Skip to main content
Fig. 6 | Journal of Experimental & Clinical Cancer Research

Fig. 6

From: Thrombospondin 4/integrin α2/HSF1 axis promotes proliferation and cancer stem-like traits of gallbladder cancer by enhancing reciprocal crosstalk between cancer-associated fibroblasts and tumor cells

Fig. 6

Concurrent activation of HSF1 and AKT by TSP-4/integrin α2 axis in gallbladder cancer cells. a rh-TSP-4 induced phosphorylation of both AKT and HSF1 ((p-AKT: S473 and p-HSF1:S326)) in GBC cells. GBC-SD and NOZ cells were treated with and without rh-TSP-4 for 2 h and the whole cell lysates were analyzed by WB for levels of integrin α2 downstream kinases. β-Actin was used as an internal control. n = three independent experiments, **P < 0.01 by Student’s t-test versus control group. b Kinetics for HSF-1 activation was in accordance with that for Akt. GBC-SD cells were incubated with rh-TSP-4 for 0–120 min and the whole cell lysates were utilized for WB analysis to determine levels of p-HSF-1 (S326) and p-Akt (S473). β-Actin was used as an internal control. n = three independent experiments, **P < 0.01 by ANOVA versus control group. c Akt interacts with HSF-1 constitutively, independent of rh-TSP-4 treatment. CO-IP assay was performed using whole cell lysates extracted from GBC-SD cells treated with and without rh-TSP-4. An Akt antibody was used to immunoprecipitate Akt, whereas IgG was used as negative controls. d, e Western blot analysis showed that rh-TSP-4 increased Akt and HSF1 phosphorylation (p-AKT: S473 and p-HSF1:S326) in GBC-SD and NOZ cells, while this effect was antagonized by blocking integrin α2 or inhibiting Akt. β-Actin was used as an internal control. n = three independent experiments, **P < 0.01 by ANOVA versus control group

Back to article page