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PIG3 promotes NSCLC cell mitotic
progression and is associated with poor
prognosis of NSCLC patients
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Abstract

Background: Non-small cell lung cancer (NSCLC) is the most commonly diagnosed type of lung cancer that is
associated with poor prognosis. In this study we explored the potential role of p53-induced gene 3 (PIG3) in the
progression of NSCLC.

Methods: Immunohistochemistry was used to determine the expression levels of PIG3 in 201 NSCLC patients. We
performed in vitro studies and silenced endogenous PIG3 by using specific siRNAs that specific target PIG3.
Immunofluorescent staining was performed to determine the effect of PIG3 on mitotic progression in NSCLC cells.
The growth rates of microtubules were determined by microtubule nucleation analysis. Cell proliferation and
chemosensitivity were analyzed by CCK8 assays. Annexin V staining and β-galactosidase activity analysis were used
to evaluate PIG3 deficiency-related apoptosis and senescence, respectively.

Results: PIG3 expression levels negatively correlated with overall survival and disease-free survival of NSCLC
patients. Knock down of PIG3 resulted in repressed proliferation of NSCLC cells and increased aberrant mitosis,
which included misaligning and lagging chromosomes, and bi- or multi-nucleated giant cells. In addition, PIG3
contributed to mitotic spindle assembly by promoting microtubule growth. Furthermore, loss of PIG3 sensitized
NSCLC cells to docetaxel by enhancing docetaxel-induced apoptosis and senescence.

Conclusions: Our results indicate that PIG3 promotes NSCLC progression and therefore suggest that PIG3 may be a
potential prognostic biomarker and novel therapeutic target for the treatment of NSCLC.

Keywords: Non-small cell lung cancer (NSCLC), p53-induced gene 3 (PIG3), Mitotic progression, Microtubule
assembly, Chemoresistance

Background
Worldwide, lung cancer is the deadliest type of cancer
among both men and women [1, 2]. The most commonly
diagnosed type of lung cancer is non-small cell lung
cancer (NSCLC), which accounts for nearly 80% of lung
cancer-related mortalities [1]. Despite recent advances in

early diagnosis [3, 4], chemotherapy, and targeted bio-
logical molecular therapies [5, 6], the overall survival (OS)
rate of patients with NSCLC is still significantly lower
than that of many other solid tumors. Consequently, iden-
tifying novel biomarkers and elucidating the underlying
mechanisms, which promote malignant progression of
lung cancer, are desperately needed to improve lung
cancer outcomes and provide personalized treatment.
The p53-induced gene 3 (PIG3 or TP53I3) was initially

identified through serial analysis of p53-target genes,
which may be correlated with p53-mediated apoptosis
[7]. The PIG3 gene locates at chromosome 2p23.3 and
comprises 5 exons [8]. The promoter of the PIG3 gene
includes a polymorphie pentanucleotide microsatellite
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sequence ((TGYCC)n, Y = C or T) that is the p53-
binding cis-element and mediates p53-induced transacti-
vation of PIG3 [9]. (TGYCC)15 is the most common
wild-type allele which localizes at PIG3 promoter and
has been reported to be correlated with a decreased risk
of squamous cell carcinoma of the head and neck
(SCCHN) [10]. Given that the PIG3 protein shares high
sequence identity with NADH quinine oxidoreductase 1
(NQO1), it was implied that PIG3 may contribute to
p53-induced cell apoptosis by promoting the production
of reactive oxygen species (ROS) [7]. Consistent with
this hypothesis, Porte and colleagues further investigated
PIG3 3-D structure, substrate and cofactor specificity,
and determined that PIG3 exhibits a NADPH-dependent
reductase activity with orthoquinones [11]. PIG3 also
acts as a ROS generator through direct association with
and suppression of catalase in response to DNA damage
[12]. The same group revealed that PIG3 is a novel
regulator of DNA damage response [13]. Loss of PIG3
impairs recruitment of 53BP1, Mre11, Rad50, Nbs1
proteins to DNA break sites and attenuates DNA
damage-induced phosphorylation of H2AX, Chk2 and
Chk1 in response to UV treatment [13]. Our previous
study found that PIG3 could enhance DNA-PKcs
expression and contribute to Chk2, Chk1 phosphoryl-
ation after γ-ray exposure [14].
Given its established involvement in p53-induced

apoptosis and DNA damage response, it seems reason-
able to propose that PIG3 acts as a tumor suppressor to
prevent cancer development and progression. In a recent
study it was found that the tumor suppressor gene
BRCA1 promotes transcription of PIG3 by p53 and that
PIG3 expression status in breast cancer samples is posi-
tively correlated with OS rate of patients [15]. Research
from other groups has demonstrated that PIG3 inhibits
HIF-1α expression in renal cell carcinoma in addition to
several other types of cancer cells in a mTOR pathway-
dependent manner. Deficiency of PIG3 also promotes
renal cancer cell migration by facilitating HIF-1α-VEGF
signal pathway activation [16]. PIG3 is known to be
highly expressed in papillary thyroid carcinoma (PTC)
tissues and plays an oncogenic role by activating the
PI3K/Akt pathway [17]. Although these seemingly
contradictory reports indicated the potential importance
of PIG3 in tumor progression, its role(s) in NSCLC still
remains unknown and further investigation is warranted.
In the current study, we revealed that the expression

levels of PIG3 in NSCLC tissues are inversely associated
with OS and disease-free survival (DFS) of patients. To
further explore the role of PIG3 in lung cancer develop-
ment, we suppressed PIG3 expression in NSCLC cells
and found that depletion of PIG3 leads to mitosis defects
and an increase in the generation of bi- and multi-
nucleus which might be due to the dysregulation of

microtubule dynamic. Furthermore, we demonstrated
that loss of PIG3 significantly increases NSCLC cells
chemosensitivity to docetaxel, one of the most com-
monly used chemotherapeutic drugs against multiple
cancers including advanced NSCLC [18], via enhancing
docetaxel-induced apoptosis and senescence.

Methods
Patients and tissue specimens
Primary cancer tissue specimens obtained from 201
NSCLC patients were provided by the Nanjing Medical
University Affiliated Suzhou Hospital (Suzhou, China).
None of the patients underwent chemo- or radiotherapy
prior to surgical resection. Clinicopathologic parameters
and OS data were collected. Of all patients included in the
study, 120 were male and 81 female. The average age of
all patients was 59.7 years (range from 22 to 83 years) at
the time of operation. Mean and median follow-up times
after surgery were 47.3 and 38.0 months, respectively. The
5-year survival rate was 30.3%. Tumor tissue was routinely
fixed in 10% phosphate-buffered formaldehyde and em-
bedded in paraffin for immunohistochemical evaluation.
This study was approved by the Ethics Committee of
Nanjing Medical University Affiliated Suzhou Hospital.
All patients signed informed consent.

Immunohistochemistry and immunohistochemical
evaluation
PIG3 localization was evaluated by immunohistochemistry
(IHC) as described previously [19]. The PIG3 polyclonal
antibody used was from Santa Cruz Biotechnology (Santa
Cruz, CA, USA) and used at a 100-fold dilution.
PIG3 expression levels were scored blindly by two

examiners who were unaware of the clinical characteris-
tics. The staining area was scored as 0, 1, 2, 3 and 4
when 0–10, 11–25, 26–50, 51–75, and > 75% cells were
stained positive, respectively. The staining intensity was
scored as follows: 0, no staining; 1, pale yellow staining;
2, buffy staining; 3, intense brown staining. All scores
were multiplied synchronically to calculate a subjective
score for each section [20]. PIG3 expression levels were
defined by a final score: low expression level (score ≤ 6)
and high expression level (score > 6).

Cell culture
RPMI-1640 medium supplemented with 10% fetal bo-
vine serum was used to maintain NSCLC A549, H460
and H1299 cells. Cells were cultured in a humidified
atmosphere at 37 °C and 5% CO2.

PIG3 small interfering RNA and construct and transfection
PIG3-siRNA or non-targeting negative control (NC) siRNA
were designed and synthesized by GenePharm (Shanghai,
China). The sequences are listed in Table 1. The PIG3
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constructs were generated by cloning PCR-amplified full-
length human PIG3 cDNA into a pCMV-TAG-2B vector as
described by Li B et al. [14]. Cells were seeded in 3.5 cm
culture dishes when in logarithmic growth phase and were
transiently transfected with 20 μM of PIG3-siRNA or NC
siRNA or 5 μg PIG3 constructs or empty vector using Lipo-
fectamine 3000 (Invitrogen, Carlsbad, CA, USA) following
the manufacturer’s instructions. Following incubation at
37 °C for 48 h, cells were collected and lysed to verify the
expression of PIG3 by Western blot analysis.

Protein extraction and Western blot analysis
Protein extraction and Western blot were performed as
previously described [19]. The following primary anti-
bodies were used: PIG3 (Santa Cruz Biotechnology, Santa
Cruz, CA, USA), PARP-1 (Cell Signaling Technology,
Beverly, MA, USA) and GAPDH (Epitomics, Burlingame,
CA, USA). All primary antibodies were used at a dilution
of 1000-fold.

CCK8 cell proliferation assay
Control and PIG3 knock down cells were cultured in a
96-well plate at a density of 1 × 104 cells per well. Doce-
taxel (Taxotere; Sanofi-Aventis, Paris, France) was sup-
plemented for increasing times (1, 2, 3, 4 and 5 days) or
at indicated concentrations (2.5, 5, 10 and 20 μg/ml) for
48 h. After incubation with docetaxel, a volume of 10 μl
Cell Counting Kit-8 solution (CCK8; Dojindo Laborator-
ies, Japan) was added to each well and incubated for 2 h.
The absorbance of each well was measured at 450 nm.

Mitotic index analysis
PIG3 knock down and control cells were plated in 6 cm
culture dishes, washed twice with PBS and fixed in 70%
ethanol, diluted with PBS, for 24 h. Prior to staining, the
cells were washed twice with PBS and permeabilized in
50 μl of 0.5% Triton X-100/PBS for 15 min. Cells were in-
cubated with an anti-phosphorylated H3 (pSer10) antibody
(1:100) (Cell Signaling Technology, Beverly, MA, USA) in
PBS with 0.5% Triton X-100 at room temperature for 2 h
and washed twice with PBS. Next, cells were incubated with
an Alexa-488 conjugated anti-rabbit secondary antibody
(Invitrogen, Carlsbad, CA, USA) at room temperature for
1 h. Cells were washed twice with PBS, treated with 1 μg/

ml RNase A, stained with 25 μg/ml Propidium Iodide (PI)
and analyzed by flow cytometry.

Immunofluorescent staining and confocal microscopy
A549 cells and H460 cells were transfected with PIG3 or
NC siRNAs. Cells were plated and cultured on poly-d-
lysine-coated cover slides 48 h after transfection. Cells
were washed twice in PBS and fixed in 4% paraformalde-
hyde/PBS at room temperature for 30 min. Next, the cells
were permeabilized with 0.5% Triton X-100/PBS at room
temperature for 15 min. After permeabilization, cells were
blocked with 1% bovine serum albumin/PBS at room
temperature for 30 min. Immunostaining was performed
by incubating with anti-α-tubulin antibody, γ-tubulin
(Sigma, St Louis, MO, USA) and phosphorylated H3
(pSer10) (Cell Signaling Technology, Beverly, MA, USA)
antibodies (1:1000) for 4 h at room temperature. After in-
cubating with the primary antibodies, cells were washed
three times with PBS. Cells were then incubated with
Alexa-488 conjugated anti-rabbit and Alexa-568 conju-
gated anti-mouse secondary antibodies (Invitrogen,
Carlsbad, CA, USA) for 1 h at 37 °C. For visualization of
DNA, 4, 6-diamidino-2-phenylindole (DAPI, Vector
Laboratories, Burlingame, CA, USA) was added to the
mounting medium. Images were obtained using a LSM
510 laser-scanning confocal microscope (Zeiss, Germany).

Microtubule regrowth assay
Microtubule regrowth assays were performed as previ-
ously described [21]. PIG3 depletion and control A549
cells were cultured on cover slides coated as before and
incubated with ice-cold medium supplemented with 1 μg/
ml nocodazole (Sigma, St Louis, MO, USA) for 1 h. Fresh
medium without nocodazole was added after washing
with PBS. Cells were fixed in 4% paraformaldehyde/PBS
and subjected to immunostaining as described above.

Apoptosis detection
For the detection of apoptosis, the FITC Annexin V
Apoptosis Detection Kit (BD, Pharmingen, San Diego,
CA, USA) was used according to the manufacturer’s
protocol. PIG3 silenced or control cells were treated
with or without docetaxel as described above and har-
vested. The cells were washed thrice with PBS and re-
suspended in 1× binding buffer at a concentration of

Table 1 SiRNA sequences for PIG3 and non-targeting negative control

siRNA name Sequences

Sense (5′-3′) Antisense (5′-3′)

siPIG3 #1 AAAUGUUCAGGCUGGAGACUATT UAGUCUCCAGCCUGAACAUUUTT

siPIG3 #2 GGAAGUCUGAUCACCAGUUTT AACUGGUGAUCAGACUUCCTT

siNC UUCUCCGAACGUGUCACGUTT ACGUGACACGUUCGGAGAATT

NC negative control
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1 × 106 cells/ml. The cell suspension (100 μl) was trans-
ferred to a new tube and 5 μl of FITC-conjugated
Annexin V was added. Cells were incubated for 15 min
at room temperature. After addition of 400 μl of 1×
binding buffer, cells were analyzed by flow cytometry.

Senescent cells detection
To detect senescent cells, the senescence-associated β-
galactosidase (SA-β-Gal) assay was performed. PIG3 si-
lenced or control cells were cultured in 6-well plates at a
density of 20,000 cells/well and treated with or without
docetaxel at indicated concentrations and times. Cells
were fixed and stained following the Senescence β-gal
Staining Kit manufacturer’s protocol (Cell Signaling
Technology, Beverley, MA, USA). Cells were incubated
for 16 h at 37 °C in a dry incubator without CO2 after
which blue stained cells were detected under a bright
field microscope (Leica Corporation, Germany).

Statistical analysis
Statistical analyses were conducted using SPSS 19.0 soft-
ware (SPSS Inc., Chicago, IL, USA). For continuous or
discrete data analysis, the chi-square test was used. The
association between PIG3 expression and OS or DFS
rates was estimated by Kaplan-Meier survival analysis
and assessed using a log-rank test. The effect of clinico-
pathologic variables on survival was assessed with a Cox
regression model. One-way ANOVA was performed for
multiple comparisons. The data were presented as the
mean ± standard deviation (SD) of three independent ex-
periments. All tests were 2-sided, and differences were
considered significant when P < 0.05.

Results
Increased expression of PIG3 is associated with poor
prognosis of NSCLC patients
To investigate the potential role of PIG3 in the progression
of NSCLC, we performed PIG3 immunohistochemistry
(IHC) in NSCLC tissue obtained from 201 patients (Fig. 1a).
The clinicopathologic characteristics of all patients are
listed in Table 2. Our results showed that an upregulated
PIG3 expression level significantly correlated with tumor
size (P = 0.0003), differentiation degree (P = 0.004), patho-
logical stage (P = 0.004) and distant metastasis (P = 0.001).
In addition, no association could be observed between
PIG3 expression and age, gender or relapse.
To evaluate the relationship between PIG3 expression

and patient prognosis, Kaplan-Meier survival analysis for
OS and DFS were performed (Fig. 1b, c). Our results indi-
cated that patients with a higher PIG3 expression (high
PIG3) demonstrate a significantly shorter OS (P = 0.008)
and DFS (P = 0.026) compared to patients with low PIG3
expression (low PIG3). Moreover, multivariate Cox regres-
sion analysis showed high PIG3 to be an independent
prognostic marker for low survival that was associated with
a relative risk of 1.742 (Table 3; 95% CI 1.023–2.976; P =
0.041). Together, these findings suggested that PIG3 may
have an oncogenic role in the progression of lung cancer.

Suppression of PIG3 results in bi- and multi-nucleated
cells and retarded growth of NSCLC cells
To determine the role of PIG3 on the progression of
NSCLC, two different siRNA constructs that target PIG3
and a NC siRNA were transfected into A549 NSCLC
cells. Western blot analysis verified that both siRNAs

a

b c

Fig. 1 PIG3 expression is associated with poor prognosis of NSCLC patients. a Immunohistochemical analysis of PIG3 in 201 tumor tissue samples
(100×): a), Negative expression; b), Low expression; c), Moderate expression; d), High expression. b Kaplan-Meier survival analysis between PIG3
expression levels and overall survival of NSCLC patients (P = 0.008). c The association between PIG3 expression levels and disease-free survival of
NSCLC patients (P = 0.026). All groups were ranked according to PIG3 staining intensity
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significantly suppress endogenous PIG3 protein expres-
sion in A549 cells (Fig. 2a). We used the siRNA with the
highest efficacy to transfect H460 cells and found that
PIG3 expression was significantly silenced in H460 cells
(Additional file 1: Figure S1a). Compared with corre-
sponding NC groups, depletion of PIG3 significantly re-
duced the proliferation rates of A549 and H460 cells
(Fig. 2b and Additional file 1: Figure S1b). The PIG3 is
one of p53 target genes. Consistent with this, PIG3

expression is suppressed in H1299 cells which have the
homozygous partial deletion of the TP53 gene. We
observed that overexpression of PIG3 dramatically pro-
motes growth speed of H1299 cells (Additional file 2:
Figure S2a and b). Interestingly, we found an increase in
the generation of giant cells in PIG3 deficient NSCLC
cells. After staining with an anti-α-tubulin antibody and
DAPI to visualize DNA, numerous giant cells with bi- or
multi-nuclei were observed in PIG3 deficient-A549 cells
(Fig. 2c, d). Bi- and multi-nucleated cells may arise from
cytokinesis failure, which is commonly induced by ab-
normality of chromosomal segregation [22, 23]. Consist-
ent with this observation, we identified a significant
increase of chromosomes lagging during anaphase in
PIG3 deficient NSCLC cells as compared to NC cells
(Fig. 2e, f ). In a recent study, it was shown that failure in
cell cleavage induces cellular senescence [24]. Here, we
found that giant cells induced by PIG3 deficiency exhib-
ited activated SA-β-galactosidase (Fig. 5e, f ), which is
indicative of a senescent phenotype.

PIG3 contributes to mitotic spindle assembly in NSCLC
cells
The observation of increased abnormality of chromo-
some segregation in PIG3 deficient cells strongly indi-
cated that PIG3 may play an important role in the
regulation of spindle organization. During the transition
from prometaphase to metaphase, kinetochores are held
by microtubules that are released from the opposite sites
of centrosomes and allow chromosomes to align along
the metaphase plate of the spindle apparatus. To define
whether or not PIG3 plays a role in mitotic spindle
organization, NSCLC cells were stained with antibodies
directed against α-tubulin and a mitosis marker, phos-
phorylated histone 3, at the Ser10 site. We found that, in
both A549 and H460 cells, PIG3 depletion resulted in a
noticeable increase of chromosome misalignment
(Fig. 3a, b and Additional file 1: Figure S1c, d). Consist-
ent with this observation, we found an increase in mi-
totic index in NSCLC cells lacking PIG3 as compared to
the control cells (Fig. 3c, d). Thus, aberrant spindle as-
sembly and mitotic progression may potentially lead to
mitotic arrest.

Lack of PIG3 inhibits microtubule dynamics in NSCLC cells
Abnormal microtubule dynamics regulation has been re-
ported to be correlated with aberrant mitotic organization
[25]. To identify whether or not PIG3 is involved in
microtubule organization, PIG3 silenced and control
A549 cells, PIG3 overxpressed and empty vector control
H1299 cells were incubated with ice-cold medium includ-
ing high levels of nocodazole to depolymerize microtu-
bules. Microtubules started to regrow after removal of the
nocodazole-containing medium. Microtubule nucleation

Table 2 Correlation between PIG3 expression and
clinicopathological parameters of 201 patients with non-small
cell lung cancer (NSCLC)

Characteristics Total
(n = 201)

PIG3 protein expression P-value

Low High

Age

≤60 95 53 42 >0.05

>60 106 55 51

Gender

Male 120 60 60 >0.05

Female 81 48 33

Smoking history

Yes 136 80 56 <0.05

No 65 28 37

Tumor size

<3 cm 105 69 36 <0.01

≥3 cm 96 39 57

Differentiation degree

Poorly 78 32 46 <0.01

Well, moderately 123 76 47

Pathological stage

IA 143 88 55 <0.01

IB 58 20 38

Distant metastasis

Yes 60 22 38 <0.01

No 141 86 55

Relapse

Yes 20 12 8 >0.05

No 181 96 85

Table 3 Multivariate analysis of cancer specific survival

HR 95% CI P-value

Gender 0.901 0.479–1.694 0.746

Age 1.410 0.849–2.342 0.185

Smoking 0.685 0.353–1.330 0.264

Recurrence 1.417 0.705–2.847 0.328

Metastasis 2.375 1.428–3.952 0.001

PIG3 expression (high vs. low) 1.742 1.023–2.967 0.041

HR hazard ratio, CI confidence interval
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speed was analyzed by the diameter of the microtubule as-
ters that were grown from centrosomes (Fig. 4a, c). We
observed that, in A549 cells, loss of PIG3 significantly
inhibited microtubule nucleation (Fig. 4b), whereas
increased PIG3 in H1299 cells promotes microtubule
regrowth rate (Fig. 4d). Consistent with its role in micro-
tubule dynamic regulation, we determined that PIG3 co-
localized with tubulin and accumulated at the spindle
apparatus during mitosis (Fig. 4e). PIG3 localizes at both
nucleus and cytoplasm in interphase cells and can be
recruited at DNA damage sites when cells were exposed
to γ ray (Additional file 3: Figure S3), which is consistent
with the previous report [13]. In conclusion, our data

revealed for the first time a novel role of PIG3 in micro-
tubule regulation.

Depletion of PIG3 sensitizes NSCLC cells to docetaxel
Our data showed that PIG3-depleted cells exhibit aberrant
mitosis, which may be associated with dysregulation of
the dynamics of microtubules, similar to that of drug-
treated microtubule cells [26]. Next, we investigated
whether silencing of PIG3 expression may modulate the
sensitivity of NSCLC cells to docetaxel, a well-established
anti-mitotic chemotherapeutic drug that is used to treat
advanced NSCLC [18]. The proliferation of PIG3 knock
down and control NSCLC cells was accessed by CCK8

a

c

e f

b

d

Fig. 2 Loss of PIG3 leads to increased outcome of bi-/multi-nucleated cells and aberrant chromosomes segregation in normal cultured cells. a Western
blot analysis demonstrating the efficacy of two different siRNAs against PIG3 in A549 cells at 48 h post-transfection. b 3× 103 cells were seeded in 96-well
plates at day 0, and CCK8 assay was used to determine cell proliferation rates at indicated days (1, 2, 3, 4 and 5 days). Absorbance values at 450 nm were
normalized by the value measured on day 1 (**P< 0.01). c Representative images showing bi- and multinucleated cells (arrowheads). d Quantitative analysis
of bi- and multi-nucleated cells from PIG3-deficient and control A549 cells (**P< 0.01). e Representative images showing normal and aberrant anaphase
cells with lagging chromosome (arrowheads). f Percentages of mitotic cells showing lagging chromosome were counted from three independent
experiments, **P< 0.01, *P< 0.05
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assay at 48 h after docetaxel treatment (2.5, 5, 10 and
20 μg/ml). Our data showed that PIG3-depleted cells were
more sensitive to docetaxel treatment compared to NC
cells, and PIG3-overexpression increased NSCLCs resist-
ance to docetaxel (Fig. 5a, Additional file 2: Figure S2c
and Additional file 4: Figure S4). Docetaxel-induced apop-
tosis was determined by flow cytometry. As shown in
Fig. 5b, treatment with 5 μg/ml docetaxel dramatically in-
duces apoptosis in PIG3-silenced but not in control A549
cells. Docetaxel-induced apoptosis was verified by cleaved
PARP-1 immunoblot analysis. We found that docetaxel
treatment caused severe PARP-1 cleavage and apoptosis in
PIG3-depleted cells but not in control cells (Fig. 5c, d). In
addition, PIG3 knock down and control A549 cells were
subjected to SA-β-gal staining. Our results indicated that
following docetaxel treatment PIG3 depletion significantly
enhanced senescence (Fig. 5e, f ), whereas PIG3 overex-
pression prevents docetaxel induced senescence in H1299
cells (Additional file 2: Figure S2d).

Discussion
Due to its important role in ROS generation and p53-
mediated apoptosis, PIG3 is well-known as an inhibitory
factor of cancer cell survival [27]. It has been reported that
PIG3 promotes proliferation of PTC cells by activating the
PI3K/Akt signaling pathway [17]. Here, we examined the

expression of PIG3 in 201 NSCLC samples and found that
expression levels of PIG3 positively associated with poor
prognosis of NSCLC patients (Fig. 1b, c). Consistent with
these results, knocking down PIG3 significantly inhibited
proliferation of NSCLC cells (Fig. 2b, Additional file 1:
Figure S1b). Furthermore, we revealed an important role
of PIG3 in spindle stability maintenance and mitotic pro-
gression regulation. It is well known that numerous mi-
totic regulators are overexpressed in various tumors due
to the increased proliferation of cancer cells compared to
healthy cells [28–30]. Overall, our study provides evidence
that PIG3 may contribute to NSCLC development by pro-
moting mitotic progression.
We have previously reported the positive correlation of

DNA-PKcs protein levels with PIG3 expression [14]. DNA-
PKcs is a critical kinase that is involved in the non-
homologous end joining (NHEJ) pathway and repairs DNA
double strand breaks (DSBs). We and others have identified
a novel role of DNA-PKcs in maintaining normal spindle
formation or centrosomes stability [21, 31–33]. In addition,
DNA-PKcs contributes to mitotic entry and cytokinesis
progression by activating Plk1 in a temporal and spatial
fashion [34, 35]. During mitosis, the Chk2-Brca1 signaling
cascade is downstream of DNA-PKcs and has an effect on
mitotic microtubule assembly [21]. Consistent with these
important roles, inactivation of DNA-PKcs results in a

a b

d

c

Fig. 3 PIG3 is required for normal mitotic progression. a Exponentially growing PIG3 depleted and control A549 cells were subjected to
immunofluorescent analysis using the indicated antibody. The representative images show aberrant mitotic cells with misalignment chromosomes
(arrowheads). b Percentages of mitotic cells showing misaligned chromosomes were counted from three independent experiments (**P< 0.01). c A549
cells were transfected with control siRNA or PIG3 siRNAs for 48 h and stained with an anti-phosphorylated H3 antibody to determine the percentage of
mitosis cell population by flow cytometry. d Quantitative analysis of mitotic index. Results were generated from three independent experiments (**P< 0.01)
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phenotype of abnormal mitotic spindle organization
and mitotic catastrophe, which is accompanied by
dysregulation of Plk1 and Chk2 in mitosis [21, 34, 36].
Similar to the loss of DNA-PKcs, we found that there
is an increase in misaligned and lagged chromosomes
in PIG3 deficient cells compared to normal cells,
which implies a functional link between these two
molecules (Figs. 2 and 3). In conclusion, further in-
vestigation is warranted to delineate the impact of
PIG3 on the mitotic function of Chk2, Plk1 and
whether expression of DNA-PKcs will restore the
defects found during mitosis that were induced by
PIG3 deficiency.
Appropriate microtubule assembly is crucial for mi-

totic spindle organization, proper chromosome align-
ment and their segregation. In a recent study, Ertych
et al. demonstrated that increased assembly rates by
Aurora A-overexpressing or loss of Chk2 in colon
cancer cells resulted in abnormal microtubule spindle
geometry and a subsequent increase of chromosomal
instability (CIN), which is one of the characteristics
of tumor cells and a driving force for cancer develop-
ment [37, 38]. In addition, CIN plays a critical role in
lung cancer progression and fluorescence in situ

hybridization (FISH) analysis revealed a close associ-
ation between CIN in NSCLC and poor prognosis of
patients [39, 40]. Consistent with these findings, our
results indicate that PIG3 positively regulated micro-
tubule growth rate (Fig. 4). These studies support the
speculation that increased PIG3 expression promoted
aggressive progression of NSCLC by accelerating
microtubule assembly and the generation of CIN cells.
As described previously, PIG3 is homologous with
NADH quinine oxidoreductase 1 (NQO1) [7]. In hu-
man cells, NQO1 has been reported to localize to the
mitotic spindle [41]. Furthermore, NQO1 has a direct
physical interaction with the mitotic factor Aurora A
and promotes Aurora A degradation by antagonizing
the protective function of TPX2 [42]. Further investi-
gation of the potential interaction between PIG3 and
the TPX2-Aurora A signal pathway during mitosis as
well as its potential role(s) in regulating microtubule
assembly and chromosomal stability is clearly
warranted.
Microtubule dynamics-targeted chemotherapeutic agents

such as taxanes are widely used, alone or in combination
with other drugs, to treat various solid tumors such as
advanced NSCLC [43–45]. Unfortunately, primary

a

c

e

b

d

Fig. 4 PIG3 is required for microtubule growth in NSCLC cells. a Knock down of PIG3 by siRNA markedly inhibits the regrowth of microtubules
from centrosomes in A549 cells. PIG3 and control siRNAs were transfected into A549 cells and 48 h post transfection the cells were treated with
chilled medium + 1 μM nocodazole for an additional 1 h on the ice. Cells were fixed and stained with an anti-α-tubulin antibody. b The length of
the microtubule emanating from the centrosomes was measured (n ≥ 50, ** P <0.01). c Overexpressing PIG3 significantly increases microtubules
growth rates in H1299 cells. d The length of the microtubule emanating from the centrosomes was measured (n ≥ 50, ** P <0.01). e The
localization of PIG3 in the cells detected by immunofluorescent staining
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resistance to these agents is a major challenge for the
use of taxanes in clinical applications. Numerous
studies have shown that targeting the mitotic factors
may be a successful strategy to overcome the che-
moresistance to taxanes in cancer cells [30, 45]. In
the present study, we found that a lack of PIG3 sig-
nificantly sensitizes NSCLC cells to docetaxel, which
at least can partially be attributed to the increased in-
duction of apoptosis and senescence. This suggested
that docetaxel may be considered an effective targeted
therapy against PIG3-low expressing lung cancers. In
this context, it is important to further examine
whether low PIG3 expression is associated with
clinical benefits patients with NSCLC following
docetaxel-based chemotherapy.

Conclusion
In summary, in our work we revealed that PIG3 ex-
pression levels positively correlated with poor progno-
sis of NSCLC patients. Our study also demonstrated
that PIG3 is a novel mitotic factor that regulated
microtubule dynamics and mitotic spindle assembly.
In addition, loss of PIG3 induced phenotypes of
mitotic catastrophe, which exhibited misaligned and
lagged chromosomes and led to multi-nucleated and
senescent cells. Loss of PIG3 conferred sensitivity of
NSCLC cells to docetaxel-based chemotherapy. These
findings demonstrated a role for PIG3 in the progres-
sion of NSCLC, indicating that PIG3 may be a poten-
tial prognostic marker and novel therapeutic target
for NSCLC.

a b

c d

c f

Fig. 5 Depletion of PIG3 sensitizes NSCLC cells to docetaxel through promoting apoptosis and senescence. a Forty-eight hrs following transfection with
PIG3 and control siRNAs, A549 cells were exposed to various concentrations of docetaxel. Cell proliferation was determined by CCK8 assay 48 h post
treatment. The data are expressed as the mean and standard deviations from three independent experiments (** P< 0.01). b Forty-eight hrs following
transfection with PIG3 and control siRNAs, A549 cells were treated with 5 μg/ml docetaxel or DMSO for 24 h. Apoptotic cells were detected using the
Annexin V staining method. The data are expressed as mean and standard deviations from three independent experiments, ** P< 0.01 as compared to
control siRNA transfected cells under similar treatment conditions of docetaxel. c and d Forty-eight hrs following transfection with PIG3 and control
siRNAs, A549 cells were treated with different concentrations (0, 5 and 10 μg/ml) of docetaxel for 24 h or 5 μg/ml of docetaxel for indicated time intervals
(0, 6, 16 and 24 h). Apoptosis was determined by PARP-1 cleavage (indicated by an arrow) following Western blot analysis. e SA-β-gal staining of NSCLC
cells. PIG3 depleted and control A549 cells were treated with 0, 5 and 10 μg/ml of docetaxel for 48 h and then stained for SA-β-gal activity. f Quantitative
analysis of senescent cells. The results were generated from three independent experiments (*P< 0.05, **P< 0.01)
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Additional files

Additional file 1: Figure S1. Loss of PIG3 inhibites cell proliferation and
leads to increased outcome of misalignment chromosomes in H460 NSCLC
cells. a Western blot analysis demonstrating the efficacy of PIG3 siRNA #1 in
H460 cells at 48 h post-transfection. b 3× 103 cells were seeded in 96-well
plates at day 0, and CCK8 assay was used to determine cell proliferation
rates at indicated days (1, 2, 3, 4 and5 days). Absorbance values at 450 nm
were normalized by the value measured on day 1 (*P < 0.05, **P < 0.01).
c Exponentially growing PIG3 depleted and control H460 cells were
subjected to the immunofluorescent staining using the indicated antibody.
The representative images showing aberrant mitotic cells with misalignment
chromosomes (arrowheads). d Percentages of mitotic cells showed
misaligned chromosomes were counted from three independent
experiments. **P < 0.01. (PPT 3533 kb)

Additional file 2: Figure S2. Overexpression PIG3 promotes NSCLC cells
proliferation and increases resistance of NSCLC cells to docetaxel. aWestern
blot analysis demonstrating the level of PIG3 in PIG3-overexpressed and
control H1299 cells. b 3× 103 cells were seeded in 96-well plates at day 0, and
CCK8 assay was used to determine cell proliferation rates at indicated days
(1, 2, 3, 4 and 5 days). Absorbance values at 450 nm were normalized by the
value measured on day 1 (* P< 0.05, ** P< 0.01). c PIG3 overexpressed and
control H1299 cells were exposed to various concentrations of docetaxel. Cell
proliferation was determined by CCK8 assay 48 h post treatment. The data are
expressed as the mean and standard deviations from three independent
experiments (** P< 0.01). d PIG3 overexpressed and control H1299 cells were
treated with 0, 5 and 10 μg/ml of docetaxel for 48 h and then stained for
SA-β-gal activity. Quantitative analysis of senescent cells. The results were
generated from three independent experiments (*P< 0.05). (PPT 298 kb)

Additional file 3: Figure S3. The localization of PIG3 in the cells
detected by immunofluorescent staining. A549 cells were treated or
untreated with 4Gy γ ray irradiation. One hour post irradiation, cells were
fixed and stained using anti-PIG3, KAP-1 and phosphorylated H2AX
antibody. (PPTX 1444 kb)

Additional file 4: Figure S4. Depletion of PIG3 sensitized NSCLC cells
to docetaxel. Forty eight hrs following transfection with PIG3 and control
siRNAs, H460 cells were exposed to various concentrations of docetaxel.
Cell proliferation was determined by CCK8 assay 48 h post treatment. The
data are expressed as the mean and standard deviations from three
independent experiments (** P < 0.01). (PPT 475 kb)
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