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Abstract
Background: The α6β4 integrin is overexpressed in the basal subtype of breast cancer and plays
an important role in tumor cell motility and invasion. EGFR is also overexpressed in the basal
subtype of breast cancer, and crosstalk between α6β4 integrin and EGFR appears to be important
in tumor progression.

Methods: We evaluated the effects of α6β4 crosslinking on the distribution and function of EGFR
in breast carcinoma cell line MDA-MB-231. Receptor distribution was evaluated by fluorescence
microscopy and multispectral imaging flow cytometry, and ligand-mediated EGFR signaling was
evaluated using Western blots and a Rho pull-down assay.

Results: Antibody-mediated crosslinking of α6β4 integrin was sufficient to induce cell-surface
clustering of not only α6β4 but also EGFR in nonadherent cells. The induced clustering of EGFR
was observed minimally after 5 min of integrin crosslinking but was more prominent after 15 min.
EGFR clustering had minimal effect on the phosphorylation of Akt or Erk1,2 in response to EGF in
suspended cells or in response to HB-EGF in adherent cells. However, EGFR clustering induced by
crosslinking α6β4 had a marked effect on Rho activation in response to EGF.

Conclusion: Crosslinking α6β4 integrin in breast carcinoma cells induces EGFR clustering and
preferentially promotes Rho activation in response to EGF. We hypothesize that this integrin-
EGFR crosstalk may facilitate tumor cell cytoskeletal rearrangements important for tumor
progression.

Background
Integrins are an important class of cell surface receptors
that recognize extracellular matrix proteins and allow the
cell's microenvironment to help regulate intracellular sig-
naling events[1,2]. Binding to multivalent ligands results

in integrin crosslinking, which activates a signaling proc-
ess that induces integrin clustering within the plasma
membrane[3,4]. Clustering of integrins in vitro can also
be investigated with crosslinking antibodies, which pro-
vide greater specificity than most integrin ligands[5]. In
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the process of integrin clustering, integrins that are dif-
fusely distributed throughout the membrane dissociate
from their cytoskeletal contacts and aggregate in particular
regions of the membrane, where they form large com-
plexes with new attachments to the cytoskeleton[6,7]. In
addition to activating the individual integrin heterodim-
ers, the clustering of integrins leads to recruitment of
other signaling molecules to the plasma membrane [1-4].

Activated integrins are known to regulate growth factor
receptor signaling in normal and malignant cells[8,9].
Integrin-growth factor receptor crosstalk is important for
many growth factor receptor-mediated functions, includ-
ing cell proliferation, survival, motility and invasion[8,9].
The α6β4 integrin, a receptor for most laminins that is
normally expressed in the myoepithelial cell layer of
benign breast epithelium[10], is upregulated in the
aggressive basal subtype of invasive breast cancer[11].
EGFR is also overexpressed in this subgroup of breast can-
cers[11], and in-vitro data suggest that crosstalk between
α6β4 integrin and EGFR may be important in the progres-
sion of this basal subtype of breast cancers [12-14].

EGFR converts from an inactive monomeric form to an
active homodimer upon stimulation by its ligand[15,16],
and cell surface clusters of activated EGFR homodimers
are known to occur [17-19]. We showed previously that
α6β4 integrin crosslinking induces PI3K-dependent cell
surface clustering of α6β4 integrin in breast carcinoma
cells[20]. Because integrin clusters are known to recruit
other molecules to membrane complexes, we hypothe-
sized that α6β4 clustering might lead to the redistribution
and clustering of EGFR on the tumor cell surface. Moreo-
ver, because cell surface clustering of a variety of receptors,
including EGFR, has been shown to augment receptor
function[5,17-19], we hypothesized that α6β4 integrin-
induced EGFR clustering might augment particular tumor
cell responses to EGF. This might be one mechanism
whereby integrins allow the microenvironment to regu-
late tumor cell behavior.

Here we report the effects of adhesion-independent α6β4
integrin crosslinking on the distribution and function of
EGFR in MDA-MB-231 breast carcinoma cells, known to
express high levels of α6β4 integrin and EGFR typical of
basal-like breast carcinomas.

Methods
Cell Culture
Breast carcinoma cell line MDA-MB-231, an aggressive
breast carcinoma cell line derived from the pleural effu-
sion of a patient with metastatic carcinoma, was cultured
in Eagle's Minimum Essential Medium (MEM) supple-
mented with 5% fetal bovine serum (FBS), L-glutamine,
sodium pyruvate, and nonessential amino acids and vita-

mins (Gibco). The cells were maintained in monolayer
culture in a humidified incubator at 37°C in an atmos-
phere of 5% CO2 and 95% air.

Receptor Clustering and Fluorescence Microscopy
Cells were serum-starved overnight, trypsinized from the
culture dishes and washed twice with PBS. The cells were
then resuspended in MEM containing 0.1% bovine serum
albumin at a concentration of 5 × 106 cells/ml. For
integrin crosslinking, cells in suspension were incubated
with mouse monoclonal anti-β4 (clone 3E1, Chemicon)
on ice for 30 min, washed, and then incubated with either
rabbit anti-mouse IgG (Sigma) or rabbit IgG control at
37°C for various time periods. Following fixation in 2%
paraformaldehyde, immunofluorescence staining for
α6β4 was performed using mouse monoclonal anti-β4
(clone ELF1, Novocastra) as the primary antibody and
FITC-labeled anti-mouse IgG (Zymed) as the secondary.
Staining for EGFR was performed using FITC-rat anti-
EGFR (clone ICR10, Serotec). The labeled cells were cyto-
centrifuged onto a glass slide and evaluated by fluores-
cence microscopy.

Multispectral Imaging Flow Cytometry
MDA-MB-231 cells were treated as above, stained with
FITC-rat anti-EGFR on ice, fixed in paraformaldehyde, and
then permeabilized and stained with DRAQ5 to 10 μM
(Biostatus, Shepshed, United Kingdom). Induced cluster-
ing of EGFR was analyzed by multispectral imaging anal-
ysis of cells in flow using the ImageStream™ (Amnis
Corporation, Seattle, Washington). Briefly, this system
illuminates hydrodynamically focused cells with a 488
nm laser oriented perpendicular to the collection axis and
simultaneously transilluminates along the collection axis
by a brightfield light source. The light is collected with an
imaging objective lens and projected on a CCD operating
in time-delay integration (TDI) mode. Prior to projection
on the CCD, the light is passed through a multispectral
optical system that decomposes and redirects the light
into multiple channels, each corresponding to a different
spectral band. The images are spatially offset from each
other to facilitate image processing and quantitation. For
this study, a channel for a brightfield image, a 500–560
nm channel for FITC, and a 660–735 nm channel for
DRAQ5 were used.

Following spectral compensation, calculation of fluores-
cence intensity parameters was performed using the Image
Data Exploration and Analysis Software (IDEAS) package
(Amnis Corporation). EGFR clustering was quantified
using a "small spot total" classifier that measures small
regions of continuously connected bright intensity over a
7-pixel octagonal area, normalized to mean intensity. The
normalized value is expressed as "Bright Detail Intensity-
FITC". Bivariate dot plots of "Bright Detail Intensity-FITC"
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on the Y axis and "Area Threshold 30%" on the X axis were
produced. "Area Threshold 30%" is the area of the pixels
in the brightest 30th percentile within the image. As EGFR
condenses into a small number of brighter pixels, the Area
Threshold 30% decreases. Conversely, when EGFR is uni-
formly distributed over a large number of pixels, the
brightest 30% of the pixels is much closer to the mean
pixel value, and the area is much larger. Values along the
Y axis measure the degree of punctate staining, and values
along the X axis measure diffuseness of staining. Dots to
the left of an arbitrary diagonal (representing cells with
clustered EGFR) were quantified before and after
crosslinking cell surface α6β4 integrin.

Western Blotting
After cross-linking α6β4 on cells in suspension, cells were
exposed to EGF (10 ng/ml) or buffer alone at 37°C for
various time periods, then lysed on ice for 30 min with
lysis buffer containing 50 mM HEPES at pH 7.4, 150 mM
NaCl, 1% Triton X-100, 1 mM CaCl2, 1 mM MgCl2, 10%
glycerol, 100 mM NaF, 1 mM sodium orthovanadate, 10
mM sodium pyrophosphate, 1 mM PMSF, 10 μg/ml leu-
peptin, and 10 μg/ml aprotinin. Aliquots of lysates with
equal amounts of total protein were separated on 7.5%
SDS-PAGE gels under reducing conditions and transferred
to nitrocellulose filters. Filters were probed with rabbit
polyclonal antibodies to phospho-Akt (Ser473) (Cell Sig-
naling) and phospho-Erk1,2 (Thr202/Tyr204) (Cell Sign-
aling), and membranes were subsequently stripped and
probed for total Akt and total Erk1,2. Alternatively, cells
were treated with anti-β4 on ice for 40 min and applied to
plates coated with anti-mouse IgG + heparin-binding
EGF-like growth factor (HB-EGF) or rabbit IgG control +
HB-EGF for up to 1 hr, and Western blots were similarly
probed. After incubating the filters with horseradish per-
oxidase-linked streptavidin (Vector), proteins were
detected with the ECL Western Blotting Detection Rea-
gents (Amersham) for various time periods.

Rho Pull-down Assay
To determine whether integrin-induced EGFR clustering
augments Rho activation in response to EGF, α6β4 was
crosslinked on cells in suspension, and the cells were
treated with EGF (10 ng/ml) or buffer alone for 15 min or
30 min. A Rho pull-down assay with GST-tagged Rho-
binding domain of Rhotekin on glutathione-agarose
beads was performed (Upstate Cell Signaling Solutions,
Temecula, CA), and a Western blot was probed with anti-
Rho. MDA-MB-231 cell extract loaded with 100 μM
GTPγS for 30 min at 30°C was used as a positive control,
and the same extract loaded with 1 mM GDP was used as
a negative control.

Results
The effect of α6β4 integrin crosslinking on cell surface
EGFR distribution in MDA-MB-231 breast carcinoma cells
was assessed by immunofluorescence microscopy after
incubating the cells first with mouse monoclonal anti-β4
on ice, followed by either rabbit IgG control or rabbit anti-
mouse IgG at 37°C to crosslink α6β4. Crosslinking the
integrin on nonadherent cells was sufficient to induce
cell-surface clustering of not only α6β4 (Figure 1A and
1B) but also EGFR. Integrin-induced EGFR clustering was
observed minimally after 5 min of integrin crosslinking
(Figure 1C and 1D), and the extent of EGFR clustering
increased at 15 min (Figure 1E and 1F).

Induced EGFR clustering was quantified by multispectral
imaging flow cytometry using the ImageStream™. Incuba-
tion with integrin crosslinking antibodies or control anti-
bodies was performed as before, and cells were stained
with FITC-rat anti-EGFR on ice and fixed in paraformalde-
hyde. Cells were then permeabilized, stained with the
nuclear stain DRAQ5, and run on the ImageStream™.
Using the ImageStream's IDEAS software, bivariate dot
plots of "Area Threshold 30%" on the X axis and "Bright
Detail Intensity-FITC" representing the degree of punctu-
ate staining on the Y axis were produced (see Materials
and Methods). Whereas only 10% of the baseline tumor
cell population fell within the region on the bivariate dot
plot to the left of the diagonal, representing cells with
clustered EGFR above an arbitrarily defined threshold
(Figure 2A), the proportion increased to 65% after
crosslinking α6β4 integrin (Figure 2B). Representative
images from gated cells to the right of the diagonal show
a diffuse cell surface distribution of EGFR (Figure 2C–E),
whereas representative images of gated cells to the left of
the diagonal show a clustered distribution of EGFR (Fig-
ure 2F–H).

To determine whether integrin-induced clustering of
EGFR affects tumor cell response to EGF, MDA-MB-231
cells were exposed to mouse monoclonal anti-β4 on ice,
followed by control rabbit IgG or rabbit anti-mouse IgG
to induce integrin and EGFR clustering, in the presence or
absence of EGF (10 ng/ml). Western blots were prepared
from cell lysates and probed for phospho-Akt and phos-
pho-Erk1,2, then stripped, and probed again for total Akt
and total Erk1,2 (Figure 3A). In suspended cells, there was
only a very minimal, if any, effect of EGFR clustering on
EGF-stimulated Akt and Erk1,2 phosphorylation.
Crosslinking α6β4 by itself resulted in only a very small to
equivocal increase in phospho-Akt (lane 2). EGF in the
absence of α6β4 crosslinking did stimulate Akt phospho-
rylation (lane 3), but the effect appeared to be abrogated
in the presence of α6β4 crosslinking (lane 4). Crosslinking
α6β4 produced a small increase in phospho-Erk1,2 (lane
2), as did the addition of EGF (lane 3), but the two
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Induced clustering of α6β4 (B) and EGFR (D, F)Figure 1
Induced clustering of α6β4 (B) and EGFR (D, F). MDA-MB-231 cells were exposed to anti-β4 on ice, followed by con-
trol rabbit IgG (A, C, E) or rabbit anti-mouse IgG (B, D, F) at 37°C to crosslink α6β4 for 30 min (A, B), 5 min (C, D), or 15 min 
(E, F). Cells were stained with either FITC-labeled anti-mouse IgG to detect β4 (A, B) or FITC-labeled anti-EGFR (C-F).
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Bivariate dot plots of "Area Threshold 30%" representing diffuseness of staining on the X axis and "Bright Detail Intensity-FITC" representing the degree of punctuate staining on the Y axis (see Materials and Methods)Figure 2
Bivariate dot plots of "Area Threshold 30%" representing diffuseness of staining on the X axis and "Bright 
Detail Intensity-FITC" representing the degree of punctuate staining on the Y axis (see Materials and Meth-
ods). MDA-MB-231 cells were exposed to anti-β4 on ice, followed by control rabbit IgG (A) or rabbit anti-mouse IgG (B) at 
37°C to crosslink α6β4 for 30 min. Cells were stained with FITC-labeled anti-EGFR and nuclear stain DRAQ5 and run on the 
ImageStream™. Representative brightfield (BF) and fluorescent images from gated cells to the right of the diagonal in B show a 
diffuse cell surface distribution of EGFR (C-E), whereas representative images of gated cells to the left of the diagonal in B show 
a clustered distribution of EGFR (F-H).
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together did not clearly have more than an additive effect
(lane 4).

Alternatively, to evaluate effects on adherent cells, the
cells were exposed to mouse monoclonal anti-β4 in sus-
pension on ice, then added to plates coated with control
rabbit IgG or rabbit anti-mouse IgG to crosslink α6β4,
with or without a substrate of HB-EGF (Figure 3B).
Crosslinking α6β4 in adherent cells in the absence of HB-
EGF produced a slight increase in phosphorylation of
Erk1,2 at 1 hr (lane 10). However, crosslinking the
integrin in adherent cells did not appear to enhance phos-
phorylation of either Akt or Erk1,2 in response to HB-
EGF.

In contrast, crosslinking α6β4 integrin on cells in suspen-
sion to induce cell surface clustering of EGFR had a
marked effect on Rho activation in response to EGF (Fig-
ure 4). EGF in the absence of α6β4 crosslinking did not
induce Rho activation in suspended MDA-MB-231 cells at
15 and 30 min (lanes 5 and 9), and crosslinking α6β4 in
the absence of EGF even produced a slight decrease in acti-
vated Rho after 15 min and 30 min of integrin crosslink-
ing (lanes 4 and 8). However, crosslinking α6β4 in the
presence of EGF produced a marked effect on Rho activa-
tion after 15 and 30 min (lanes 6 and 10).

Discussion
We observed that crosslinking α6β4 integrin in breast car-
cinoma cells in suspension induced cell surface clustering
of EGFR. Under these conditions, although no significant

The effect of α6β4 crosslinking on EGFR signaling following treatment with EGF (A) or HB-EGF (B)Figure 3
The effect of α6β4 crosslinking on EGFR signaling following treatment with EGF (A) or HB-EGF (B). A) MDA-
MB-231 cells in suspension were exposed to anti-β4 on ice, followed by control rabbit IgG (lanes 1 and 3) or rabbit anti-mouse 
IgG (lanes 2 and 4) at 37°C for 30 min to crosslink α6β4, with (lanes 3 and 4) or without (lanes 1 and 2) subsequent addition 
of EGF (10 ng/ml) for 5 min. B) MDA-MB-231 cells were exposed to anti-β4 on ice, then added to plates coated with control 
rabbit IgG (lanes 1, 3, 5, 7, 9 and 11) or rabbit anti-mouse IgG (lanes 2, 4, 6, 8, 10, or 12) at 37°C to crosslink α6β4, in the 
presence (lanes 3, 4, 7, 8, 11, and 12) or absence(lanes 1, 2, 5, 6, 9, and 10) of simultaneous coating with HB-EGF. Western 
blots prepared from cell lysates were probed for phospho-Akt and phospho-Erk1,2, then stripped and probed for total Akt and 
total Erk1,2.
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change in EGF-stimulated signaling to Akt or Erk1,2 was
observed, a marked increase in Rho activation occurred in
response to EGF. The association between α6β4-induced
EGFR clustering and a selective increase in EGFR signaling
to Rho in response to EGF in nonadherent tumor cells
suggests that in certain conditions, α6β4 integrin regula-
tion of EGFR can selectively augment some aspects of
EGFR signaling without stimulating others. We hypothe-
size that tumor cells in nonadherent or less adherent con-
ditions, such as circulating or migrating tumor cells,
might selectively regulate EGFR to enhance chemotaxis or
motility at the expense of growth and survival signaling.

As adhesion receptors for extracellular matrix and regula-
tors of intracellular signaling, integrins provide an impor-
tant link between the cell and its microenvironment [1-3].
By modulating intracellular signaling pathways, integrins
help to maintain cellular functions appropriate for the

cell's particular location. The α6β4 integrin is a receptor
for most laminins, including laminin-5, a component of
the epithelial cell basement membrane[21]. It is normally
expressed in the basal aspect of epithelial cells, where it
functions as a component of hemidesmosomes[21,22]. In
breast epithelium, α6β4 is principally expressed in the
myoepithelium, which comprises the outer cell layer in
contact with surrounding stroma[10].

Although generally quiescent, myoepithelial cells are
known to proliferative and move through the adjacent
stroma in some physiologic conditions[23]. Breast can-
cers that overexpress α6β4 may similarly have an
increased capacity for stromal invasion. A role for α6β4 in
tumor cell invasion is supported by in-vitro data showing
increased invasiveness of breast carcinoma cell lines (orig-
inally α6β4 negative) following transfection with full-
length β4[24]. The β4 subunit introduced into these cells

The effect of α6β4 crosslinking on EGF-mediated Rho activationFigure 4
The effect of α6β4 crosslinking on EGF-mediated Rho activation. MDA-MB-231 cells were incubated with anti-β4 on 
ice, followed by control rabbit IgG (lanes 3, 5, 7 and 9) or rabbit anti-mouse IgG (lanes 4, 6, 8, and 10) at 37°C to crosslink 
α6β4 for 15 min (lanes 3–6) or 30 min (lanes 7–10) in the presence (lanes 5, 6, 9, and 10) or absence (lanes 3, 4, 7, and 8) of 
EGF (10 ng/ml). Rho activation was assayed using a Rho pull-down assay with GST-tagged Rhotekin Rho-binding domain on glu-
tathione-agarose beads. Negative and positive controls were MDA-MB-231 cell extracts loaded for 30 min at 30°C with 1 mM 
GDP (lane 1) or 100 μM GTPγS (lane 2), respectively.
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preferentially combines with the α6 subunit of endog-
enous α6β1, resulting in overexpression of α6β4[24].

Tumor cell invasion involves the formation of actin-con-
taining motility structures such as lamellipodia and filo-
podia. It has been shown that EGF stimulation produces a
redistribution of α6β4 integrin from hemidesmosomes to
the lamellipodia and filopodia of invasive tumor
cells[12,25-28]. The formation of these structures is
dependent on PI3K[12,25,27]. Factors regulating the tran-
sition from adherent cells to invasive motile cells are
poorly understood, but α6β4-mediated activation of the
Ras-MAP kinase pathway may be important, as subse-
quent activation of myosin light chain kinase[29] leads to
increased ATPase activity and contractility, which are fun-
damental to locomotion.

Multiple studies have shown significant crosstalk between
α6β4 integrin and EGFR in carcinoma cells [12-14]. Fol-

lowing stimulation with EGF, the β4 integrin subunit
becomes tyrosine phosphorylated [14,30], and α6β4 is
mobilized from hemidesmosomes to actin-rich protru-
sions at the leading edge of motile cells[12]. At the leading
edge, α6β4 signals through Rho to promote tumor cell
migration, perhaps in part by activating Rho to stimulate
acto-myosin contraction, necessary for generating traction
in migrating cells[12,25,27]. EGFR has been shown to co-
immunoprecipitate with α6β4[13], and EGFR is co-
expressed with α6β4 in breast cancers that tend to metas-
tasize to the lungs[11,31].

In a recent study, Lu et al. found that a 65-gene "β4 signa-
ture" derived from the top 0.1% of genes that correlated
with β4 integrin subunit gene expression was associated
with increased tumor recurrence and decreased patient
survival when applied to four independent data sets [32].
The investigators hypothesized that a group of genes
involved in α6β4 signaling was more likely to be associ-

Schematic diagram illustrating hypothetical role of integrin-induced EGFR clustering in tumor progressionFigure 5
Schematic diagram illustrating hypothetical role of integrin-induced EGFR clustering in tumor progression. 
Circulating tumor cells might bind endothelial hCLCA2, crosslinking α6β4 and inducing EGFR clustering. Integrin-induced 
EGFR clustering enhances EGF-mediated activation of Rho, which is known to be involved in processes leading to cell motility 
and invasion. Clustered EGFR might favor directed motility towards EGF in the adjacent tissue.
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ated with an adverse clinical outcome than α6β4 expres-
sion alone. In their study, EGFR was one of the top 10
genes associated with β4 integrin subunit gene expression.

Both α6β4 and EGFR are overexpressed in the basal sub-
type of breast cancers[11]. Recognized histologic variants
of this basal subtype have a particular tendency to pro-
duce pulmonary metastases and cause early death [33-
36]. MDA-MB-231 breast carcinoma cells express α6β4
and EGFR and have been shown to produce pulmonary
metastases in nude mice[37]. The mechanism of α6β4-
mediated pulmonary metastasis appears to involve recog-
nition of hCLCA2, a β4-binding protein expressed in lung
endothelial cells[38] that appears to serve as a specific vas-
cular address for circulating tumor cells(12). If α6β4 func-
tions, in part, to recognize this vascular address, EGFR
may help to mediate the translocation of tumor cells into
the adjacent tissue, as EGF has been shown to be a potent
chemotactic factor for breast carcinoma cells [39,40].

We previously observed that antibody-mediated
crosslinking of α6β4 in suspended MDA-MB-231 cells
was sufficient to induce cell surface α6β4 clustering[20].
Crosslinking antibodies provide greater specificity than
most integrin ligands[5], which typically interact with
multiple different receptors. Clustering was significantly
blocked when integrin crosslinking was performed in the
presence of PI3K inhibitors, indicating that the clustering
occurred through a PI3K-dependent mechanism[20]. In
this report, we demonstrate that α6β4 crosslinking in
nonadherent cells results in cell surface clustering of
EGFR, selectively augmenting EGFR-mediated activation
of Rho in response to EGF. As α6β4 signaling through Rho
promotes tumor cell motility, a selective augmentation of
EGFR-mediated Rho activation might further promote
tumor cell migration. It is interesting that, although
growth factor receptor signaling generally requires sub-
strate adherence, the augmented response to EGF that we
observed after crosslinking α6β4 and inducing EGFR clus-
tering was observed in nonadherent cells. Augmented EGF
signaling to Rho mediated by clustered EGFR may have
relevance to chemotaxis and directed motility of nonad-
herent (circulating) or less adherent (migrating) tumor
cells.

We hypothesize that α6β4 integrin clustering at the lead-
ing edge of a tumor might lead to a redistribution and
concentration of EGFR at the invading front, thereby pro-
moting the motility of tumor cells towards an EGF gradi-
ent. Laminin-5, a principal matrix ligand for α6β4
integrin, is secreted and deposited in the connective tis-
sues surrounding invasive carcinomas, facilitating the
crosslinking of α6β4 at the invading front[41]. Alterna-
tively, circulating tumor cells might bind endothelial
hCLCA2, crosslinking α6β4 and inducing EGFR cluster-

ing. After homing to the lung vasculature, therefore,
tumor cells with EGFR clustering might undergo an aug-
mented response to EGF, favoring directed motility
towards EGF in the adjacent lung tissue (Figure 5).

Conclusion
Crosslinking α6β4 integrin in breast carcinoma cells
induces EGFR clustering and preferentially promotes Rho
activation in response to EGF, with only minimal effects
on Akt and Erk 1,2 phosphorylation. This integrin-medi-
ated selective augmentation of EGFR signaling might pro-
mote tumor cell cytoskeletal rearrangements important
for tumor progression.
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