaling
network leads to early-stage HCC [36]. A dual character of
the TGF-β pathway in tumors has long been recognized,
and a deep comprehension of the mechanistic basis and
clinical relevance of TGF-β signaling is required. Here,
using RNA interference and pharmacologic approaches,
we provided solid evidence that the overexpression of
RNF38 contributes to HCC cell EMT through facilitating
TGF-β signaling by the ubiquitination of AHNAK. Thus,
we identified a novel player in TGF-β signaling that dis-
ables the tumor-suppressive arm of this pathway. Indeed,
we consistently found that RNF38 interference downregu-
lated Smad2/3 phosphorylation to inhibit cellular
responses to TGF-β1. By combining these findings with
those of studies indicating the tumor-promoting effects of
increased RNF38 expression in clinical and animal models,
we conclude that the level of RNF38 modulates cell re-
sponsiveness to TGF-β, thus playing an important role in
HCC development.

Conclusion
RNF38 is overexpressed in HCC, and RNF38 upregula-
tion endowed HCC cells with the EMT phenotype by fa-
cilitating TGF-β signaling via ubiquitinating and
degrading AHNAK. Therefore, RNF38 could be a novel
marker for poor prognosis in HCC patients and a poten-
tial therapeutic strategy for HCC.

Additional files

Additional file 1: Supplementary methods and materials and figure
legends. (DOCX 19 kb)

Additional file 2: Table S1. Antibodies resource (DOCX 15 kb)

Additional file 3: Figure S1. Analysis RNF38 mRNA level in
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