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Abstract

Background: Acting as inflammatory mediators, tumor oncogenes or suppressors, microRNAs are involved in cell
survival, death, epithelial–mesenchymal transition and metastasis, etc. Investigating the communication between
microRNAs and tumorigenesis is critical to our understanding of the pathogenesis of multiple disease states.

Main body: Currently, colorectal carcinoma (CRC), one of the most common malignancies worldwide, has a poor
prognosis due to lack of an effective therapeutic option. Increasing evidence has identified altered profiles and
regulatory potential of microRNAs in conditions related to environmentally-caused colorectal inflammation and
colitis-associated cancer. Many studies have shed light on a more thorough understanding of the function and
distribution of microRNAs in CRC initiation and emergence. However, the molecular mechanisms by which
microRNAs modulate cellular processes still need to be further elucidated and may offer a foundation for evaluating
microRNA-based therapeutic potential for CRC in both animal models and clinical trials.

Conclusion: In this review, the roles and mechanisms of microRNAs involved in CRC from pathogenesis to therapy
are summarized and discussed, which may provide more useful hints for CRC prevention and therapy.
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Introduction
MicroRNAs (miRNAs) are endogenously expressed non-
coding RNAs, 18–25 nucleotides in length, which silence
target mRNAs by mediating translational repression [1–4].
The miRNA biogenesis pathway includes multiple steps.
Initially, pri-miRNAs (primary-miRNAs) containing a hair-
pin structure are transcribed by the RNA polymerase II
which is responsible for mRNA expression. These pri-
miRNAs are then cleaved into 60–70 base pairs long pre-
cursor miRNAs (pre-miRNAs) by the RNase III Drosha.
Then, the pre-miRNAs are transported from the nucleus to
the cytoplasm by Exportin-5/RanGTP and further proc-
essed by Dicer to form a short double-stranded miRNA du-
plex. Generally, only one strand of this miRNA duplex is
degraded, while the other strand is released as a mature
miRNA. Subsequently, this miRNA is integrated into RISC
(RNA-induced Silencing Complex) to trigger degradation
and translational repression of the target mRNA [5, 6].

MiRNAs play a key role in many crucial biological pro-
cesses such as cell proliferation, cell differentiation and
apoptosis [7–10]. In the past 20 years, more evidence has
emerged showing that miRNAs are also involved in cancer
development. Aberrant expression of miRNAs is detected
in various types of cancer including breast cancer, lung
cancer, pancreatic cancer, colorectal carcinoma and ovar-
ian cancer [11–14]. MiRNAs regulate expression of many
known oncogenes and tumor suppressor genes in cancer
pathogenesis [15, 16]. Studying the specific function of
miRNAs in human carcinogenesis will help to identify
new targets for cancer research, diagnosis and treatment.
CRC is the second most common malignancy in

women, and the third in men, worldwide. More than 1
million new cancer-related cases and 600,000 deaths are
expected to occur each year [17, 18]. Many risk factors as-
sociated with CRC include excessive alcohol use, obesity,
older age, some genetic mutations and chronic intestinal
inflammation. Generally, CRC consists of inflammatory
colitis-associated cancer (CAC) and non-inflammatory ad-
enomatous CRC. Inflammatory bowel disease (IBD) is al-
ways associated with CAC and about 20 % IBD patients
develop CAC 30 years after the onset of disease [19]. Like
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other types of cancer, colorectal carcinogenesis is a multi-
step and complex process including tumor initiation, pro-
motion and metastasis. Recent studies have revealed that
the pathogenic mechanisms of CRC depend on several sig-
naling pathways, including the p53, PI3K, RAS, MAPK,
EMT transcription factors, and Wnt/β-catenin pathways.
Furthermore, it has become increasingly clear that miRNAs
regulate these pathways involved in the CRC pathogenesis
(Table 1). For example, reduced expression of miR-143 con-
tributes to CRC development through derepressing KRAS
expression [20]. MiR-133a regulates CRC by inhibiting
MAPK pathways [21].
To summarize the roles and mechanisms of miRNAs in-

volved in CRC, it is important to be pointed out that CRC
is a heterogeneous cancer including both colon cancer
and rectal cancer while numerous literatures misused the
term CRC in many cases [22]. From the clinical point of
view, colon cancer and rectal cancer should be treated
separately. Unfortunately, the majority of previous studies
failed to separate these two entities. Here we distinguish
the respective miRNAs in these two cancers based on the
related references although very limited data about miR-
NAs in the rectal cancer are available [23–29].

Role of miRNAs in CRC
Inflammation
Various environmental causes contribute to colorectal
inflammation, including microbial infections, metabolic
disorders, toxins and dietary factors [30–32]. Growing
evidence indicates that a plethora of miRNAs will target
inflammatory signaling molecules to induce or inhibit

chronic inflammation and inflammation-related cancer
(Fig. 1) [19, 33].
The nuclear transcription factor, NF-κB and signal trans-

ducer and activator of transcription 3 (STAT3) maintain
constitutive activation of pro-inflammatory pathways as es-
sential components in the development of CAC tumors
[34–36]. Targeting negative regulators of NF-κB signaling
through miRNAs, e.g., miR-324-5p-CUEDC2, miR-21-
PTEN, miR-181b-1-CYLD, miR-146-TRAF and miR-126-
IKBa, result in inflammation hyperresponsiveness and
tumorigenesis. MiR-324-5p, a new CRC-associated miRNA,
regulates CUEDC2 levels during monocyte to macrophage
differentiation [37]. Elevation of miR-324-5p levels results
in decreased expression of CUEDC2 in macrophages infil-
trated in mouse colon tumors and isolated from fresh colon
tumor samples, which produces excess tumor-promoting
cytokines and promotes pathogenic progress of CRC. The
function of STAT3 in cellular transformation involves the
direct activation of miR-21 and miR-181b-1 transcription
by binding multiple sites in the miRNA promoter [38].
Overexpression of miR-21 or miR-181b-1 is sufficient to
induce a stable transformed state by directly targeting
PTEN and CYLD expression, respectively, which in
turn activates NF-κB pathway. MiRNAs targeting
NOD2, such as miR-122, miR-192, miR-495, and miR-
671 decrease the pro-inflammatory cytokines by
regulating the activation of NF-κB pathway [39, 40].
However, miR-122 is significantly increased with the
stimulation of TNF-α and induces an increase in the
intestinal epithelial tight junction permeability in vitro
and in vivo [41]. Thus, the controversial role of miR-

Table 1 miRNA involvement in CRC development, diagnosis and therapy

miRNAs Function References

miR-324-5p,miR-21,miR-181b-1,miR-146, Involved in regulation of NF-KB signaling in
inflammation-related CRC

[30–50]

miR-126,miR-122,miR-192,miR-495,miR-671,

miR-106b,miR-30c,miR-130a

miR-16,miR-218,miR-34a Involved in the cell proliferation and survival in CRC development [51–59]

miR-34a,miR-148,miR-339-5p,miR-504,miR-23a,miR-129,
miR-365,miR-345

Involved in the cell death in CRC development [62–74]

miR-29a,miR-29b,miR-29c,miR-200a,miR-200b,miR-200c,miR-141,
miR-429,miR-132,miR-192,

Involved in the EMT in CRC development [79–95]

miR-335,miR-34a

miR-214,miR-155,miR-483,miR-133a,miR-145, Involved in the tumor invasion and metastasis in CRC development [96–112]

miR-21,miR-92a,miR-17-5p,miR-221,miR-499-5p,miR-182

miR-92a-3p,miR-29a,miR-17-3p,miR-221, Involved in the clinical diagnosis of CRC [123–129]

miR-19a-3p,miR-223-3p,miR-422a,miR-143,

miR-145,miR-21,miR-106a,miR-92a, miR-144

miR-135b,miR-27b,miR-4689,miR-483-5p, Involved in the therapy of CRC [131–152]

miR-551a,miR-34a,miR-22,miR129,miR-365,

miR-143,miR-21,miR-23a,miR-124
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122 in the development of IBD should be further
explored.
In accordance with previous works, miR-21 levels were

often higher in inflammation and CRC than that of normal
tissue [42–44]. MiR-21 is upregulated in IBD and acute in-
testinal obstruction (AIO) patients. In miR-21 knockout
mice suffering from dextran sulfate sodium salt (DSS)-in-
duced fatal colitis, the survival rate is improved and the
ameliorative inflammatory response better protects against
inflammation and tissue injury [45]. Also, miR-21 deletion
exacerbates CD4+ T-cell-mediated models of acute and
chronic DSS and TNBS colitis. In addition, some evidence
indicates that miR-21 plays a pro-inflammatory role in IBD
by impairing intestinal barrier function [46]. The increase
in intestinal permeability and epithelial cells apoptosis in-
duced by DSS are attenuated in miR-21 knockout mice.
Autophagy, involved in recycling cellular organelles for

maintaining homeostasis, is considered to clear intracellu-
lar microorganisms [47]. The impairment of autophagy re-
sults in intestinal epithelial dysfunction and contributes to
IBD pathogenesis [48]. Inflamed mucosae from subjects
with active CD have higher miR-106b and lower
ATG16L1 levels indicating an altered antibacterial activity
that is mediated by miR-106b which subsequently affects
the outcome of intestinal inflammation [49]. MiR-106b
may target ATG16L1 and reduce the level of autophagy in
HCT116 cells and inhibit autophagy–dependent clearance
of CD-associated adherent-invasive Escherichia coli

(AIEC) in epithelial cells. Another study showed the ex-
pression of miR-30c and miR-130a were inversely corre-
lated with ATG5 and ATG16L1 in intestinal epithelial
cells. The inhibition of the activity of autophagy by miR-
NAs promotes the persistence of AIEC and the produc-
tion of pro-inflammatory cytokines [50].

Cell survival
Cellular proliferation and survival have crucial roles in
the process of carcinogenesis. Abnormal expression of
miRNAs regulates CRC development via targeting sev-
eral cell cycle regulators, including survivin and
cyclins. Survivin is a direct target of miR-16 [51]. MiR-
16 represses CRC cell growth and induces cell apop-
tosis by regulating the p53/survivin signaling pathway.
These observations suggest that survivin is mainly
expressed during the G2/M phase of the cell cycle and
therefore inhibiting survivin expression can lead to de-
fective cytokinesis and cell cycle arrest at G2/M phase
[52]. Among the other miRNAs that control cell cycle
progression, miR-218 induces cell cycle arrest in the
G2 phase of colon cancer cells by suppressing cyclin-
dependent kinase4 (CDK4) and upregulating the level
of p53 [53]. A recent study conducted by Cai et al.
demonstrated that miR-144 inhibited cell proliferation
in rectal cancer cell line SW137 and SW1463 by down-
regulating Rock-1. However, the aberrant expression of
miR-144 is only present in the rectal cancer but not in
the colon cancer [54].
The role of miR-34a to CRC development was

already clarified with miR-34a inhibiting colon cancer
cell proliferation by downregulating the E2F pathway
and resulting in accumulation of p53 and p21 [55]. Re-
cent studies have revealed that PAR2 promotes cancer
cell proliferation through the activation of EGFR,
MAPK and other survival signals and promotes the ac-
cumulation of Cyclin D1 which plays important roles
in tumorigenesis [56, 57]. Further investigations show
that miR-34a mediated PAR2-induced proliferation and
inhibition of miR-34a partially restores the activation
of Cyclin D1 induced by PAR2 deficiency. Colon cancer
stem cells (CCSCs) retain the self-renewal capacity and
less limiting proliferative potential while being sub-
stantially resistant to most conventional anticancer
therapies [58]. Moreover, various conserved pathways,
such as Notch and Wnt, as a complex crosstalk network
between CCSCs and microenvironment, are regulated in
CRC. MiR-34a in the regulation of CCSCs self renewal is
involved in the suppression of Notch signaling, which
contributes to asymmetric cell division of stem cells [59].
Altogether, this finding reveals a unique miR-34a-
regulated mechanism of the toggle switch necessary for
Notch bimodality that converts noisy signals into unam-
biguous states for robust cell-fate decisions in CCSCs.

Fig. 1 MiRNAs in inflammation-related colorectal carcinoma. NF-KB
signaling maintained constitutive activation of pro-inflammatory
pathways as essential components during carcinogenesis. Many miRNAs
target NF-κB signaling molecules to inhibit (miR-324-5p, miR-21, miR-
181b-1, miR-126) or promote (miR-146, miR-122, miR-192, miR-495, miR-
671) inflammatory response in the development of colorectal carcinoma
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Cell death
The p53 protein is a transcription factor that is activated
in response to cellular stresses to inhibit cell proliferation
and stimulate cell death [60]. Disruption of the p53 path-
way can promote tumorigenesis [61]. MiR-34a mediated
inhibition of SIRT1 expression leads to apoptosis due to
the increase of acetylated p53 formed a positive feedback
loop of miR-34a and p53 [62]. Moreover, transient intro-
duction of miR-34a into SW480 cells contributes to a se-
vere decrease in migration and invasion by upregulating
acetylated p53 and p21 [63]. It also suggests that an over-
expression of miR-34a induces cell growth arrest and
senescence-like phenotypes through upregulating the p53
pathway [55]. The increase of p55PIK in CRC can acceler-
ate cell cycle progression by interacting with retinoblast-
oma protein or proliferation cell nuclear antigen [64, 65].
The introduced miR-148b, by suppressing p55PIK abol-
ishes cell proliferation and cell cycle progression in CRC
[66]. Furthermore, p53 directly activates the transcription
of miR-148 which negatively regulates p55PIK expression.
A reduction of miR-339-5p expression has been reported
in colorectal cancer and is associated with poor prognosis
in cancer patients [67, 68]. MDM2, a key negative regula-
tor of p53 is repressed by miR-339-5p [69]. After down-
regulation of MDM2 by miR-339-5p, the growth of
colorectal xenograft tumors is inhibited in a p53-
dependent manner. The function of miR-504, that is inhi-
biting p53 expression, reduces cell cycle arrest and
promotes tumorigenicity in vivo [70].
Apoptosis is also controlled by various networks of

miRNAs. Several researches have described that proa-
poptotic protein can be suppressed by the overexpres-
sion of miRNAs. For example, the human homolog of
the Caenorhabditis elegans cell death protein CED-4,

APAF-1, is controlled by miR-23a to repress the activity
of caspases-3,-7 and-9 [71]. The increased miR-23a anti-
sense can induce the apoptosis of HCT116 and HT29
cell lines, under the 5-FU treatment. It is also found that
miR-23a is up-regulated in 5-FU-treated HC.21 and
C22.20 cells [72]. Conversely, miR-129 can trigger apop-
tosis by suppressing Bcl2, an anti-apoptotic protein [73].
The Intrinsic apoptotic pathway is activated by
cleavage of caspae-9 and-3. Besides, the transfection
of miR-129 in RKO cells and HCT116 cells causes
cell cycle arrest in G1 or G2 phase. In human CRC
tissues, miR-129 is significantly decreased in patients
with stage 3 and stage 4 tumors. The other miRNAs,
such as miR-365 and miR-345, also affect the antitu-
mor capability, respectively by targeting the anti-
apoptosis protein of Bcl2 and Bcl2-associated atha-
nogene 3 (BAG3) [74].

MiRNAs and EMT
Epithelial-to-mesenchymal transition (EMT) is involved
in multiple biological processes including gastrulation,
neural tube formation, tissue regeneration, and organ fi-
brosis [75]. EMT is an important factor in tumor metas-
tasis undergoing a number of biochemical changes,
including the decrease in epithelial cell-surface markers
and cytoskeleton components, and the increase in mes-
enchymal markers and specific transcription factors
[76–78]. Given miRNAs-regulated EMT via targeting E-
cadherin and other molecules, it is likely that miRNAs
play a crucial role in colorectal carcinogenesis (Fig. 2).
The highly conserved pathway of Wnt/β–catenin signal-
ing is constitutively activated in CRC. Wnt signaling is
regulated by abnormal β–catenin activation associated
with E-cadherin expression [79]. Also, miR-101, miR-

Fig. 2 Regulation of epithelial mesenchymal transition (EMT) in colorectal carcinogenesis by miRNAs. Many miRNAs, such as miR-29b, miR-29c,
miR-200c, miR-34a, regulate EMT by suppressing EMT-related transcription factors and signaling pathways. The other miRNAs, such as miR-29a,
promote EMT in colorectal carcinogenesis
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224 and miR-574-5p can affect CRC malignant features
by regulating Wnt/β–catenin signaling [80–82].
Recent studies have demonstrated that the members

of the miR-29 family (miR-29a, miR-29b and miR-29c)
are involved in the tumor progression by regulating
EMT. MiR-29c is dramatically downregulated in CRC
tissues and suppresses EMT in vitro, hence it has a role
in cell migration and invasion by negatively regulating
the Wnt/β-catenin signaling pathway [83]. Similarly,
miR-29b suppresses EMT and plays an important role in
cell migration and invasion by negatively regulating the
MAPK/ERK and PI3K/AKT pathways [84]. However,
overexpression of miR-29a promotes cell invasion by
inhibiting E-cadherin expression [85].
The importance of the miR-200 family (miR-200a,

miR-200b, miR-200c, miR-141 and miR-429) for EMT is
not limited to colon carcinogenesis, because it has been
widely demonstrated in various tumors [86, 87]. Indeed,
restoration of miR-200c inhibits migration and invasion
in various CRC cell lines via directly targeting ZEB1, the
transcriptional repressor of E-cadherin [88, 89]. There is
another evidence that miR-429 reverses TGF-β-induced
EMT by interfering with Onecut2 in SW620 and SW480
cells [90]. In addition, ZEB2 as a direct target of miR-
132, miR-192 and miR-335 has been shown to regulate
metastasis [91–93]. A significant decrease of these three
miRNAs is associated with distant metastasis and ad-
vanced stage tumors. A few researches have indicated
that miR-34a inhibits metastasis formation in CRC via
EMT-regulating network in SNAIL/ZNF81 and IL6R/
STAT3 [94, 95]. These studies implicate the components
of miRNA-regulating networks in EMT with traits asso-
ciated with metastasis formation in CRC.

Invasion and metastasis
Over 70 % of CRC patients harboring liver metastasis die
due to the lack of effective therapeutics. Some miRNAs
have been identified to suppress liver metastatic
colonization in CRC patients. Nude mice in which ectopic
miR-214 is expressed in CRC cells has a reduced amount
of liver metastases, supporting the importance of intracel-
lular dynamic regulation [96]. However, another crucial
factor for metastasis is based on extracellular metabolic
energetic [97]. Creatine kinase Brain (CKB) in liver
metastatic cancer cells is released to the extracellular
microenvironment converting ATP and creatine into
phosphocreatine, which is imported into cancer cells to
counteract hypoxic response. Both miR-155 and miR-483
targeting CKB, as endogenous suppressors of colon cancer
metastasis decrease significantly the ATP levels, further to
impair intracellular energetic requirements to establish a
barrier to metastatic progression.
MiR-133a targets LASP1 and suppresses tumor growth

and metastasis by inhibiting phosphorylation of the

ERK/MEK signaling pathway [21]. Downregulation of
miR-145 is detected in primary CRC tumors compared
to normal tissues. MiR-145 inhibits proliferation, migra-
tion and invasion of SW620 and LoVo metastatic cell
lines by targeting fascin-1 and results in a decrease in
lung metastases in nude mice [98]. Conversely, another
study reveals that increased miR-145 could improve mi-
gration and invasion of HCT-8 cells and is associated
with lymph node metastasis of CRC while having no ef-
fect on proliferation [99]. In addition, miR-106b pro-
motes colorectal cancer cell migration and invasion by
directly targeting DLC1 [100].
PTEN, a tumor suppressor gene, is often lost in human

cancers and a common target of miR-21, miR-92a and
miR-17-5p in CRC [101–104]. The levels of miR-21 and
miR-92a significantly correlate with lymph node metasta-
sis and advanced TNM stage promoting cell migration via
mediating the PTEN-dependent PI3K/AKT signaling
pathway. Overexpression of miR-17-5p is responsible for
chemo-resistance in a cohort study of 295 patients. In
addition, miR-221, miR-145, miR-499-5p and miR-182 as
novel candidate prometastatic miRNAs are significantly
increased in lymph node-positive CRC patients by regulat-
ing suppressor genes (cyclin dependent kinase inhibitor,
RECK, FOXO4 and PDCD4) [105–109].
The small GTPases Cdc42 is essential for intestinal stem

cell division, survival and differentiation to maintain the
homeostasis [110]. In addition, Cdc42 is required higher
expression in human CRCs relating to poorly differenti-
ated CRCs [111]. In the APC-mutant or β-catenin-mutant
mice, Cdc42 reduction attenuates the tumorigenesis of
mutant intestinal cells [112]. In the same way, human
colorectal cancer with higher levels of Cdc42 activity was
especially sensitive to Cdc42 blockade. Expression of miR-
224 in CRC tissue specimens is significantly lower than in
nontumor tissues and paired adjacent samples [113]. Ec-
topic expression of miR-224 inhibits the migratory ability
of HCT116 cells, but the cell growth rate is less affected.
Increased miR-224 suppresses CRC cell migration by
diminishing Cdc42 and SMAD4 expressions and inhibit-
ing the formation of actin filaments.

MiRNAs as clinical diagnosis
Given the invasive nature and expensive cost of current
screening methods of CRC diagnosis including FOBT,
CEA and colonoscopy, it is difficult to detect CRC early
and efficiently [114–116]. As well as the importance of
miRNAs in the CRC development, miRNAs could serve
as potential biomarkers in CRC diagnosis based on the
high degree of stability, specificity and sensitivity of miR-
NAs in the blood and stool [117–122].
Since the first study in 2008 reported cancer-specific

miRNAs secreted in the blood among the different cancer
types, a spectrum of miRNAs associated with CRC in the
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blood have been identified including miR-92a, miR-29a,
miR-17-3p, miR-221, miR-19a-3p, miR-223-3p and miR-
422a et al. [123–126]. Although ribonuclease exists in
serum, circulating extracellular miRNAs are found in the
blood of healthy and cancer-related patients. Chen et al.
systematically identified specific patterns of serum miR-
NAs expression in several diseases including lung cancer,
CRC, and diabetes [123]. This study showed that 69 miR-
NAs were detected in the blood of CRC patients but not
in the normal serum. Unsuprisingly, many circulating
miRNAs such as miR-221 are also present in the blood of
lung cancer. Ng et al. discovered that both miR-92a and
miR-17-3p were significantly upregulated in the plasma of
CRC patients compared to normal plasma [125]. Zheng
et al. recently identified four miRNAs panels (miR-19a-3p,
miR-223-3p, miR-92a-3p and miR-422a) with a high diag-
nostic accuracy of CRC [124].
MiRNAs disturbance in the stool of CRC patients can

also offer a possibility for a stool-base miRNA test as a
common used method for CRC diagnosis. A number of
studies support this potential diagnostic method of CRC by
finding that many miRNAs are downregulated (miR-143,
miR-145) or overexpressed (miR-21, miR-106a, miR-92a,
miR-144) in the fecal samples of CRC patients compared to
healthy subjects [127–130]. It is of interest to note that
Wang et al. found that the expression level of miR-92a in
the stool of CRC patients was significantly higher than con-
trol, which was very similar to the dysregulated expression
of miR-92a in the blood [129]. Thus, miRNAs can be repre-
sented highly effective and accurate biomarkers for the
future CRC diagnosis.

MiRNA-based therapies
Potential application of targeting miRNAs is increasing
in gene therapy testing and preclinical studies. The de-
velopment of mouse models generates key biological and
molecular events based on human conditions. The effi-
cacy of miRNA-mediated CRC therapy is following
current technologies through various strategies.
Traditional preclinical mouse models of CRC induced by

colitis - associated cancer (CAC) have been established with
two drugs of azoxymethane (AOM) and DSS as the results
of mutations containing PI3K, K-ras and catenin pathways.
Another CDX2P-NLS Cre;Apc+/loxP (CPC; Apc) mouse
model harbors a truncating mutation affecting one APC al-
lele [131]. Compared to normal tissues, 57 miRNAs are ab-
errantly expressed in tumors in the AOM/DSS model while
35 miRNAs are aberrantly expressed in polyps from CPC;
Apc mice [132]. Among the overexpressed miRNAs, miR-
135b is consistently the highest expressed one in both
models. High miR-135b expression is correlated with tumor
stage and poor overall survival by analyzing 454 sporadic
and 31 IBD-associated CRCs. The use of locked nucleic
acid (LNA) anti-miR-135b induces apoptosis of SW480

cells while oligonucleotides specific silencing miR-135b ef-
fectively inhibited tumor proliferation in both mouse
models. A study by Wu et al. indicated miR-135b mimics-
transfected HCT-116 cells exhibited significantly increased
migratory ability, while inverse effects were detected with
the treatment of inhibitors [133]. Thus, miR-135b may be a
promising therapeutic target in CRC treatment with im-
proving specificity and limiting toxicity [134]. In addition to
miR-135b, other oncogeic miRNAs are also potential candi-
dates for CRC therapy. For example, successful knockdown
of miR-21 by using LNA in SW480 cells and antisense
oligonucleotide-based inhibition of miR-20a, miR-21,miR-
31, miR-95, miR-675 in SW480, SW620, and HCT116 cells
showed potential value for future translational treatment
[135–139]. Although LNA and antisense oligonucleotide
are efficient in blocking oncogenic miRNA, some novel ap-
proaches like miRNA sponge, miRNA masking and small
molecule inhibitors are emerging. Jung and colleagues re-
cently reported the use of miRNA sponges in human breast
cancer cell lines [140]. They demonstrated a multi-potent
miRNA sponge that simultaneously inhibits four oncogenic
miRNAs including miR-21, miR-155,miR-221, miR-222.
The multi-potent miRNA sponge inhibit cancer cell migra-
tion partially through the upregulation of Foxo3a,PTEN.
Moreover they found that the antitumor function of the
multi-potent miRNA sponge is much stronger than single
miRNA targeting sponge and the four miRNAs used in this
study had oncogenic functions in CRC. Future utility of the
multi-potent miRNA sponge in the CRC treatment will be
a promising and effective strategy. Being different from
miRNA sponge,miRNA masking technology is developed
by Choi et al. [141]. It consists of single-stranded 2’-O-me-
thyl-modified antisense oligonucleotides that can fully bind
to the 3’UTR of the target mRNA. One of the advantage of
this technology is off-target effect can be significantly re-
duced which attracts the researchers’ attention in the CRC
treatment. The screen of small molecule inhibitors of
miRNA is being rapidly developed. Tripp et al. discovered
small molecule inhibitors of miR-122 could be applied in
the HCV therapy [142]. This novel approach combining
other conventional CRC cancer therapeutics will play im-
portant roles in the future.
Another strategy to provide preclinical tools is miRNA

restoration. Several miRNAs acting as tumor suppressors
are generally downregulated in tumors. It has been dem-
onstrated that the inhibition of tumor growth and angio-
genesis is detected in xenografts of miR-27b mimics [143].
The utility of miRNAs mimics will provide a great clinical
value for targeted therapies that identifies the cancer-
related regulators. PH sensitive systemic administration of
carbonate apatite nanoparticle-formulated miR-4689 re-
veals dramatically the inhibition of tumor growth in
mouse xenografts with decreasing MAPK/ERK and PI3K/
AKT signaling pathways [144]. In vitro colon cancer cells
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and in vivo mice bearing hepatic metastases models have
been employed to test the tumor suppressor activity of
miR-483-5p and miR-551a delivered by adeno-associated
viruses (AAV) [97]. MiR-34a−/− mice have displayed an
increased incidence and size of tumor with AOM/DSS
challenge [95]. The expression of miR-34a is inhibited by
specific antagomirs, a single strand RNA complementary
to the targeted miRNA, which enhances the invasion of
CRC cancer cells. However, ectopic expression of miR-34a
can prevent IL-6-indiced EMT and invasion in DLD-1
cells. Likewise, miR-143 was found to be dramatically
downregulated in the human CRC tissues as a tumor sup-
pressor miRNA. Ng et al. increased miR-143 expression
by transfection with miR-143 precursor in colon cancer
cells [145], and found that restoration of miR-143 not only
inhibited tumor cell growth but also affected malignant
transformation phenotypes. Nakagawa et al. reported the
increased expression level of miR-143 by α-mangostin in-
duced human colon cancer DLD-1 cell death [146]. Taken
together, restoring miRNA-based delivery systems as vi-
able paths clinically is able to control cancer progression
in cell tests and mouse models without any adverse
outcomes.
A major obstacle to successful treatment for cancer is re-

sistance to chemotherapy and radiation. Recently, miRNAs
are being investigated as a predictor or a therapeutic target
to improve the efficacy of 5-FU chemotherapy in CRC
treatment. Various studies have shown that treatment with
miR-22, miR-129, miR-365 and miR-143 increase sensitivity
to 5-FU treatment in vitro and in vivo [73, 74, 147, 148].
However, high expression of miR-21 significantly decreases
G2/M arrest and apoptosis after 5-FU treatment [137].
Silencing miR-21 inhibits cell proliferation and restores sen-
sitivity of chemotherapy in HT-29 cells [149]. Moreover,
miR-23a increases the chemoresistance to 5-FU in CRC
cells though targeting ABCF1 [150]. A miRNA array
screening revealed that miR-203 was significantly accumu-
lated in oxanliplatin-resistant CRC cell lines [151]. Oxali-
platin is known to induce cell cycle arrest and cell
apoptosis with a combination of therapeutic regimen for
patients with metastatic CRC. In addition, the greater sensi-
tivity to radiation is found in the treatment of miR-124
mimics to CRC cells and in the miR-124-overexpressed
cells among in vivo mouse xenografts [152]. Therefore, un-
derstanding the miRNA-regulating mechanisms of resist-
ance to chemotherapeutic agents would ultimately help us
in improving therapeutic outcomes and identifying new tar-
gets and drugs.

Conclusions
CRC is one of the most common malignancies in human.
For patients with advanced CRC, the optimal treatment
strategies currently depend on tumor staging and metasta-
sis to reduce the risk of recurrence [153]. Resectable CRC

is supported by combination with chemotherapy and non-
resectable CRC, the systemic therapy options involve in
palliative chemotherapy and monoclonal antibodies. How-
ever, more effective treatments with less cumulative tox-
icity and drug resistance are urgently needed.
The roles of miRNAs in tumor growth and the regula-

tion of tumor progress summarized here suggest miR-
NAs could be a potential means for diagnosis and
treatment of CRC as well as prognostic parameters for
CRC. Future investigations will highlight the disease-
specific or cell-specific expression patterns of miRNAs
in CRC, which will be helpful to identify novel potential
targets and improve our understanding of miRNA regu-
latory mechanisms. Moreover, extracellular miRNAs as-
sociated with cancer cells has recently emerged as new
topic to explore and will expand the knowledge of tumor
microenvironment modulation in CRC.
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