Skip to main content
Fig. 7 | Journal of Experimental & Clinical Cancer Research

Fig. 7

From: A positive feedback loop between TAZ and miR-942-3p modulates proliferation, angiogenesis, epithelial-mesenchymal transition process, glycometabolism and ROS homeostasis in human bladder cancer

Fig. 7

GAS1 overexpression impaired cell proliferation, angiogenesis, migration, invasion, EMT, glycolysis and ROS homeostasis in bladder cancer cells. a. The effect of GAS1 on cell viability was verified by a CCK-8 assay. b. A colony formation assay showed that GAS1 impaired the colony-forming ability of T24 and EJ cells. c. Conditioned medium was collected from control or GAS1-overexpressing cells and used in a tube formation assay to evaluate angiogenesis. d. A wound healing assay indicated the effect of GAS1 overexpression on migration. e. GAS1 overexpression suppressed the migration and invasion of T24 and EJ cells, as determined by Transwell migration and Matrigel invasion assays. f-g Western blot and qRT-PCR analyses showing the expression levels of EMT markers in GAS1-overexpressing bladder cancer cells at the protein and mRNA levels, respectively. h-i The effects of GAS1 on glycolysis were determined by glucose uptake and lactate production assays. j-k PFKFB3, HK2 and GLUT1 levels in GAS1-overexpressing cells were evaluated by western blotting and qRT-PCR. l. GAS1 remarkably upregulated intracellular ROS levels in T24 and EJ cells. m. TCGA database analysis showed a lower expression level of GAS1 expression in bladder cancer tissue than in normal tissue. n. Immunohistochemical detection of GAS1 in cohort 2 (n = 30) further confirmed the dysregulation of GAS1 in bladder cancer. Scale bar: 200 μm. Data are presented as the mean ± SD of three independent experiments. *P < 0.05 and **P < 0.01 vs. the control group

Back to article page