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Abstract

The purpose of the current study was to determine whether a tropical ginger derived compound
1’-acetoxychavicol acetate (ACA), suppresses skin tumor promotion in K5.Stat3C mice. In a two-week study in which
wild-type (WT) and K5.Stat3C mice were co-treated with either vehicle, ACA, galanga extract, or fluocinolone
acetonide (FA) and tetradecanoyl phorbol acetate (TPA), only the galanga extract and FA suppressed TPA-induced
skin hyperproliferation and wet weight. None of these agents were effective at suppressing p-Tyr705Stat3
expression. However, ACA and FA showed promising inhibitory effects against skin tumorigenesis in K5.Stat3C mice.
ACA also suppressed phospho-p65 NF-κB activation, suggesting a potential mechanism for its action.
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Introduction
An alarming rate of increase in the incidence of non-
melanoma skin cancer (NMSC) is observed worldwide
[1]. Within the United States itself, it has been estimated
that about 1.7 million new cases of all forms of skin
cancer are expected to be diagnosed each year [2]. To
investigate the underlying pathophysiology of skin car-
cinogenesis, the multistage model delineates the cellular,
biochemical and molecular processes involved in the
various stages of skin cancer development [3-5]. Appli-
cation of tumor promoters to initiated cells can induce
epigenetic changes in the skin which culminate into
visible clonal outgrowths known as papillomas [5-7].
Although the exact mechanism of action of tumor pro-
motion remains unclear, sustained hyperplasia and cellu-
lar proliferation in the epidermis correlates with the
tumor promoting activity. Moreover, treatment with
tetradecanoyl phorbol acetate (TPA) can alter signaling
of nuclear factor kappa B (NF-κB) and signal transducer
and activator of transcription 3 (Stat3) signaling in the
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process of skin carcinogenesis [8]. Stat3 is a transcrip-
tion factor that plays a critical role in the control of cell
proliferation, survival and angiogenesis, all hallmarks of
malignancy [9]. Stat3 activity is constitutive in several
malignant cell types and is required for initiation,
promotion and progression to a more malignant pheno-
type in squamous cell carcinomas of the skin (SCC)
[8,10-15]. The critical role of Stat3 in skin tumor devel-
opment was further supported by data obtained from
the K5.Stat3C transgenic mouse model in which the
DiGiovanni and Clifford research groups expressed the
Stat3C protein in skin under the control of the keratin-5
promoter [11]. Stat3C is a constitutively active mutant
of Stat3 that dimerizes through formation of covalent di-
sulfide linkages between cysteines instead of phosphotyr-
osines [16]. These mice have a skin phenotype closely
resembling psoriasis in humans and, when subjected to
the two-stage skin chemical carcinogenesis protocol,
rapidly developed carcinomas, bypassing the papilloma
stage that is normally observed in this model [17].
The transcription factor NF-κB is also activated during

inflammation and carcinogenesis [18]. The activated
form of NF-κB triggers transcription of specific genes
involved in proliferation (cyclin D1, c-myc), angiogenesis
(VEGF), antiapoptosis (survivin, BclXL, FLIP) and
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invasion (MMP9, ICAM-1) proteins [19]. NF-κB activa-
tion has been strongly implicated in many types of can-
cer [18] including skin SCCs [20]. Ablation of β-catenin
in murine skin grafts resulted in up-regulation of NF-κB
target genes [21]. The skin grafts, which resembled
human grade III skin SCCs, were hyperproliferative, the
layers of epidermis were disorganized, and contained in-
vasive keratinocytes [21]. Kobielak and Fuchs analyzed
human skin SCCs and found 33/40 with low/no β-catenin,
and nuclear, activated NF-κB, also characterized by
inflammation and interestingly, nuclear phosphorylated
Stat3 [21]. Finally, many NF-κB regulated genes are also
induced by Stat3 and the interaction between these pro-
teins and their signaling pathways may be involved in
the different phases of skin carcinogenesis.
Non-specific drug-related side effects of pharmaceuti-

cals hamper their clinical efficacy and underscore the
need for investigating better treatment options. Crucif-
erous vegetables, tomatoes, garlic, citrus fruits and
beverages like black tea and green tea contain phyto-
chemicals such as resveratrol, flavonoids, and lycopene, that
have been shown to afford protection against skin cancer
development in vivo [22-24]. Easy accessibility and
cost-effectiveness provide a reasonable rationale to
explore phytochemicals for mechanism-based interven-
tions in cancer management. ACA is a natural compo-
nent of traditional Thai condiments found in the seeds,
rhizomes or in the root of the tropical ginger [25]. ACA
suppressed carcinogenesis in a number of rodent mod-
els, including the two-stage mouse skin model [26,27],
the 4-nitroquinoline oxide oral carcinogenesis model
[28,29], and the azoxymethane colon carcinogenesis
model [30,31]. In the skin model, pre-treatment of mice
with ACA during TPA treatment in 7, 12-dimethylbenz
[a] anthracene (DMBA)-initiated mice was remarkably
effective, inhibiting skin tumor promotion by 44% and
90% at 1.6 nmol and 160 nmol doses, respectively [27].
Some of the proposed anticarcinogenic mechanisms of
ACA included the ability to inhibit ornithine decarb-
oxylase (ODC) activity, inhibition of xanthine oxidase
and suppression of the formation of superoxide anion,
induction of detoxifying enzymes, and causing apop-
tosis in cancer cells [29,30,32-35]. We found that ACA
induced apoptosis in human breast carcinoma MDA-
MB-231 cells [36]. ACA was also shown to inhibit the
formation of reactive oxygen species by suppressing
leukocyte infiltration in the dermis following TPA ex-
posure [35]. It was also found that ACA blocked TNFα
induced activation of NF-κB indirectly through IκB
[37].
Because of the strong role of Stat3 and NF-kB in SCC,

and the dramatic effect of ACA against skin tumor pro-
motion, we hypothesized that the effects of ACA may be
modulated through Stat3 and/or NF-κB signaling. To
address this question, we used mice that express the con-
stitutively active form of Stat3 (K5.Stat3C). Moreover,
ACA exists in nature exclusively as the S-enantiomer,
while the synthetic form utilized in most experimental
studies is the racemic mixture. In order to determine
whether there are differences in biological effects between
the ACA-S and the racemic mixture, we tested ACA-S in
the form of a galanga extract (hereafter referred to as GE),
alongside synthetic ACA.

Materials and methods
Preparation of dosages
Synthetic 1’-acetoxychavicol acetate (ACA) was pur-
chased from LKT Laboratories (St. Paul, MN). Fluocino-
lone acetonide (FA) was purchased from Sigma-Aldrich
(St. Louis, MO). Tetradecanoyl phorbol acetate (TPA)
was purchased from LC Laboratories (Woburn, MA).
All solutions of ACA, FA and TPA were prepared in
HPLC grade acetone and were applied topically in a total
volume of 0.2 mL. The dose of TPA used in the subse-
quent experiments was 3.4 nmol. Based on our previous
dose–response studies [38], 340 nmol of ACA was used
for all the experiments presented. The dose of FA used
was 2.2 nmol in 0.2 mL per mouse.

Preparation of galangal extract
The rhizome of Alpinia galanga was obtained from a
local market in Shreveport, LA. Two separate extracts
were made: one in ethanol and the other in hexane. All
procedures were conducted in subdued lighting. 100 g of
fresh rhizome was chopped into small pieces and mixed
with either 500 mL of HPLC grade 100% ethanol or hex-
ane. This extract was stored for a week, protected from
light, at 4 °C followed by daily shaking the flask in order
to allow the contents to mix well. The extract was ana-
lyzed by HPLC-UV detection (Shimadzu Scientific In-
strument, Columbia, MD) on an ODS-3 5 μ column at
1 mL/min in 70% methanol/water at 254 and 213 nm.
There was a 1000-fold difference observed in the areas
under the curve (AUC) for ACA at 254 and 213 nm
wavelengths with the AUC being greater at 213 nm. A
peak corresponding to the authentic standard ACA
eluted at 9.1 min. The retention time of the predomin-
ant peak in the galanga extract was compared to that of
synthetic ACA and they were found to be the same. The
concentration of ACA was found to be 3.8 mM in the
ethanolic extract and 2 mM in the hexane extract. Both
extracts possessed numerous other peaks yet to be iden-
tified. Interestingly, there were several peaks identified in
the ethanolic extract that were not observed in the hex-
ane extract. The ethanolic extract also possessed a more
fragrant aroma that developed over time. Both extracts
developed an amber color over time. Because the etha-
nolic extract was difficult to dry down, the hexane
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derived extract was used for experiments. The hexane
extract was dried under nitrogen gas to make a concentrate
that was further resuspended in HPLC grade acetone,
analyzed by HPLC against an authentic standard curve,
and diluted such that 340 nmol of ACA per 0.2 mL was
obtained.

Cell culture
The Clifford laboratory generated several clones of SEN-
CAR mouse keratinocyte-derived cells (3PC) stably expres-
sing the Stat3C protein (3PC-C1, 3PC-C10, 3PC-C17, etc.).
Overexpression of Stat3C sensitized these cells to EGF
and HGF induced cell migration, and invasion through
Matrigel [17]. 3PC parental cells (3PC WT) and 3PC-C10
cells were grown in chelexed EMEM media (0.05 mM Ca2+,
5 ng/ml epidermal growth factor, 10 μM ethanolamine,
4 mM glutamine, 1 μM hydrocortisone, 5 μg/ml insulin,
100 μg/ml penn-strep, 10 μM phosphoethanolamine and
10 μg/ml transferrin) supplemented with 8% chelexed
FCS, in a humidified atmosphere with a 5% CO2 concen-
tration. Cells were seeded onto 96-well plates and treated
with vehicle (0.1% DMSO) or ACA (2.5, 5, and 10 μM) for
96 h. Plates were harvested for the MTT viability assay as
previously described [13].

General animal care
All animals were kept in a temperature and humidity
controlled AAALAC facility under a normal 12 hour
light/dark cycle. The procedures were approved by
LSUHSC Institutional Animal Care and Use Committee
in accordance with NIH guidelines. Mice were main-
tained on regular pellet food and allowed access to food
and water ad libitum. Transgenic mice with constitutive
Stat3 expression (K5.Stat3C) and their wild-type (WT)
counter parts were used. K5.Stat3C mice express
Stat3C, a constitutively active form of Stat3 and develop
spontaneous lesions that resemble human psoriasis [11].
The expression of the Stat3C transgene in the basal cell
layer of the epidermis was driven by the bovine keratin
5 gene promoter, and hence the name K5.Stat3C. The
mice were genotyped by PCR to detect the transgene
and maintained in the breeding colony at LSUHSC-
Shreveport.

Effects of ACA, galanga extract, and FA on mouse
epidermis following two weeks treatment with TPA in WT
vs. K5.Stat3C mice
The dorsal skin of each mouse was shaved two days
prior to the treatments. At 2 days post shaving, topical
applications of respective treatments were administered
on the dorsal surface of the mouse with the aid of a pip-
ette, according to the two-week protocol reported previ-
ously for short-term tumor promoter experiments [8].
The mice were treated twice weekly for two weeks as
follows; treatment with either acetone vehicle, synthetic
ACA (340 nmol), galanga extract (equivalent of 340 nmol
ACA) or FA (2.2 nmol), followed by treatment with TPA
(3.4 nmol). Mice were sacrificed 48 h after the last treat-
ment application and tissues were harvested for further
experimental analysis. The dorsal skin from the mice
was excised and divided into three parts; one for wet
weight analysis, one for histological analysis, and one for
western blot analysis. For wet weight analysis, the under-
lying fat layer was dissected from one of the skin pieces
and two holes were punched into the excised skin, one
towards the rostral end and the other towards the caudal
end. The punched biopsies were then placed into vials
and weighed on an analytical balance (AG135, Mettler-
Toledo, Inc., Columbus, OH). The weights of the biop-
sies obtained from the rostral and caudal end were then
averaged for each individual mouse and recorded.
For histological analysis, one piece of skin was placed

in 10% neutral buffered formalin, and at 24 hrs post fix-
ation transferred into 50% ethanol and embedded in par-
affin. The tissue sections were sliced crossectionally at a
thickness of 4 μm. Duplicate histology sections were
stained with hemotoxylin and eosin for histopathological
analysis. Epidermal thickness was measured using the
hematoxylin and eosin stained histology slides. Digital
images of the histology slides were captured using a
Nikon Eclipse TE300 inverted microscope with an epi-
fluorescence attachment. This was attached to Photo-
metrics CoolSNAPfx monochrome 12-bit CCD camera
and configured with imaging Software: IPLab 3.7 for
Windows (Research Core Facility, LSUHSC). The pro-
cedure for measuring epidermal thickness reported by
Li, Wheeler and colleagues was followed with slight
modifications [39]. Digital pictures of 10 randomly
selected fields were taken at 400X magnification. The
sections were scored in a blinded fashion such that the
slides only had a numerical identity. For each skin site,
epidermal thickness was measured vertically from the
basal layer up to, but excluding, the stratum corneum
using “Metamorph Software” (Research Core Facility,
LSUHSC). Image distances were calibrated using a
hemocytometer grid photographed on the same micro-
scope and at the same magnification as the histology
images, allowing a pixel to microns conversion factor to
be obtained at 400X magnification. One pixel was equal
to 0.16722 μm. For each individual mouse, twenty mea-
surements were recorded and the values averaged for
analysis.
For western blot analysis, excised skin was placed on a

glass plate on ice followed by removal of the epidermis
with a razor blade. The epidermal scrapings were placed
into RIPA lysis buffer (50 mM Tris–HCl, pH7.4, 1% NP-
40, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1ug/mL
leupeptin, 1ug/mL aprotinin, 1 mM Na3VO4, 1 mM NaF
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Figure 1 Effects of ACA in 3PC and 3PC-C10 cells. Cells were
cultured as described in Methods sections and cell viability and/or
proliferation was assayed by the MTT method. Figures represent
triplicate values. The experiment was repeated with similar results.
Data are expressed as the percentage of the vehicle control (y-axis,
ratio of experimental group to control group).
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[Abcam, Cambridge, MA], and 1X protease inhibitor
cocktail [Sigma-Aldrich, St. Louis, MO]), and homoge-
nized on ice using a polytron homogenizer with 3 bursts
of 30 sec each, followed by intermittent resting 10 sec
between each burst and then centrifuged at 14,000 x g
for 15 min at 4 °C. The supernatant (epidermal lysate)
was collected, quantitated using Bio-Rad Protein Dye
and according to the method of Bradford as previously
described [40], and used for Western blot analysis. Epi-
dermal lysates were separated by SDS-PAGE, electro-
phoretically transferred to a PVDF membrane, followed
by staining with Ponceau S to assure efficient transfer.
The blots were probed with antibodies for Stat3 and
PTyr705Stat3 (Cell Signaling Technology, Inc., Beverly,
MA) and signal intensity quantitated as previously
described [15].

Tumor study
K5.Stat3C (male and female) mice (6–8 weeks of age)
were initiated with 25 nmol DMBA and then treated
with TPA (6.8 nmol) twice a week for the duration of
the study as previously described [17]. Mice were pre-
treated with 340 nmol ACA or 2.2 nmol FA 5 min prior
to each TPA treatment. Mice were palpated for tumors
twice weekly for the duration of the study. The numbers
of subjects in each group were 14 (TPA only), 10 (ACA/
TPA) and 6 (FA/TPA). At the end of the study, mice
were euthanized, and skin and tumors were removed for
histopathological analyses and immunohistochemistry
(IHC).

Statistical analysis
Statistical analysis was performed using GraphPad Prism
R version 3.0 software for Windows (GraphPad Software,
San Diego, CA). The statistical analysis used for these
studies was One way ANOVA followed by Tukey’s Mul-
tiple Comparison Test as the post test, with p< 0.05
being the level of significance. For the tumor study,
multiplicity was analyzed using the Kruskal-Wallis non-
parametric test (GraphPad Prism R version 5.0 for Mac).

Results
Effects of ACA on cells that overexpress Stat3
In order to determine whether these cells were sensitive
to the antiproliferative and/or cell killing effects of ACA,
a dose response viability assay was performed. The abso-
lute absorbance value at 540 nm for the 3PC-C10 cells
was higher than that of the 3PC control cells. ACA sig-
nificantly suppressed MTT color development by ~ 20%
- 60% (2.5 – 10 μM) (Figure 1). A linear trend analysis
demonstrated that there was a significant decrease of ab-
sorbance at 540 nm with increase of dose for both cell
lines. However, when the data were expressed as a per-
centage of control (Figure 1), there was no interaction
effect between cell type and treatment, suggesting that
the cells are equally sensitive to ACA.

Effects of ACA, galanga extract, and FA on mouse
epidermis following two weeks treatment with TPA in WT
vs. K5.Stat3C mice
To understand the histological changes in the epidermal
layer of the subjects under the influence of various
treatments, hematoxylin and eosin staining was done.
Figures 2, 3 show a representative image of the histology
sections from the various treatment groups. These
histological differences were further quantified as epi-
dermal thickness and are reported in Figure 4, Figure 5,
Figure 6 and Figure 7.
In the WT mice, the epidermis in the vehicle/vehicle

group was only a few layers thick when observed from
the basal layer up to the stratum corneum (Figure 2)
and the nucleated cells in the basal layer appeared to be
round and light in color. The thickness of the epidermis
in this group was approximately 18–21 μm (Figure 4,
top panel). On the other hand, the epidermis in the ve-
hicle/TPA group was several cell layers thicker (Figure 2).
The quantitative result showed a marked elevation in
the thickness and was about 38 μm when compared to
the vehicle control (Figure 5, top panel). The epidermis
in the synthetic ACA/TPA treated group resembled the
TPA treated epidermis with no significant changes in
the thickness (Figures 2 and 4). However, the epidermis
in the galanga extract/TPA treated group looked very
similar to the acetone control group with only only a
few layers thick and quantitatively measured to be ap-
proximately 25 μm (Figures 2 and 4). The thickness in
this group was significantly less in comparison to TPA



Figure 2 Effect of ACA, galanga extract, and FA in TPA-treated WT mouse skin. Wild-type (WT) mice were treated with TPA±ACA, galanga
extract, or FA twice a week for 2 weeks. H&E photomicrographs at 400X. Males and females (n = 6-8) were used. Treatment groups were vehicle/
vehicle; vehicle/TPA 3.4 nmol; ACA 340 nmol/TPA 3.4 nmol; galanga extract (GE, equivalent to 340 nmol ACA)/TPA 3.4 nmol and FA 2.2 nmol/TPA
3.4 nmol.
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treated group. The epidermal thickness in the galanga
extract treated group was significantly lower in compari-
son to the ACA treated group. Interestingly, as previ-
ously reported, FA treated subjects had a very thin,
atrophic epidermis which was to be around 6–7 μm
(Figures 2 and 4). The thickness of the epidermis in this
group was significantly reduced by about 3-fold in com-
parison to the TPA treated group.
In the K5.Stat3C mice, (Figures 3 and 5) similar results

were observed across all the treatment groups as seen
with the non-transgenic mice with the only differences
noticed in the basal levels of the epidermal thickness in
the transgenic mice and their non-transgenic littermates.
This difference in the basal levels of the epidermal thick-
ness was mainly observed due to the phenotypic differ-
ences in the skin of the transgenic mice and their WT
counterparts. These results suggested that galanga ex-
tract as well as FA were effective agents in modulating
the cellular events associated with the promotional
phase of skin cancer.
Changes in wet weight also corresponded to changes

in epidermal thickness (Figure 4, lower panel). The effect
of various treatments on wet weight was also assessed.
Wet weight is an indicator of edema as well as hyperpro-
liferation, both markers of skin tumor promotion
induced by TPA [41]. In Figure 4, lower panel, the wet
weight of the WT skin in the vehicle only group was
10–13 mg whereas the wet weight in vehicle/TPA group
comparatively was significantly increased to 14–16 mg.
The wet weight in the group treated with synthetic
ACA/TPA was similar to the vehicle/TPA treated group
without any significant changes in the wet weight of the
skin. However, the wet weight of skin in the group trea-
ted with galanga extract/TPA was significantly decreased
in comparison to the vehicle/TPA treated group. Fur-
thermore, the wet weight of the skin in the FA/TPA



Figure 3 Effect of ACA, galanga extract, and FA in TPA-treated K5.Stat3C mice mouse skin. K5.Stat3C mice were treated with TPA±ACA,
galanga extract, or FA twice a week for 2 weeks. H&E photomicrographs at 400X. Males and females (n = 6-8) were used. Treatment groups were
vehicle/vehicle; vehicle/TPA 3.4 nmol; ACA 340 nmol/TPA 3.4 nmol; galanga extract (GE, equivalent to 340 nmol ACA)/TPA 3.4 nmol and FA
2.2 nmol/TPA 3.4 nmol.
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treated group was also significantly reduced in compari-
son to the vehicle/TPA treated group. Interestingly, the
wet weight in the galanga extract/TPA group was signifi-
cantly lower than the wet weight in the synthetic ACA/
TPA treated group.
In Figure 5, lower panel, the wet weight in the vehicle

only K5.Stat3C group was 14–15 mg, which was slightly
higher than the wet weight observed in the WT group.
In the vehicle/TPA treated K5.Stat3C group, the wet
weight was significantly higher when compared to the
vehicle only group. Yet again, the basal level of wet
weight in this group was slightly higher in comparison
to the WT group. The difference in the basal levels of
the wet weight in the transgenic mice and their non-
transgenic littermates were observed across all the treat-
ment groups. In comparison to the vehicle/TPA group,
the wet weight was significantly lower in the galanga ex-
tract/TPA and FA/TPA treated groups but not in the
synthetic ACA/TPA group. Moreover, the wet weight of
skin in the galanga extract/TPA group was significantly
lower in comparison to synthetic ACA/TPA treated
group. This suggested that the test agents gave similar
results in the transgenic mice and their non-transgenic
littermates, with the galanga extract being more effective
than synthetic ACA. FA was once again found to be ef-
fective in decreasing the wet weight of the skin.
To address the effects of the various treatments on the

potential molecular target, Stat3, semiquantitative West-
ern blot analysis for the expression of Stat3 and its active
form (i.e. phosphorylated form of Stat3 at tyrosine resi-
due 705) was performed. Figure 6 shows a representative
western blot for Stat3 expression. As per our expecta-
tions, the expression of Stat3 remained unchanged in all
the WT treatment groups (Figure 6, middle panel). This
was a consistent observation reported by several other
researchers in the literature [8,42]. Further, Figure 6,
lower panel, shows the experimental data for Stat3 ex-
pression in the K5.Stat3C mice. Once again, there were



Figure 4 Effect of ACA, galanga extract, and FA on epidermal
thickness (top panels) wet weight (lower panels) in TPA-treated
WT mouse skin. WT mice were treated with vehicle/vehicle;
vehicle/TPA 3.4 nmol; ACA 340 nmol/TPA 3.4 nmol; galanga extract
(GE, equivalent to 340 nmol ACA)/TPA 3.4 nmol and FA 2.2 nmol/
TPA 3.4 nmol twice a week for 2 weeks.

Figure 5 Effect of ACA, galanga extract, and FA on epidermal
thickness (top panels) wet weight (lower panels) in TPA-treated
K5.Stat3C mouse skin. K5.Stat3C mice were treated with vehicle/
vehicle; vehicle/TPA 3.4 nmol; ACA 340 nmol/TPA 3.4 nmol; galanga
extract (GE, equivalent to 340 nmol ACA)/TPA 3.4 nmol and FA
2.2 nmol/TPA 3.4 nmol twice a week for 2 weeks.
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no significant differences observed in the expression of
the Stat3 protein itself by any of the treatments.
However, modulation of phosphorylated Stat3 expres-

sion as a function of the particular agent treatment was
observed. Figure 7, top panel, shows a representative
Western blot for the active form of Stat3 expression, i.e.
phosphorylated Stat3 at tyrosine residue 705. In Figure 7,
middle panel, the experimental data for the phosphory-
lated Stat3 expression in WT mice are shown. As evi-
dent from the data presented, TPA treatment did not
significantly increase the expression of phosphorylated
Stat3 in comparison to the vehicle control. It could be
that activation of Stat3 occurred earlier than 48 h. More-
over, neither the synthetic ACA nor the galanga extract
was effective in modulating the expression of phos-
phorylated Stat3. The effect of FA was not significantly
different from the TPA treated group. In Figure 7, lower
panel, data for the K5.Stat3C transgenic mice only are
shown. An important point to be considered is that
these mice have constitutive expression of Stat3 in the
epidermal keratinocytes which also means these mice
have the active Stat3 or phosphorylated Stat3 signal
already turned on. Therefore, these mice have higher
basal levels of the phosphorylated Stat3 protein as com-
pared to the basal levels of this protein in the wild type
mice. Once again, TPA did not increase the expression
of phosphorylated Stat3 in the transgenic mice. Further-
more, neither synthetic ACA nor the galanga extract was
able to modulate the expression of the phosphorylated
Stat3 protein in the transgenic mice. Even FA was not able
to shut off the activated Stat3 signal in the transgenic mice
and thus did not modulate the expression of phosphory-
lated Stat3 as it did in the wild type mice previously.
Effects of ACA and FA on skin carcinogenesis in WT vs.
K5.Stat3C mice
Finally, the effects of ACA on DMBA/TPA-induced
tumorigenesis were examined in K5.Stat3C trans-
genic mice (Tables 1–2, Figure 8). In the K5.Stat3C
mice treated with TPA only, lesions began to appear



Figure 6 Western blot analysis of to Stat3 expression in wild-
type (WT) mouse epidermis. TPA (3.4 nmol) was administered
twice a week for 2 wk and mice were euthanized at 48 h. Mice were
co-treated with vehicle (acetone 200 μL), ACA (340 nmol), galanga
extract (GE, corresponding to 340 nmol ACA) or FA (2.2 nmol).
Figures represent densitometry analysis of ratio of Stat3/actin (panel
A); and p-Tyr705Stat3/actin panel B (Means ± SE of 6–8 individual
mice).

Figure 7 Western blot analysis of to Stat3 expression in K5.
Stat3C transgenic (TG) mouse epidermis. TPA (3.4 nmol) was
administered twice a week for 2 wk and mice were euthanized at
48 h. Mice were co-treated with vehicle (acetone 200 μL), ACA
(340 nmol), galanga extract (GE, corresponding to 340 nmol ACA) or
FA (2.2 nmol). Figures represent densitometry analysis of ratio of
Stat3/actin (panel A); and p-Tyr705Stat3/actin panel B (Means ± SE of
6–8 individual mice).

Table 1 Histopathological Analyses of Tumor Incidence

Treatment % of Mice with Carcinoma in-Situa

TPA 57.1%

TPA/ACA 33.3%

TPA/FA 33.3%

Exact p-value 0.4942

% of Mice with Invasive SCCa

TPA 100% Compared to TPAb

TPA/ACA 72.7% p= 0.0717

TPA/FA 33.3% p= 0.0031

Exact p-value 0.0031
a SAS System, Pearson Chi-Square Test.
b Fisher's Exact Test.
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between 5–16 weeks of promotion and reached a
maximum at 21 weeks. This experiment was termi-
nated at 21 weeks due to morbidity in the TPA only
mice. Statistical analyses of the histopathology are
summarized in Tables 1–2. Overall, there were fewer
carcinomas in-situ than invasive SCCs (Table 2). The
percentages of mice with carcinomas in-situ were
not statistically significant (Table 1). However, the
percentages of mice with invasive SCC’s were signifi-
cantly different, with the FA/TPA group being sig-
nificant and the ACA/TPA group being marginal,
suggesting that more subjects in the ACA/TPA
group might have revealed a difference. Histopatho-
logical analyses revealed an average of 1.21 ± 0.38
carcinomas in-situ and 3.07 ± 0.61 invasive SCC’s per
mouse in the TPA only group (Table 2). There was
no significant difference in the average numbers of
carcinomas in-situ. However, there was a significant
difference in the average numbers of invasive SCC
with the FA/TPA group being significant and the
ACA/TPA group being marginal, again suggesting
that more subjects in the ACA/TPA group might
have revealed a difference. There were no significant
differences between the ACA/TPA group and the



Table 2 Histopathological Analyses of Tumor Multiplicity

Treatment Avg no. of Carcinomas in-Situd

TPA 1.21 ± 0.38

TPA/ACA 0.44 ± 0.24

TPA/FA 0.33 ± 0.21

LS-Means e P = 0.1592

Avg no. of Invasive SCCd

TPA 3.07 ± 0.61 Compared to TPAf

TPA/ACA 1.54 ± 0.34 p= 0.1164

TPA/FA 0.83 ± 0.65 p= 0.0476

LS-Means e P = 0.0324
d Means ± SE.
e SAS System, GLM Procedure, Least Squares Means Test.
f Adjustment for Multiple Comparisons: Tukey-Kramer.

Figure 8 Representative H&E photomicrographs of carcinoma
in-situ (top panel) and invasive SCC (lower panel). Top panel,
markedly thickened epithelial layer with multiple layers of cells and
dysplasia (nuclear atypia, black arrow). White arrow points to the
rounded outline without breaching the basement membrane,
denoting the pre-invasive phase (ie., carcinoma in-situ). Lower panel,
micrograph showing irregular nests (black arrows) of proliferating
epithelial cells with cellular atypia and nuclear polymorphism. The
tumor nests (black arrows) are seen infiltrating into the stroma as single
cells and irregular nests (black arrows) (original magnification 200x).
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FA/TPA group in either incidence or multiplicity
(statistics not shown).
Another feature of the K5.Stat3C mice is the psoriatic

phenotype. In the tumor study, mice exhibited multiple
psoriatic plaques of varying degrees of severity (Figure 9).
FA and ACA did not completely block this phenotype, but
qualitatively appeared to modestly ameliorate the effect.

ACA suppressed p65 phosphorylation in mouse skin
An important consideration in the current study is
whether ACA actually suppressed NF-κB activation
in vivo in skin. Although it has previously been shown
that ACA suppresses NF-κB activation, those studies
were done in non-skin derived cultured cells [37,43].
Thus, to address whether ACA suppresses NF-κB activa-
tion in vivo in skin, sections of skin from K5.Stat3C and
WT littermates (FVB background), treated with vehicle
or TPA for 27 weeks, were stained immunohistochemi-
cally for the phospho-p65 NF-κB subunit. As shown in
Figure 10, TPA increased the phosphorylation of the p65
NF-κB subunit (detected with an anti phospho-Ser529
p65 antibody) for both WT and K5.Stat3C mice, com-
pared to control skin, indicating that TPA activates NF-
κB signaling. ACA did not affect the level of phospho-
p65 in control skin, but suppressed it almost to the con-
trol level in TPA treated skin. In contrast, ATRA did not
suppress phospho-p65 levels. Use of primary antibody
alone resulted in no staining (data not shown). We also
note that phospho-p65 levels were higher in the K5.
Stat3C skin for all treatment conditions except TPA+
ACA, suggesting the possibility of cross-talk between
Stat3 and NF-κB signaling in this system. Note also that
the epidermal thickness was not increased by ACA or
FA in the absence of TPA.

Discussion
In 1976, Sporn defined chemoprevention as the use of
specific natural or synthetic chemical agents to
reverse, suppress or prevent the carcinogenic process
to invasive cancer [44]. Due to the long latency period
in human cancer development, effective but non-toxic
agents should be used. Furthermore, studying the key
cellular signaling pathways affected by known chemo-
preventive agents can be a logical starting point for
gaining this understanding. The ultimate goal of such
studies will be to prioritize the molecular targets and
pathways that affect chemoprevention, such that other
natural products that also impact these pathways can
be exploited.



Figure 9 Representative photographs taken of mice from each group exhibiting mild, moderate, and severe psoriatic phenotypes. K5.
Stat3C (male and female) mice were initiated with 25 nmol DMBA and then treated with TPA (6.8 nmol) twice a week for the duration of the
study. Mice were pre-treated with 340 nmol ACA or 2.2 nmol FA at 5 min prior to every TPA dose.
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In the current study, one such molecular target was
explored by using K5.Stat3C mice. These mice are exquis-
itely sensitive to TPA-induced skin tumor promotion [17],
Figure 10 Immunohistochemical staining of phospho-p65 NF-κB in m
female) mice were initiated with 25 nmol DMBA and then treated with TPA
treated with 340 nmol ACA or 2.2 nmol FA at 5 min prior to every TPA dos
and also exhibit a psoriatic phenotype [11]. Originally we
had hypothesized that ACA would be effective against
TPA-induced skin tumor promotion in K5.Stat3C mice
ouse skin collected from the tumor study. K5.Stat3C (male and
(6.8 nmol) twice a week for the duration of the study. Mice were pre-
e.



Figure 11 Working diagram of the effects of ACA compared to
ATRA in the NF-κB and Stat3 pathways, respectively. RTK,
receptor tyrosine kinase, TK, tyrosine kinase, EGFR, epidermal growth
factor receptor.
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because it exhibits a range of chemopreventive activities.
In the two-week TPA study, ACA was minimally effective,
if at all. However, galanga extract containing equivalent
amounts of ACA was highly effective at suppressing TPA-
induced skin hyperproliferation and wet weight. The con-
trol, FA, was also very effective in these parameters,
although it leads to tissue atrophy. This suggests that ei-
ther additional components of the galanga extract are
bioactive, or that the synthetic racemic ACA that is com-
mercially available may be less effective than the pure
S-enantiomer that is derived from the extract.
In the tumor study, both ACA and FA exhibited

inhibitory effects against TPA-induced skin tumor
promotion, although the subject size was not large
enough to make solid conclusions with ACA. How-
ever, the purpose of the tumor study was to deter-
mine if ACA would be more effective under a tumor
study protocol rather than the two-week protocol,
and it appeared to be so. FA is a known inhibitor of
epidermal DNA synthesis and suppresses tumor pro-
motion [45] so it was expected to have an inhibitory
effect. Furthermore, ACA strongly suppressed acti-
vated NF-κB in the skin of the K5.Stat3C mice from
the tumor study. This is consistent with our previous
report that orally administered ACA (100 mg/kg bw)
inhibited lipopolysaccharide-induced NF-κB activa-
tion in the NF-κB-RE-luc (Oslo) luciferase reporter
mice [46]. In a xenograft model, ACA (500 ppm) in
combination with ATRA in the diet at 5, 10, and
30 ppm effectively suppressed human skin SCC
SRB12-p9 tumor volume by 56%, 62%, and 98%, re-
spectively [46].
In the K5.Stat3C study, all-trans retinoic acid (ATRA,

3.4 nmol) was also used as a potential inhibitor of TPA-
induced skin tumor promotion [15]. ATRA is a well-
known inhibitor of TPA-induced tumor promotion in
SENCAR mice and the Clifford laboratory discovered
that ATRA inhibits the B-Raf/Mek/Erk pathway [47] and
suppresses the expression of p-Tyr705Stat3 [15]. In the
K5.Stat3C mice, however, ATRA did not suppress the
formation of carcinomas in situ or SCCs [15]. Since the
mice express a constitutively active dimer form of Stat3
these results would suggest that ATRA suppresses
events upstream of Stat3 activation. This explanation
seems reasonable since B-Raf is upstream of Stat3.
Taken together, these results are consistent with our pre-
vious cell culture findings that ACA was equally effective
at blocking cell viability and/or proliferation in the 3PC
mouse keratinocyte cell line vs. 3PC cells overexpressing
Stat3C (Figure 1). Thus, it appears that both ACA and
FA suppress events/pathways that are either downstream
of Stat3, or are independent of Stat3. It should be noted
that the FVB strain of mice used for generating the K5.
Stat3C transgenic mice is not as sensitive to tumor
induction in the 2-stage protocol as are SENCAR mice.
This resulted in the lower total number of tumors per
mouse observed for this experiment compared to a ty-
pical SENCAR experiment (data not shown). Also, the
response of the K5.Stat3C mice to the DMBA/TPA
protocol was not exactly as it was first reported [17].
This could be due to a number of factors, such as con-
ducting the study in a different geographic region or dif-
ferences in the breeding colonies. A working diagram is
shown in Figure 11, in which ACA suppresses NF-κB ac-
tivation, and ATRA inhibits the activation of Stat3.

Conclusions
In conclusion, the current study reports, for the first
time, that galanga extract effectively suppresses TPA-
induced hyperproliferation, skin wet weight, and epi-
dermal thickness in both WT and K5.Stat3C mice.
Surprisingly, synthetic ACA only produced modest
effects on these parameters. However, ACA strongly
inhibited NF-κB activation in both WT and K5.Stat3C
mice in the two-stage skin tumor study. ACA and FA
also demonstrated a promising suppression of tumori-
genesis in the K5.Stat3C mice, something that ATRA
was not able to do. This may be useful clinically in
individuals that already exhibit activated Stat3. These
results further support the idea that targeting multiple
pathways (Stat3, NF-κB) will be an effective strategy
for chemoprevention.
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