Skip to main content
Fig. 1 | Journal of Experimental & Clinical Cancer Research

Fig. 1

From: RhoC regulates radioresistance via crosstalk of ROCK2 with the DNA repair machinery in cervical cancer

Fig. 1

Transcriptional enrichment of DNA repair genes upon RhoC overexpression. a Immunoblot analysis of the SiHa-R cells shows increased RhoC as compared to SiHa-N cells which confirms stable over-expression of RhoC (n = 3). b-i A heatmap representation of gene expression patterns using Log2 FPKM of the SiHa-R versus SiHa-N cells transcriptomic data, using Clustvis analysis tool. b-ii Genes upregulated in SiHa-R cells were subjected to GO analysis using DAVID and only the clusters with a P significance (p < 0.05) have been represented. GO terms for the biological processes with their corresponding -Log10 P- value scores have been depicted in the graph. b-iii String interaction analysis was performed using version 11.0. DNA repair and cell cycle pathways were enriched with a p < 0.05 using DAVID annotation tool. The enriched genes were used for the string analysis where red nodes are suggestive of the tight clustering in the network. The confidence level was set to 0.4 (medium). b-iv Graphical representation of a few selected genes from the battery of genes involved in DNA repair and cell cycle regulation which were significantly upregulated in SiHa-R cells (log2 fold change> 1, p < 0.05). c-i Real-time PCR based validation of some of the representative genes upregulated in SiHa-R cells. SiHa-N was used to normalize the expression levels. c (ii-iv) Cellular extracts of SiHa-R and SiHa-N cells were analyzed for DNA repair proteins. The expression levels of pH2Ax, MRE11 and RAD50 in SiHa-R cells were higher as compared to the control cells (n = 3)

Back to article page