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Abstract 

Background We propose a new approach for designing personalized treatment for colorectal cancer (CRC) patients, 
by combining ex vivo organoid efficacy testing with mathematical modeling of the results.

Methods The validated phenotypic approach called Therapeutically Guided Multidrug Optimization (TGMO) was 
used to identify four low‑dose synergistic optimized drug combinations (ODC) in 3D human CRC models of cells that 
are either sensitive or resistant to first‑line CRC chemotherapy (FOLFOXIRI). Our findings were obtained using second 
order linear regression and adaptive lasso.

Results The activity of all ODCs was validated on patient‑derived organoids (PDO) from cases with either primary or 
metastatic CRC. The CRC material was molecularly characterized using whole‑exome sequencing and RNAseq. In PDO 
from patients with liver metastases (stage IV) identified as CMS4/CRIS‑A, our ODCs consisting of regorafenib [1 mM], 
vemurafenib [11 mM], palbociclib [1 mM] and lapatinib [0.5 mM] inhibited cell viability up to 88%, which significantly 
outperforms FOLFOXIRI administered at clinical doses. Furthermore, we identified patient‑specific TGMO‑based ODCs 
that outperform the efficacy of the current chemotherapy standard of care, FOLFOXIRI.

Conclusions Our approach allows the optimization of patient‑tailored synergistic multi‑drug combinations within a 
clinically relevant timeframe.
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Graphical Abstract

Introduction
Colorectal cancer (CRC) is the third most diagnosed 
cancer worldwide with incidence exceeding a million of 
newly diagnosed cases per year [1]. CRC originates from 
an uncontrolled cellular growth in the epithelial layer 
of the colon. These lesions begin with hyperplasia, and 
before becoming malignant they are known as polyps 
and can be removed during regular colonoscopy (local 
excision). However, if untreated, adenomatous polyps can 
become dysplastic and further develop into a carcinoma. 
When localized—stage I–III CRC surgical resection is 
the main treatment modality. Patients with stage II (high-
risk) and stage III CRC should receive adjuvant chemo-
therapy (post-surgery chemotherapy) usually given for 
three to six months to decrease the risk of relapse.

For treatment decisions, testing for mismatch repair 
(MMR) status and mutations in KRAS, BRAF, and NRAS 
is recommended in all patients with metastatic disease 
(mCRC). Stage IV patients with mCRC are treated with 
a combination of chemotherapy (e.g. FOLFOX/FOLFIRI/
FOLFOXIRI) plus a drug targeting VEGF (i.e., bevaci-
zumab) or EGFR (i.e., cetuximab) [1]. The use of EGFR 
inhibitors remains conditional on the absence of NRAS/

KRAS/BRAF mutations. Bevacizumab and cetuximab 
have been simultaneously administered with chemother-
apy in mCRC, but this approach decreases the quality of 
life and does not improve overall median survival [2]. For 
the rare mCRC patients with liver-only lesions amenable 
to surgery, the treatment sequence usually starts with 
neo-adjuvant chemotherapy before surgery. Testing for 
microsatellite instability (MSI) is routinely used in mCRC 
tumors [3]. MSI is a consequence of deficient DNA mis-
match repair mechanisms, leading to an increased muta-
tional burden and higher immune cell infiltration [4, 5]. 
Only 15% of localized CRC and 5% of mCRC tumors are 
MSI and can eventually benefit from immunotherapy 
(i.e., pembrolizumab or nivolumab) [6]. An international 
consortium has created a molecular classification of 
CRC. Based on gene expression, tumor microenviron-
ment (TME) and the immune landscape, four molecu-
lar subtypes of CRC have been defined as consensus 
molecular subtypes (CMS1-4) of CRC [7]. Furthermore, 
the stromal component of the tumor has been shown to 
strongly influence the cancer cell intrinsic transcriptional 
features and prognosis. Therefore, five CRC intrinsic sub-
types have been recently identified (CRIS A-E) [8].
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A “one-size fits all” treatment approach is employed 
in each of the disease stages, with limited efficacy espe-
cially for late-stage CRC, mainly due to acquired drug 
resistance and inadequate choice of treatment. The 
advent of targeted therapies considerably changed the 
clinical management of CRC treatment. However, their 
efficacy remains limited mainly due to toxicity of the rela-
tively high doses and the targeting of mainly one signal-
ing pathway [9]. When targeting a signaling pathway, 
the cells may compensate such a blockade by activating 
other signaling pathways [10]. This paved the way for 
poly pharmacology, which allowed to tackle the complex 
machinery of cancer by targeting multiple signaling path-
ways orchestrating the disease resistance [11]. Further-
more, such approach may limit toxicities significantly, as 
well as induction of drug resistance. This can be achieved 
by combining drugs targeting different signaling path-
ways or designing a drug combination that acts on mul-
tiple targets with various affinities [12]. The development 
of such therapies is still in its early age and faces a lot of 
challenges, as our knowledge on the drug-drug interac-
tions in complex disease environment is far from being 
fully elucidated.

Challenges include the selection of the drug candidates 
and the decision on which cellular signaling pathways to 
target to enhance efficacy and limit toxicity, as well as 
occurrence of resistance [13]. To date, the treatment of 
CRC still relies heavily on conventional chemotherapy, 
where drug-drug interaction and selectivity is not opti-
mal. We have previously shown that within FOLFOXIRI, 
a chemotherapy combination containing (folinic acid 
[0.5 µM], 5-fluorouracil [10 µM], SN38 (active metabolite 
of irinotecan) [0.1 µM] and oxaliplatin [0.5 µM]), the syn-
ergy only resides between 5-fluorouracil and folinic acid, 
however, the interactions between the other agents are 
only additive or even antagonistic [14].

In order to reliably identify an optimized and person-
alized treatment, the selection of an appropriate ex vivo 
model is of extreme importance [15, 16]. The technol-
ogy is on a tight time constraint with the need to deliver 
results in 2–3 weeks, which corresponds clinically to the 
average time between a diagnosis and treatment decision. 
The models should be rapidly established and “ready to 
operate” in a clinical timeframe, which is inaccessible 
for animal models. Patient-derived organoids (PDOs) 
emerged as an effective ex  vivo drug screening tool in 
cancer drug discovery. Over the past decade, multiple 
studies have highlighted the capacity of PDOs to pre-
dict clinical treatment responses in their corresponding 
patients [17–19]. With the recent advances in genomic 
sequencing and molecular biology detection tech-
niques, we start witnessing the dawn of cancer precision 
medicine.

The identification of the most potent drug combination 
that would be both efficient and safe, is not trivial. The 
use of a proprietary platform, developed in our labora-
tory, called therapeutically guided multidrug optimiza-
tion (TGMO), enables rapid identification of optimized 
drug combinations (ODCs) from a large set of available 
possibilities [20, 21]. This phenotypic approach, which 
uses very limited experimental testing and in silico data 
modelling allowed the discovery of potent and selective 
drug combinations [21–23] that were further successfully 
validated in relevant in vivo tumor models [21].

We performed a TGMO-based drug screen using CRC 
complex models, i.e., co-cultures of chemotherapy-naïve 
and -resistant cell lines, as well as freshly isolated CRC 
organoids. We identified ODCs specific to different cell 
types. Those ODCs proved to overcome the activity of 
FOLFOXIRI at clinically used doses. This, t with whole-
exome sequencing and RNAseq data, validated applying 
the TGMO-based screening method directly on freshly 
isolated PDOs. We favor translational development of 
the proposed technology.

Results
Phenotypic screen reveals selective, cell line‑specific 
synergistic multidrug combinations
To identify optimized multidrug combinations, we ini-
tiated our experiments with a set of 11 drugs, clinically 
approved or in late-phase clinical trials, see Fig. 1A and 
Table 1. To initiate the screen, drug-response curves for 
each drug were generated in two human CRC cell lines 
(SW620 and LS174T, Supplementary Table S1) in both, 
2D and 3D co-cultures (3Dcc). The latter consisted 
of CRC cells, human colon CCD18co fibroblasts and 
ECRF24 endothelial cells [24]. Drug doses used in the 
screen corresponded to the  IC20 and half of the latter. We 
kept the drug input low to only identify the strongest of 
drug-drug interactions. All drug concentrations selected 
were lower or equal to the clinically used dose (CUD), 
as indicated in Table 1. While for some drugs the dose–
response curves in 2D overlapped with 3Dcc, for other 
drugs like palbociclib, vemurafenib and nilotinib, they 
were significantly different (Supplementary Figure S1-2). 

Using our validated phenotypical screening method, 
the TGMO (see Supplementary Information S1), we 
tested several drug combinations in 3Dcc settings 
for both—non-malignant colon CCD841CoN cells 
(CCD841), and simultaneously in CRC cells. The differ-
ence between the activity in non-cancerous and cancer-
ous models is defined as the therapeutic window (TW) 
and was used to evaluate the selectivity of each drug com-
bination. The output was measured by a cell metabolic 
activity assay (ATP level, % CTRL) and analyzed using 
stepwise second-order linear regression model. Based on 
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Fig. 1 TGMO‑based screen for cell line specific ODCs in CRC 3D complex models. A Initial selection of drugs used in the TGMO‑based screen B. 
Schematic representation of the TGMO platform. Regression coefficients generated from search 3 of single drug  1st order, drug‑drug and single 
drug  2nd order drug interactions (red, burgundy and pink lines, respectively) in C 3DccSW620 D 3DccLS174T (green/orange bars respectively) and the 
therapeutic window (stripped black bars). E Schematic representation of the generation of complex CRC FOLFOXIRI resistant 3D models, 3D‑FXLSFXR 
and 3D‑FXSWFXR and respective ODC identification. F 3D‑FXSWFXR and G 3D‑FXLSFXR (solid green/orange squared bars respectively) in the left panel. 
In yellow is highlighted the most robust drug interaction that is maintained in each final ODC. In the corresponding right panels, the activity of 
the ODCs, corresponding monotherapies (colored bars) and FOLFOXIRI (folinic acid [0.5 µM], 5‑FU [10 µM], SN38 [0.1 µM] and oxaliplatin [0.5 µM], 
red bars) in CRC 3D models, and activity in  3DccCCD841 (stripped black bars) used to generate the therapeutic window (TW). Activity is measured 
by ATP levels vs. CTRL (< 0.15% DMSO). Data are presented as the mean of N = 2–3 independent experiments, error bars represent SD. Significance 
is determined by one‑way ANOVA (regression models, left panel) and two‑way ANOVA (activity graphs, right panel) with *p < 0.05, **p < 0.01 and 
***p < 0.001
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the analysis, drugs with antagonistic interactions were 
eliminated, and the next screening round was performed 
(search 2), Fig. 1B. The regression models generated from 
each search are presented in Supplementary Figs. S3-4. 
The last search 3 served to optimize the drug doses within 
the selected drug combinations (Fig. 1C-D). The models 
allow to describe the different interactions present in the 
drug pool: the contribution of each drug individually (sin-
gle drug first-order term), all two-drug interactions, and 
the variation of a drug-effect at different dose levels (sin-
gle drug second-order terms). The optimized drug com-
bination (ODC) for each cell line consisted of four active 
and synergistic drugs administered at specific doses. 
 ODCSW620 consisted of regorafenib [1 µM], vemurafenib 
[11 µM], vatalanib [1 µM] and AZD4547 [0.6 µM], inhib-
iting 68.5% of  3DccSW620 metabolic activity and 39.2% in 
 3DccCCD841 (Fig.  1C).  ODCLS174T consisted of erlotinib 
[0.6 µM], lapatinib [0.5 µM], palbociclib [1 µM] and nilo-
tinib [0.7 µM] and inhibited 53.3% of  3DccLS174T while 
being inactive in  3DccCCD841 (Fig. 1D). In all conditions, 
the activity of ODCs significantly outperformed the cor-
responding monotherapies. Interestingly, no common 
drugs appeared in the final selection of both ODCs. The 
main synergistic drug interactions within the ODCs are 
highlighted in yellow in the regression models presented 
in Fig. 1-CD, left panels, and listed in Table 2 and Supple-
mentary Table S1.

In the next step, we searched for the ODCs identi-
fied in CRC cells, that were chronically treated with 
chemotherapy. This was done to mimic the clini-
cally relevant situation where patients with advanced 
CRC are treated with combinatory chemotherapy. To 
that end, FOLFOXIRI-resistant clones of LS174T and 
SW620 cells previously generated in our lab [35], were 
injected subcutaneously into Swiss nude mice. When 
tumors reached an appropriate size, they were resected 
and two distinct complex CRC FOLFOXIRI resistant 
3D models (3D-FXLSFXR and 3D-FXSWFXR, respectively) 
were created. To extend our search for ODCs, we per-
formed a TGMO-based screen on both organoids. Data 
analysis and regression models are presented in Sup-
plementary Fig. S5. The identified ODCs are referred to 
as  ODCSWFXR and  ODCLSFXR. The  ODCSWFXR consisted 

Table 1 The set of drugs used in the screen, their main targets, and clinical information

a CUD Clinically used dose, calculated using the area under the curve
b (AUC 0-24 h) of each drug, which corresponds to the plasma concentration of the drug over the first 24 h, and is used to calculate the average drug concentration in 
that time. Data was obtained from pharmacokinetic studies performed in patients exposed to the drugs at standard or maximum tolerated doses

Drug name Main Target CUDa

(µM)
Clinical phase Clinical dose AUC b and reference

Regorafenib
(Stivarga®)

VEGFR2‑3, RET, PDGFR 4.3 approved 160 mg/kg 50.26 mg*h/L [25]; 58.3 mg*h/L [26]

Vemurafenib
(Zelboraf®)

BRAF 32.3 approved 960 mg/kg 380 µg*h/mL (EMEA/H/C/002409)

Vatalanib VEGFR1‑3 6.3 Phase III 1200 mg 69.2 mg*h/L [27]; 52.9 mg*h/L [28]

Erlotinib
(Tarceva®)

EGFR 1.6 approved 15 mg/kg 15.2 mg*h/L (EMEA/H/C/000618)

AZD‑4547 FGFR1‑4,  VEGFR2 0.6 Phase II/III 160 mg 2058(0‑12 h) µg*h/L [29]

Lapatinib
(Tyverb®)

HER2, EGFR 1.6 approved 1250 mg/kg 36.2 µg*h/mL (EMEA/H/C/002532)

Trametinib
(Mekinist®)

MEK 14.4 approved 2 mg/kg 370 ng*h/mL (EMEA/H/C/002643)

Palbociclib
(Ibrance®)

CDK4‑6 29.3 approved 100/125 mg/kg 547.5 ng*h/L [30] (EMEA/H/C/003853)

BEZ‑235 PI3K,
mTOR

0.1 Phase II/III 400 mg/kg 741.3 ng*h/L [31]; 1404.4 µg*h/L [32]

Nilotinib
(Tasigna®)

BCR/ABL 8.8 approved 300‑400 mg 11,217 ng*h/mL [33] (EMEA/H/C/000798)

Olaparib
(Lynparza®)

PARP 58 approved 400 mg 609 µg*h/mL [34] (EMEA/H/C/003726)

Table 2 Drug‑drug interactions and combination index (CI) of 
ODCs in 3D models

Drugs: reg, regorafenib, azd, AZD-4547; erl, erlotinib; lap, lapatinib; palb, 
palbociclib; nilo, nilotinib. CI < 1: synergistic drug combination, CI > 1: 
antagonistic drug combination

ODCSW620 ODCLS174T ODCSWFXR ODCLSFXR

TGMO Synergisms reg:azd erl:lap
lap:nilo

palb:azd reg:palb

CI ODC 0.42 0.11 0.006 0.27
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of regorafenib [1  µM], palbociclib [1  µM], lapatinib 
[0.5   M] and AZD-4547 [0.6  µM], inhibiting 78.6% of 
 FXOSWFXR metabolic activity (Fig.  1F).  ODCLSFXR was 
composed of regorafenib [1 µM], vemurafenib [11 
µM], palbociclib [1 µM] and lapatinib [0.5 µM], inhib-
iting 83.9% of  FXOLSFXR metabolic activity (Fig.  1G). 
Both ODCs showed significantly lower activity in 
 3DccCCD841.

The activity of the ODCs was then compared to drugs 
approved in clinics as first-line treatment for late- stage 
CRC. Moreover, all four ODCs showed similar or signifi-
cantly higher cytotoxic effects than FOLFOXIRI (folinic 
acid [0.5 µM], 5-FU [10 µM], SN38 [0.1 µM] and oxalipl-
atin [0.5 µM]) given at clinically used doses.

TGMO‑based sensitivity analysis in the view of penalized 
regression
We investigated further our findings obtained with the 
TGMO method by performing a sensitivity analysis. We 
applied a penalized regression approach, described in 
Supplementary Information S2, on our raw data obtained 
from TGMO-based design of experimentation. We pre-
dicted the cell viability of cancer cells and healthy cells 
with a data-dependent adaptive version of the Lasso to 
identify all possible combinations of four drugs at applied 
dosages [36]. This method allows us to approximate the 

set of non-distinguishable combinations of drugs. Based 
on the predicted cell viability, we computed the predicted 
therapeutic window (PTW) for each drug administered 
at a specific dose. We then constructed a one-sided con-
fidence interval (95%) based on the highest PTW and 
considered all combinations of drugs with an undistin-
guishable PTW that fall into this interval. When a TW is 
not available (i.e., 3D-FXSWFXR and 3D-FXLSFXR) a com-
puted one-sided confidence interval (CCI, 95%) was gen-
erated based on the minimum value of predicted cancer 
cell viability, and all drug combinations with a predicted 
cancer cell viability within this interval were selected. The 
generated regression models are presented by network 
graphs and stacked bar graphs, see Fig. 2. The size of the 
node associated with each drug in the network graphs is 
proportional to the presence of a given drug in all combi-
nations within the CCI. The thickness of the link between 
two drugs is proportional to the presence of this pair of 
drugs in all combinations within the CCI. Using the data-
dependent adaptive lasso approach, we identified 3 and 
57 drug combinations (in  3DccSW620 and  3DccLS174T mod-
els, respectively) in the CCI computed on the maximal 
PTW of 5280 possible combinations. In  3DccSW620 model 
(Supplementary Table S3), regorafenib, vemurafenib, 
AZD-4547, nilotinib and vatalanib were the most pre-
sent drugs, with all three identified combinations being 

Fig. 2 ODC search using adaptive lasso. Left panel represents the network diagram of the drugs composing best ODCs with an PTW that falls into 
the CCI (95%) in 3Dcc SW620 (A) and 3Dcc LS174T (B), or with a minimal cancer cell viability that falls into the CCI (95%) in 3D‑FXSWFXR (C) and 3D‑FXLSFXR 
(D). In the corresponding right panel, we considered the dosages of each drug using two colors stacked bar graphs, where the height of a bar is 
proportional to the presence of the drug at a given dosage in all combinations in the CCI
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composed of regorafenib, vemurafenib and AZD-4547 
at the high dosage, see Fig. 2A. For  3DccLS174T model, 14 
out of the 57 drug combinations, (Supplementary Table 
S4) combinations consisted of the same four drugs, i.e., 
palbociclib, nilotinib, lapatinib and erlotinib (Fig.  2B). 
On the stacked bar graphs, these drugs were mostly 
administered at low doses. Interestingly, both  ODCSW620 
and  ODCLS174T identified by the TGMO were present in 
their respective CCI. Furthermore, we identified 4 and 
5 drug combinations in 3D-FXSWFXR and 3D-FXLSFXR, 
respectively, in the CCI computed on the minimum value 
of predicted cancer cell viability of 560 possible drug 
combinations. For 3D-FXSWFXR, three out of four of the 
selected drug combinations, (Supplementary Table S5) 
were composed of lapatinib, palbociclib, regorafenib and 
vemurafenib at different doses (Fig.  2C), while all five 
selected drug combinations in 3D-FXLSFXR (Supplemen-
tary Table S6) were composed of palbociclib, regorafenib 
and lapatinib administered at high dosage, see Fig.  2D. 
The  ODCSWFXR identified by the TGMO, consisting of 
regorafenib, lapatinib, palbociclib and AZD-4547, was 
not recovered in the CCI, while  ODCLSFXR containing 
regorafenib, vemurafenib, palbociclib and lapatinib was 
ranked first in their corresponding CCI.

ODCs activity is confirmed in patient‑derived organoids
To validate the activity of the cell line specific ODCs, 
we exposed freshly isolated patient-derived organoids 
to those ODCs for 72 h, see Fig. 3. The PDOs originated 
from three different patients, i.e., a patient presenting 
liver metastasis (PCRC-1, burgundy bar), a patient with 
right colon primary tumor (PCRC-2, dark green bar), and 
a patient with sigmoidal primary tumor (PCRC-3, navy 
bar), Fig. 3A. The PDOs were passaged in standard cul-
ture conditions. Subsequently, organoids were collected, 
dissociated, counted, and plated at the desired density. 
When single organoids reached a diameter of approxi-
mately 350–400  μm, commonly accepted size to mimic 
conditions where necrotic core may appear [37, 38], they 
were exposed to the therapy of choice for 72  h. In all 
 ODCLSFXR-treated PDOs, the decrease in their size and 
change in morphology was observed, Fig.  3B. However, 
since we previously showed that size might not be an 
exact delimitator of drug activity in 3D cultures [24], thus 
the ATP levels were measured and compared between 
the conditions. In addition,  ODCLSFXR activity in the 
PDOs was confirmed using H&E staining (Supplemen-
tary Information S4 and Supplementary Fig. S7). A clear 
decrease in tumors size and structure is noticeable in 
the ODC-treated group. All ODCs (see the ODCs com-
position in Fig.  1) were active in three types of patient-
derived organoids, as compared to the corresponding 
monotherapies and to FOLFOXIRI, which was used as 

a positive control, see Fig.  3C. Interestingly,  ODCSWFXR 
and  ODCLSFXR, of which composition differed only by 
one drug, seemed to be highly potent in PCRC-1 and 
PCRC-3. Whereas all three PCRCs were prone to vemu-
rafenib, and unsensitive to vatalanib, AZD-4547 or nilo-
tinib, their sensitivity to other monotherapies differed.

Gene expression profiles and genomic mutations 
landscape in PCRC organoids
Cellular phenotype and mutation landscape determine 
drug sensitivity. Whole-exome sequencing (WES) of the 
PDOs (Fig. 4) revealed that PCRC-1 presented alterations 
in common CRC mutated genes, such as APC, KRAS 
and TP53. PCRC-2 contained alterations in APC, KRAS, 
FBXW7 and NOTCH1 genes, Fig.  4A. PCRC-3 had an 
inactivating mutation in MLH1 causing deficiency in 
MMR. Indeed, PCRC-3 had 3–4 times more mutations 
than the other patients including mutations implicated 
in CRC: APC, KRAS, TP53, ATM, CTNNB1, AXIN2, 
RNF43, PIK3CA, and RUNX1.

Established PDOs were also sequenced using RNA-seq 
and gene expression profiles of untreated samples were 
used to establish the classification of the patients accord-
ing to the CMS/CRIS schemes and MSS status [7, 8, 39], 
Fig.  4A. PCRC-2 was classified as CMS2/CRIS-C and 
MSS, which correlated with the histopathological evalua-
tion of the patient’s tumor. The CMS2/CRIS-C signatures 
describe the classical  Wnthigh cohort of tumor samples. 
Indeed, PCRC-2 has mutations in tumor suppressor 
genes APC and FBXW7. FBXW7, like APC, antagonizes 
Wnt activity by targeting β-catenin for degradation [40]. 
PCRC-3 was classified as MSI high, CMS1 subtype of 
CRC, which correlates with the MLH1 mutational sta-
tus and high number of SNPs. PCRC-1 was classified 
as CMS4/CRIS-A. The above classification confirmed 
that our cohort of samples covered very distinct CRC 
sub-groups.

We have further assessed gene expression changes 
upon treatment of all three PDOs with  ODCLSFXR for 72 h 
Fig. 4B. Hundreds of genes were differentially expressed 
in each PDO upon treatment. Interestingly, relatively few 
genes were similarly deregulated in all PDOs including 
several Wnt-signaling related genes (WNT10A, WNT5B, 
WNT6). PCRC-1 showed downregulation of keratiniza-
tion and cell proliferation-related genes upon treatment. 
PCRC-2 showed up-regulated extracellular matrix (ECM) 
proteins, such as ECM1, FN1, COL18A1, and COL27A1. 
At the same time, cell cycle-related genes (CCNE2, 
MKI67, CDK1/2, E2F1 and others) and genes important 
for microtubule formation (TUBA1B, TUBB6, SKA1/2, 
KLF15) were downregulated. PCRC-3 unlike PCRC-2, 
showed a down-regulation of ECM-related genes but 
showed an enrichment in genes involved in serine-type 
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Fig. 3 Cross‑validation of ODCs activity on patient‑derived organoids. A Schematic representation of our patient‑derived organoids platform. 
B Representative images of PDOs from PCRC‑1, PCRC‑2 and PCRC‑3 treated with  ODCLSFXR. Scale bar represents 500 µm C. Activity of all four ODCs, 
and corresponding monotherapies and FOLFOXIRI (folinic acid [0.5 µM], 5‑FU [10 µM], SN38 [0.1 µM] and oxaliplatin [0.5 µM], red bars) in PDOs 
from PCRC‑1 (burgundy bars), PCRC‑2 (dark green bars) and PCRC‑3 (navy bars). Activity is measured by ATP levels vs. CTRL (< 0.15% DMSO). Data 
is presented as mean of N = 3 independent experiments, error bars represent SD. Significance is determined by two‑way ANOVA with *p < 0.05, 
**p < 0.01 and ***p < 0.001
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Fig. 4 Gene expression profiles and genomic mutations landscape in PDOs. A Representative images of the PDOs established from patients 
PCRC‑1–3, their mutations in known CRC‑related genes, and TNM stage, CMS, CRIS and MSS/MSI classification. Scale bars represent 200 μm, B. Gene 
expression changes of established PDOs from PCRC1‑3 after treatment with  ODCLSFXR for 72 h (N = 3). Differentially expressed pathways (Genes with 
the |log2FC|> 2) are highlighted in the right panel
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peptidase activity (MMP11, KLK1/3/11). Two PDOs 
showed a significant reduction in cell proliferation upon 
treatment indicating the effective action of the  ODCLSFXR 
drug combination.

Together, this data show that PDOs have distinct muta-
tional status, CMS/CRIS/MSS classification and heter-
ogenous gene expression responses. This supports the 
concept that each patient tumor would eventually require 
a unique personalized drug combination for optimal 
treatment response.

Identification of synergistic multidrug combinations 
directly in patient‑derived organoids (PDO)
As shown above, the ODCs optimized in 3Dcc models 
based on CRC cell lines were also quite active in PDOs, 
Fig. 3. To know how representative those ODCs are, we 
performed a TGMO-based screen directly on the same 
PDOs, i.e., PCRC-1, -2 and -3 (Fig.  5 right panels with 
representative organoid bright field images). To maintain 
the same quality of freshly isolated patient material and 
to maintain a clinically relevant timeframe, we performed 
only search 1 on PDOs, which consisted in screening 50 
different drug combinations from our seven drug-pool, 
each given at two doses, followed by data modeling. 
We narrowed the search as compared to the initial set 
of eleven drugs based on the most effective/safe seven 
drugs in the 3Dcc models. The regression models gener-
ated (Fig. 5, left panels), showcased the different interac-
tions present in the drug pool. In yellow we highlighted 
the most robust drug interactions that were included 
in each final ODC. Interestingly,  ODCPCRC-1 (Fig.  5A), 
 ODCPCRC-2 (Fig. 5B), and  ODCPCRC-3 (Fig. 5C) were com-
posed of different drugs and were slightly more active 
than the ODC identified in the cell lines  (ODCLSFXR). 
 ODCPCRC-1 consisted of the same drugs as  ODCSWFXR. 
The ODCs inhibited 78.1%, 64.2% and 72.3% of PDOs cell 
viability in PCRC-1,-2,-3, respectively, while being signif-
icantly more active than FOLFORIXI in case of PCRC-1 
and -3 (Fig. 5B).

Discussion
Optimizing low-dose synergistic drug combinations is 
an attractive strategy to tackle the complex machinery of 
cancer and to overcome, or more importantly, to prevent 
acquired drug resistance. The simultaneous targeting of 
key signaling pathways at different levels or targeting dis-
tinct signaling pathways is essential to efficiently kill can-
cer cells.

Using our validated phenotypically driven platform 
(TGMO), we have previously identified synergistic opti-
mized drug combinations in a panel of CRC cell lines 
in 2D cell models [21]. In this study, we further empha-
sized the importance of this strategy in a more complex 

clinically relevant models, notably patient-derived orga-
noids, that recapitulate more faithfully the tumor organi-
zation and micro-environment. Moreover, we extended 
our statistical analysis pipeline to include the adaptive 
lasso approach, which strengthened the analysis per-
formed by the TGMO.

Our results show a broad activity of  ODCLSFXR, consist-
ing of low dose regorafenib (VEGFR inhibitor), vemu-
rafenib (BRAF inhibitor), lapatinib (EGFR and HER2 
inhibitor) and palbociclib (CDK4/CDK6 inhibitor), in 
3D co-cultures (Supplementary Fig. S6), and with PDOs, 
notably in PCRC-1, which was resistant to chemotherapy 
treatment (Fig.  3). This can be explained by the inhibi-
tion of four different key signalling pathways in CRC 
both upstream and downstream in the cell. This is in line 
with the findings of Neto et al. who recently reported that 
inhibition of RAF/MEK/ERK with upstream inhibition 
of EGFR using 3 to 4 drugs in combination was needed 
to completely block oncogenic activated MAPK signal-
ing, and could overcome acquired resistance to high dose 
monotherapy [41]. In the study of Horn et al., drugs tar-
geting PI3K/AKT/mTOR and MAPK signaling pathways 
combined with agents targeting CDK4/6 family protein 
were identified in their most optimal drug combination 
against colorectal cancer [42]. The efficacy of such drug 
mixtures was also validated in other cancer types with 
similar key driving mutations. The simultaneous dual 
inhibition of these pathways was validated in advanced 
stage ovarian cancer, where upon treatment with a low 
dose synergetic triple combination, significant reduction 
in tumor size in patient-derived xenograft models was 
observed [43].

Our results show that the effect of the drugs differs 
between 2 and 3D models, see Supplementary Figs. 
S1-S2. Even though 3D models are more complex, we 
observed a reduction in the concentration of some drugs 
like regorafenib and vemurafenib in the ODC identified 
in this study, when compared to the ODCs previously 
optimized in 2D models [21]. Our findings converge with 
the recent study of Folkesson et  al., where this reduc-
tion in concentration is due to higher synergistic effects 
that have been observed in CRC 3D models compared to 
2D, especially when treated with combinations including 
MEK inhibitors [44]. This is also in line with our previ-
ous findings, where we observed a significant reduction 
of the dose of erlotinib in both homogenous and hetero-
typic CRC 3D models compared to 2D cell models [24].

HER2 has been recently considered an emerging bio-
marker in CRC, especially in the metastatic settings. 
HER2 overexpression/amplification was reported in 
3–5% of metastatic CRC [45]. Multiple phase II clinical 
trials (HERACLES) [46] have shown that HER2 block-
ade was beneficial for (patients with metastatic CRC 
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refractory to chemotherapy) [47]. In our TGMO-based 
screen, lapatinib, a reversible EGFR and HER2 inhibi-
tor, figured in the optimal ODC identified on organoids 
3D-FXSWFXR and 3D-FXLSFXR. Moreover, the strength 
of the lapatinib effect was correlated with the overall 
HER2 expression in PDOs. PCRC-2 had tenfold higher 
expression of HER2 compared to the other patients, at 

the same time being the most vulnerable to the lapa-
tinib treatment. Furthermore, it has been shown that 
CDK4/6 inhibition potentiates the effect of anti-HER2 
drugs. In fact, cyclin D1 as a resistance pathway, and 
studies have shown that the inhibition of CDK4/6 
downstream simultaneously while targeting upstream 
the cells can potentiate the efficacy of treatment [48]. 

Fig. 5 Optimization of patient specific ODCs. A Regression coefficients generated from search 1 of the TGMO‑based screen on PDOs, describing 
single drug  1st order, drug‑drug and single drug  2nd order drug‑drug interactions (red, burgundy and pink lines, respectively) for CRC‑1 B. CRC‑2 
and C. CRC‑3 (left panels). In yellow is highlighted the most robust drug‑drug interaction in each patient specific ODC. In the corresponding middle 
panels, activity of the patient specific ODCs, corresponding monotherapies (solid colored bars), and FOLFOXIRI (folinic acid [0.5 µM], 5‑FU [10 µM], 
SN38 [0.1 µM] and oxaliplatin [0.5 µM], red bars) in each PDO and in CCD841 3Dcc (black stripped bars). Activity is measured by ATP levels vs. CTRL 
(< 0.15% DMSO). Data is presented as mean of N = 3 independent experiments, error bars represent SD. Significance is determined by one‑way 
ANOVA (regression models, left panel) and two‑way ANOVA (activity graphs, right panel) with *p < 0.05, **p < 0.01 and ***p < 0.001. In the right 
panels, representative images of PDO treated with their corresponding patient specific ODC. Scale bar represents 500 µm
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These findings converge with the results of our drug 
screen, where lapatinib was always identified in tandem 
with palbociclib. The frequency of simultaneous occur-
rence of both drugs in our search was also validated 
using adaptive lasso, where the mathematical model 
always linked palbociclib to lapatinib in FOLFOXIRI-
resistant models  (FXOSWFXR,  FXOLSFXR and PCRC-
1). Furthermore,  ODCPCRC-1 consisted of regorafenib 
[1  μM], palbociclib [1  μM], lapatinib [0.5  μM] and 
AZD-4547 [0.6  μM], the same drug composition and 
drug doses as for  ODCSWFXR. In fact, the mutational 
profile of PCRC-1 (Fig.  3), has mainly the same three 
key mutation implicated in CRC as the SW620 cell 
line (KRAS, APC and TP53), see Supplementary Table 
S2. PCRC-1 was classified as a CMS4, a subtype usu-
ally identified for stage IV tumors and linked to low-
est overall survival [7], but was efficiently treated with 
 ODCPCRC-1. This ODC showed in our models 3.6-fold 
higher activity than FOLFOXIRI administered at CUD 
(Fig. 5A).

PCRC-2 was classified as CMS2 and CRIS-C, the latter 
known to have highly elevated EGFR signaling and there-
fore sensitive to EGFR inhibition. PCRC-2 also contained 
a mutation in KRAS, which is often associated with 
resistance to EGFR-targeted therapy. However, studies 
have shown that patients with the KRAS G13D muta-
tion, as in PCRC-2, are an exception to this dogma and 
respond to the therapy [49–51]. This has been argued by 
others, e.g. Rowland et.al, who stated according to their 
meta-analysis, that there is no significant difference in 
response to anti-EGFR therapy between KRAS G13D and 
other KRAS mutants with metastatic CRC [52, 53]. The 
exact mechanism behind this unusual behavior of KRAS 
G13D mutants is yet to be fully elucidated [54].

This is the first time we apply our phenotypic TGMO 
approach directly on patient-derived material withing the 
clinically relevant timeframe. We carefully showcase that 
there exists a rationale behind each ODC, and that each 
drug combination is different in terms of drugs and doses 
according to the specific mutations and gene expression 
programs of each corresponding PDOs. Even though 
 ODCLSFXR is very potent and is active in all PDOs, its 
activity remains undistinguishable compared to the 
ODCs identified specifically for each patient (Fig.  3 vs. 
Fig. 5).

Moreover, the sensitivity analysis conducted based on 
adaptive regression techniques is in line with the results 
of the TGMO. This alternative method demonstrates the 
reliability of the TGMO, while pointing towards poten-
tial improvements in terms of experimental burden. Both 
approaches are based on different underlying assump-
tions and consequently have different strength and limi-
tations. However, their methodological comparison 

is beyond the scope of this study and is left for further 
research.

It is also important to mention that in this study we 
eagerly contributed to the development of alternative to 
animal use models with respect to the 3Rs for replace-
ment, reduction and refinement. We show that advanced 
but easy-to-use 3D assays can be predictive in terms of 
drug activity and significantly reduce the number of ani-
mals needed to bring new cancer treatment to the clinical 
use.

There are some bottlenecks that we have identified and 
that could be improved in further experiments. First, 
so far, we failed in the isolation of healthy colon epithe-
lial organoids from the same patients. This is a frequent 
problem also recognized by other research groups, as 
the rate of non-cancerous organoid establishment is very 
low, approx. 6% of the cells that could be passaged [55]. 
We used complex 3D co-cultures (Fig. 1) to validate the 
safety of our ODCs, while recognizing the fact that they 
do not fully represent a proper intra-patient control. We 
are currently working on optimizing our isolation and 
maintenance protocol to secure experiments in the non-
cancerous organoids for each patient.

Another point is the choice of a phenotype as a proxy 
for the activity of the different ODCs, i.e., metabolic cell 
activity in our case. To distinguish long-term superior-
ity between the selected drug combinations, we plan to 
consider additional phenotypes and longer treatment 
periods in future experiments. In addition, the differ-
ent drugs in the pool target some of the most important 
genes and pathways currently known in cancer pathogen-
esis. Although each compound was selected for a par-
ticular target (i.e. Vemurafenib – BRAF), most inhibits 
several other targets (i.e. ragorafenib: VEGFR1-3, TIE2, 
PDGFR-β, FGFR, KIT, RET, and RAF) [56]. Therefore, it 
is also possible that the activity of our compound mixture 
can be related to some “minor target” inhibition by one 
compound or the common inhibition of a “minor target” 
by several compounds. Testing this hypothesis is outside 
the scope of this paper and will require further in  vitro 
work. In addition, since CRC is known to be genetically 
diverse and may be different within the intratumor geog-
raphy [57], in future studies we will compare the dif-
ferent genetic clones of organoids in their response to 
treatments.

Thirdly, we are working on the elaboration of toxicity 
and pharmacological activity scales of the ODCs. Defin-
ing toxicant mixture composition with the aim to map 
metabolic networks is a delicate task, as they should pre-
sent different mechanisms of action that would in turn 
produce specific metabolic phenotypes. We think that by 
phenotyping the ODCs, administered at low doses, we 
will be able to explore highly diverse metabolic responses 
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and thus evidence more complete metabolic subnetworks 
relevant to the identification of main key-events relation-
ships. We hypothesize that these underlying metabolic 
networks play a significant role in understanding toxicol-
ogy-related health problems.

Conclusion
Summarizing, our study represents an innovative experi-
mental PDO-platform, which combined with stream-
lined in silico data analysis, may allow optimization of 
synergistic multi-drug combination therapy tailored spe-
cifically to individual patients and stratified patients to 
selected treatments in a clinically relevant timeframe.

Materials and methods
Cells and culture conditions
LS174T and SW620 human CRC, as well as CCD18co 
and CCD841 non-malignant cells were obtained from 
ATCC with a corresponding authentication certifi-
cate. Human immortalized endothelial cells ECRF24 
cells (via immortalization procedures with amphitropic 
replicant-deficient retrovirus [58]). LS174T and SW620 
FOLFOXIRI resistant cell lines were generated in our 
laboratory through a chronic treatment [14, 35]. The 
cells were cultured in a humidified incubator at 37  °C 
and 5%  CO2 in culture medium supplemented with 10% 
fetal bovine serum (S1810-500, Biowest, Nuaillé, France) 
and 1% penicillin/streptomycin (4-01F00-H, BioCon-
cept, Allschwil, Switzerland). Cells were regularly tested 
for mycoplasma contamination using the MycoAlert kit 
(LT07-218, Lonza, Rockland, ME, USA), with controlled 
passage.

3D co-cultures were created in 96-well U-bottom low 
attachment plates (650970, Greiner Bio-One, Frick-
enhausen, Germany) with CRC cells or CCD841 cells 
seeded 1:1 with CCD18co cells and 5% ECRF24 cells [24]. 
Culture media consisted of a mixture of DMEM, RPMI 
and EMEM (1:1:1) supplemented with 2.5% Matrigel® 
(354254, Corning, Bedford, MA, USA). The 3Dcc were 
treated 48 h post-seeding (Day2).

Tumor isolation and organoids establishment
Colorectal cancer samples were obtained from University 
Hospital in Geneva (HUG). The study methodology with 
the use of patient-derived material was approved by the 
Swiss Ethics Committee on research involving humans 
(2017–00364) and conformed to the standards set by 
the Declaration of Helsinki. The experiments were per-
formed with a written consent from each patient.

The patient-derived CRC tissue was transported in 
DMEM-F12 (10565–018, Gibco) and 1 × Primocin (ant-
pm-1, Invitrogen, Toulouse, France), and processed 
within approx. 1 h after resection. Tissues were washed 

with HBSS (14170–088, Gibco) and mechanically dis-
sociated into 1–2  mm3 cubes with a surgical blade 
in a small glass petri dish in 1  mL digestion medium 
(DMEM/F12 + Liberase DH (0.28unit/ml)). Tumor 
pieces were then transferred to GentleMACS C tubes 
(5171215296, Miltenyi Biotec, Germany) and enzymati-
cally digested for 1 h. The samples were then filtered, and 
the retained fragments were collected and washed twice 
in HBSS. The washed samples were then resuspended 
in the adequate volume of Matrigel® and incubated in a 
5%  CO2-humidified incubator at 37 °C for 20 min. Then 
serum-free stem cell medium DMEM/F12 + StemPro 
hESC (A10006-01, Gibco) supplemented with 8  ng/mL 
hFGF. See more detailed protocol under Supplementary 
Information S3.

Drugs and treatments
Drugs were dissolved in DMSO to prepare stock solu-
tions at the corresponding concentrations. Aliquots 
were stored at -80  °C and thawn prior to each experi-
ment. Regorafenib (R-8024, 20  mg/mL), vemurafenib 
(V-2800, 50  mg/mL), erlotinib (E-007, 15  mg/mL), 
lapatinib (L-4904, 20  mg/mL), Palbociclib (P-7744, 
30  mg/mL),, trametinib (T-8188, 15  mg/mL), nilotinib 
(N-8207,10 mg/mL), olaparib (O-920, 10 mg/mL), BEZ-
235 (N-4288, 10  mg/mL) were purchased from LC labs 
(Woburn, MA, USA); vatalanib (PTK787, 10  mg/mL) 
from SelleckChem (Houston, Texas, USA); AZD-4547 
(HY-13330,10  mg/mL) and SN38 (HY-13704/CS-1579, 
1  mg/mL) from MedChemExpress (Monmouth Junc-
tion, New Jersey, USA); 5-flurouracil (F6627, 10 mg/mL), 
folinic acid (F7878, 20 mg/mL), oxaliplatin (O9512, 5 mg/
mL in UltraPure distilled water) from Sigma-Aldrich. 
Cells were exposed to single drugs or pre-mixed drug 
combinations for 72  h for 2D, 3Dcc and PDOs. Corre-
sponding cell culture medium with and without 0.15% 
DMSO was used as control.

Metabolic ATP activity assays
Drug treatment activity was measured using the 3D 
CellTiter-Glo® cell metabolic activity (ATP) assays 
(G9683, Promega, Madison, WI, USA), according to the 
manufacturer`s instructions. Assay bioluminescence was 
detected using the BioTek Cytation 3 and corresponding 
Gen5 Image software version 3.04 at standard settings.

Combination index (CI) calculation
The combination index of the different drug combina-
tions was calculated using the software Compusyn. The 
input consists in the fraction affected (FA) calculated as 
follows: 1 – (raw ATP levels of treated condition / raw 
ATP levels of control).
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mRNA transcriptome and analysis
The libraries (for PCRC-1 untreated and treated sam-
ples) were prepared using MERCURIUS BRB-seq kit 
(ALITHEAgenomics) according to the manufacturer 
protocol, using 15 cycles for the libraries amplifica-
tion. The libraries were sequenced on NovaSeq 6000 
using next sequencing structure: read1:i7 index:i5 
index:read2 = 28:8:8:90. Gene expression profiles were 
normalized across the samples based on the number of 
total counts (25 mio counts/sample). Lowly expressed 
genes (~ 20 counts/sample) were removed. RNA easy® 
Plus Kit (74134, Qiagen, Hilden, Germany) was used 
to extract RNA from PDOs of PCRC-2 and PCRC-3 
according to the manufacturer’s instructions. RNA quan-
tification was performed with a Qubit fluorimeter (Ther-
moFisher Scientific) and RNA integrity assessed with a 
Bioanalyzer (Agilent Technologies). The TruSeq mRNA 
stranded kit from Illumina was used for the library 
preparation with 150  ng of total RNA as input. Library 
molarity and quality were assessed with the Qubit and 
Tapestation (DNA High sensitivity chip). Libraries were 
sequenced on a NovaSeq 6000 Illumina sequencer for 
SR100 reads.

Genes which were differentially expressed (|log2FC|> 2) 
between control and treated samples were selected for 
each patient. 3 sets of genes (for 3 patients) were com-
bined and plotted using heatmap package in R.

Whole exome sequencing (WES) and analysis
For PCRC-1, mutation profile is routinely performed 
by clinical pathology (HUG). DNA was extracted from 
two FFPE tissue sections of about 10 μm with Promega 
Maxwell® RSC DNA FFPE Kit (Promega AS1450) on 
the automated machine (Promega RSC). The concentra-
tion was measured using fluorometric Qubit reagents 
(Thermofisher Scientific, cat n° Q32851). 50  ng DNA 
was used to generate a sequencing library with a cus-
tom 100-gene panel using the SureSelect XT-HS Target 
Enrichement System from Agilent Technologies (Santa 
Clara, USA). The sequencing was performed on an Illu-
mina NextSeq 500 sequencing system. The results were 
analysed using an in-house analysis software and variant 
calling performed with Oncobench® (Swiss Institute of 
Bioinformatics).

For PCR2-3, organoids were collected, trypsi-
nized to single cells and resuspended in 200 μL of 
PBS. DNA was isolated from the corresponding sam-
ples using NucleoSpin Blood, Mini kit for DNA from 
blood (Macherey–Nagel, REF: 740951.50) according 
to the manufacture protocol. Exome capture was per-
formed using xGen Exome Research Panel v2 (IDT, 
REF: 10005152), xGen Hybridization and Wash Kit IDT 

(ref 1080577), xGen Universal Blockers-TS IDT (ref 
1075474). Library preparations were done using xGen 
DNA Library Prep EZ kit (REF: 10009863). Amplified 
libraries were sequenced using NovaSeq SP PE con-
figuration at 150 cycles at 84 × sequencing depth (20 
million reads per sample). Obtained fastq files were 
trimmed with TrimGalore (version 0.6.6) using the 
standard settings (adapter sequence 5’- AGA TCG GAA 
GAG C-3’). The alignment was done with BWA mem 
(BWA version 0.7.17) using Homo_sapiens.GRCh38.
dna.primary_assembly as a reference genome. Samtools 
(version 1.10) was used to obtain corresponding bam 
files. Picard (version 2.20.8) and GATK (version 4.3.0.0) 
were used to prepare and filter the bam files using 
MarkDuplicates, AddOrReplaceReadGroups, BaseRe-
calibrator (NCBI library of known sites were used com-
mon_all_20180418.vcf.gz as a reference), ApplyBQSR 
functions. GATK was used to call haplotypes and 
obtain corresponding vcf files using HaplotypeCaller 
function, as well as for consolidating corresponding 
vcf files, selecting SNP and INDEL variants and variant 
filtration. snpEff was used for variants annotation for 
human genome (GRCh38.86). GATK VariantsToTable 
function was used to obtain the final table containing 
all SNPs and INDELs. ClinVar database of pathogenic 
variants and OncoKB database of known variants for 
500 most mutated genes in CRC were used to select the 
corresponding relevant variants.

Subcutaneous in vivo tumor models
Subcutaneous implantation of LS174T-FX-R and SW620-
FX-R was performed as described previously [21]. In 
short, 6–8 week-old male nude mice were implanted with 
cell suspensions of 50 μL serum free medium contain-
ing 10  μg/uL Matrigel® with 5000 cells/mouse for both 
LS174T-FX-R and SW620-FX-R [59], subcutaneously 
in the right flank. When tumor size reached 1000  mm3, 
after 7 days and 15 days (LS174T-FX-R and SW620-FX-
R, respectively) the tumors were isolated according to 
our tumor isolation protocol (Supplementary Informa-
tion S3), and  FXOLSFXR and  FXOSWFXR organoids were 
established.

Statistical analysis
Experimental data are given as a mean of (N) independ-
ent experiments with (n) replicates. The error bars cor-
respond to the standard deviation (SD). Data analysis was 
performed using different softwares including: Graphpad 
Prism v. 8.0.1, Matlab® or RStudio 2022.02.3. Statistical 
significance (* p < 0.05, ** p < 0.01 and *** p < 0.001) was 
obtained using, t-test, one- or two-way ANOVA test with 
multiple comparison tests as indicated in corresponding 
figure legends.
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AUC   Area under the curve
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CI  Combination index
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CRC   Colorectal cancer
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oxaliplatin
FOLFOXIRI  Chemotherapy combination of folinic acid, 5‑Fluorouracil, oxalipl‑

atin and irinotecan
mCRC   Metastatic colorectal cancer
MMR  Mismatch repair
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MSS  Microsatellite stable
ODCs  Optimized drug combinations
PDOs  Patient‑derived organoids
PTW  Predicted therapeutic window
TGMO  Therapeutically guided multidrug optimization
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