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Abstract

Background: Abundant evidence shows that triple-negative breast cancer (TNBC) is heterogeneous, and many
efforts have been devoted to identifying TNBC subtypes on the basis of genomic profiling. However, few studies
have explored the classification of TNBC specifically based on immune signatures that may facilitate the optimal
stratification of TNBC patients responsive to immunotherapy.

Methods: Using four publicly available TNBC genomics datasets, we classified TNBC on the basis of the
immunogenomic profiling of 29 immune signatures. Unsupervised and supervised machine learning methods were
used to perform the classification.

Results: We identified three TNBC subtypes that we named Immunity High (Immunity_H), Immunity Medium
(Immunity_M), and Immunity Low (Immunity_L) and demonstrated that this classification was reliable and
predictable by analyzing multiple different datasets. Immunity_H was characterized by greater immune cell
infiltration and anti-tumor immune activities, as well as better survival prognosis compared to the other subtypes.
Besides the immune signatures, some cancer-associated pathways were hyperactivated in Immunity_H, including
apoptosis, calcium signaling, MAPK signaling, PI3K–Akt signaling, and RAS signaling. In contrast, Immunity_L
presented depressed immune signatures and increased activation of cell cycle, Hippo signaling, DNA replication,
mismatch repair, cell adhesion molecule binding, spliceosome, adherens junction function, pyrimidine metabolism,
glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and RNA polymerase pathways. Furthermore, we identified a
gene co-expression subnetwork centered around five transcription factor (TF) genes (CORO1A, STAT4, BCL11B,
ZNF831, and EOMES) specifically significant in the Immunity_H subtype and a subnetwork centered around two TF
genes (IRF8 and SPI1) characteristic of the Immunity_L subtype.

Conclusions: The identification of TNBC subtypes based on immune signatures has potential clinical implications
for TNBC treatment.
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Introduction
Triple-negative breast cancer (TNBC) is a breast cancer
subtype that lacks the expression of hormone receptors
(estrogen receptor (ER) and progesterone receptor (PR))
and human epidermal growth factor receptor 2 (HER2).
TNBC is associated with a high risk of mortality for its
aggressiveness and the lack of effective targeted therap-
ies. Moreover, abundant evidence shows that TNBC is
very heterogeneous [1–4]. Lehmann et al. identified six
gene expression profile-based TNBC subtypes, including
an immunomodulatory (IM) subtype that was enriched
in immune cell processes [2]. Bonsang-Kitzis et al. iden-
tified six TNBC subgroups based on a biological
network-driven approach, which included two immunity
clusters whose stromal immune module gene signatures
exhibited a strong prognostic value [3]. Burstein et al.
identified four stable TNBC subgroups based on mRNA
expression and DNA genomic profiling, which included
Luminal/Androgen Receptor, Mesenchymal, Basal-Like
Immune Suppressed, and Basal-Like Immune Activated
(BLIA); furthermore, the authors identified potential
therapeutic targets for these specific subtypes [4]. These
efforts to classify TNBC might lay the foundation for
developing targeted therapies for TNBC.
Recently, cancer immunotherapy has been successful in

treating many refractory malignancies [5]. Thus, it is
worth considering immunotherapy for TNBC, since the
therapeutic options for this disease are significantly lim-
ited. Indeed, many experimental and clinical studies have
explored the possibility of treating TNBC patients with
immunotherapy [6–11]. Moreover, numerous studies have
demonstrated that TNBC is more immunogenic than
other breast cancer (BC) subtypes, which may warrant an
immunotherapeutic approach for TNBC [12, 13]. How-
ever, currently, immunotherapeutic strategies exhibit
beneficial effects in less than 20% of cancer patients. This
suggests that not all TNBC patients could respond to
immunotherapy. In fact, certain genetic or genomic fea-
tures, such as tumor mutation burden (TMB), neoantigen
load, PD-L1 expression, and deficient DNA mismatch
repair, have been associated with cancer immunothera-
peutic responsiveness [14–18].
In this study, we classified TNBC into three distinct

subtypes by immunogenomic profiling: Immunity High
(Immunity_H), Immunity Medium (Immunity_M), and
Immunity Low (Immunity_L). We demonstrated the sta-
bility and reproducibility of this classification in four
independent datasets by a machine learning approach.
Furthermore, we identified the subtype-specific molecu-
lar features, including genes, gene ontology, pathways,
and networks. The identification of immune
signature-associated TNBC subtypes may facilitate the
optimal selection of TNBC patients responsive to
immunotherapy.

Methods
Clustering
For each TNBC dataset, we first quantified the
enrichment levels of the 29 immune signatures in each
TNBC sample by the single-sample gene-set
enrichment analysis (ssGSEA) score [19, 20]. Based on
the enrichment levels (ssGSEA scores) of the 29 im-
mune signatures, we performed hierarchical clustering
of TNBC.

Evaluation of immune cell infiltration level, tumor purity,
and stromal content in TNBC
ESTIMATE [21] was used to evaluate the immune cell
infiltration level (immune score), tumor purity, and stro-
mal content (stromal score) for each TNBC sample.

Gene-set enrichment analysis
We performed gene-set enrichment analysis of the
METABRIC and TCGA datasets by GSEA (R implemen-
tation) [22–24]. This analysis identified the KEGG [25]
pathways that were upregulated in Immunity_H and
Immunity_L (FDR < 0.05), respectively. The common
pathways identified in both datasets were selected.

Correlation of pathway activities with immune cell
infiltration levels in TNBC
We quantified the activity of a pathway with the ssGSEA
score of the set of genes included in the pathway, and
the immune cell infiltration level with the immune
score. The Spearman correlation of the ssGSEA score
and the immune score were used to evaluate the correl-
ation of pathway activities with immune cell infiltration
levels in TNBC.

Identification of TNBC subtype-specific gene ontology
and networks
We used WGCNA [26] to identify the gene modules
(gene ontology) that were significantly associated with
the genes highly correlated with immune cell infiltra-
tion based on gene co-expression analysis. The gene
modules specifically amplified in different TNBC sub-
types were identified. On the basis of the expression
correlations between the hub genes in the gene mod-
ules, we built gene–gene interaction networks. A hub
gene was defined as a gene that was connected to no
less than 10 other genes, with a connectedness weight
greater than 0.25.

Survival analyses
We compared the survival prognosis (overall survival
(OS), disease-free survival (DFS), and metastasis-free
survival (MFS) of TNBC patients considering tumor
subtype and the expression level of the identified
genes, i.e., higher expression level (expression levels >
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median) versus lower expression level (expression
levels < median). The log-rank test was used to calcu-
late the significance of survival time differences using
a threshold of P-value < 0.05. Kaplan–Meier curves

were plotted to show the survival time differences.
We performed the survival analyses using the
METABRIC, TCGA, and GSE103091 datasets, where
the survival data were available.

Fig. 1 Hierarchical clustering of triple-negative breast cancer (TNBC) yields three stable subtypes in four different datasets. Immunity_H, Immunity
High; Immunity_M, Immunity Medium; Immunity_L, Immunity Low. TNBCtype, a method for classifying TBNC [2, 37]. Tumor_purity, Stromal_score,
and Immune_score were evaluated by ESTIMATE [21]. Lymphocyte_infiltration, percent of lymphocyte infiltration
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Fig. 2 (See legend on next page.)
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Class prediction
We transformed each attribute (immune signature or
gene set) value (ssGSEA score) xi into xi′ by the
equation xi′ = (xi − xmin)/(xmax − xmin), where xmin and
xmax represent the minimum and maximum of the
ssGSEA scores for the gene set across all TNBC sam-
ples, respectively. The Random Forest (RF) classifier
was used to classify the TNBC subtypes. We set the
number of trees to 100 and all 29 immune signatures
as features for the RF classifier. The classification per-
formance was evaluated by the accuracy and the
weighted F-score. We carried out the classification in
Weka [27].

Comparison of the proportions of immune cell subsets
between TNBC subtypes
CIBERSORT [28] was used to calculate the proportions
of 22 human immune cell subsets. We set 1000 permu-
tations and P < 0.05 as the criteria for the successful
deconvolution of a sample. We compared the propor-
tions of the immune cell subsets between TNBC sub-
types using the Mann–Whitney U test.

Comparison of clonal heterogeneity between the TNBC
subtypes
We used the ABSOLUTE algorithm [29] to assess the
ploidy score, representing clonal heterogeneity, for each

(See figure on previous page.)
Fig. 2 Three TNBC subtypes show differential phenotypes. a. Comparison of the immune cell infiltration levels between TNBC subtypes (Mann–
Whitney U test). b. Comparison of the expression levels of HLA genes between TNBC subtypes (ANOVA test). c. Comparison of PD-L1 expression
levels between TNBC subtypes (ANOVA test). d. Comparison of survival prognosis between TNBC subtypes (log-rank test). *P < 0.05, **P < 0.01,
***P < 0.001. It also applies to following figures

Fig. 3 Comparison of the immune signature-based TNBC classification results with the results by TNBCtype shows that Immunity_H is most
enriched in IM while Immunity_L is most enriched in M. IM, immunomodulatory; M, mesenchymal
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TNBC sample. We compared the ploidy scores between
the TNBC subtypes using the Kruskal–Wallis test.

Comparison of biological processes between the TNBC
subtypes
We compared the activities (ssGSEA scores) of stem
cell-associated (marker genes ABCA8 and ALDH1A1),
proliferation (MKI67), and epithelial-to-mesenchymal
transition (EMT) (ZEB1, ZEB2, SNAIL, CDH2 and
TGFB1) biological processes between the TNBC sub-
types. The Kruskal–Wallis test was used to determine
the statistical significance of the results.

Comparison of somatic copy number alteration (SCNA)
levels between the TNBC subtypes
We applied GISTIC2 [30] to the SNP6 file of the SCNA
data for TNBC in TCGA. We obtained arm-level SCNA
frequencies for Immunity_H and Immunity_L TNBC
samples and compared them. Moreover, we calculated
focal SCNA levels for each TNBC samples and com-
pared them between Immunity_H and Immunity_L.

Results
Immunogenomic profiling identifies three TNBC subtypes
We analyzed 29 immune-associated gene sets which
represented diverse immune cell types, functions, and
pathways (Additional file 1: Table S1). We used the
ssGSEA score [19, 20] to quantify the activity or
enrichment levels of immune cells, functions, or path-
ways in the cancer samples. On the basis of the
ssGSEA scores of the 29 gene sets, we hierarchically
clustered TNBC in four BC datasets (METABRIC
[31], TCGA [32], GSE75688 [33], and GSE103091
[34]). Interestingly, all four datasets showed similar
clustering results, with three clusters being clearly
separated (Fig. 1). We defined the three clusters as:
Immunity High (Immunity_H), Immunity Medium
(Immunity_M), and Immunity Low (Immunity_L). We
found that the immune scores were significantly
higher in Immunity_H and significantly lower in
Immunity_L in all four datasets (Kruskal–Wallis test,
P < 0.001) (Fig. 2a). Moreover, we found that the
percentage of lymphocyte infiltration was significantly
higher in Immunity_H and significantly lower in
Immunity_L in TCGA based on the pathological
slides data (Kruskal–Wallis test, P = 0.05). These
features directed the classification. In addition, when
comparing the tumor purity and stromal score of the
three TNBC subtypes, we obtained opposite trends,
with tumor purity increasing from Immunity_H to Immu-
nity_L (Immunity_H < Immunity_M< Immunity_L) and
stromal score decreasing from Immunity_H to Immuni-
ty_L (Immunity_H > Immunity_M > Immunity_L) (Krus-
kal–Wallis test, P < 0.001) (Additional file 2: Figure S1).

Collectively, these results suggest that Immunity_H con-
tains the highest number of immune cells and stromal
cells, while Immunity_L contains the highest number of
tumor cells.
Notably, most HLA genes showed significantly

higher expression levels in Immunity_H and signifi-
cantly lower expression levels in Immunity_L
(ANOVA test, P < 0.05) (Fig. 2b, Additional file 3:
Figure S2A). Moreover, the expression levels of vari-
ous immune cell subpopulation marker genes [35]
were the highest in Immunity_H and the lowest in
Immunity_L, such as CD8A (cytotoxic T cell),
CD45RO (memory T cell), CD20 (B cell), CXCR5 (Tfh
cell), FOXP3 (Treg), IL-17 (Th17 cell), CD1A (iDC),
and IL3RA (pDC) (Additional file 3: Figure S2B).
We examined the expression of PD-L1 (programmed

cell death 1 ligand) in the three TNBC subtypes and
found that Immunity_H had the highest PD-L1 expres-
sion levels and Immunity_L had the lowest PD-L1
expression levels (ANOVA test, P < 0.05) (Fig. 2c). This
suggest that the TNBC subtype Immunity_H might
better respond to anti-PD-L1 immunotherapy than the
other TNBC subtypes, since PD-L1 expression tends to
be positively associated with immunotherapeutic respon-
siveness [36].
Survival analyses showed that these TNBC subtypes

had distinct clinical outcomes. The Immunity_H subtype
likely had a better survival prognosis than the Immuni-
ty_M and Immunity_L subtypes, but there was no sig-
nificant survival difference between the Immunity_M
and the Immunity_L subtypes (Fig. 2d). This is consist-
ent with previous studies showing that TNBC with ele-
vated immune activity were associated with more
favorable clinical outcomes [4, 12, 34].

Comparisons of the immunogenomic profiling-based
TNBC classification with other TNBC classification
methods
We used the TNBCtype method [2, 37] to classify the
four TNBC datasets. We found that the immunomodu-
latory (IM) subtype of TNBCs was most frequently asso-
ciated with Immunity_H and least frequently associated
with Immunity_L (Fisher’s exact test, P < 0.001) (Fig. 3).
This is consistent with the enrichment of immune cell
processes in the IM subtype [2]. In contrast, the mesen-
chymal (M) subtype of TNBCs was mostly detected in
Immunity_L and least frequently detected in Immuni-
ty_H (Fisher’s exact test, P < 0.001) (Fig. 3). The M sub-
type is mainly characterized by pathways involved in cell
motility, ECM receptor interaction, and cell differenti-
ation, such as Wnt, ALK, and TGF-β signaling [2]. Our
results suggest that the activities of these pathways may
be associated with reduced tumor immunity in TNBC.
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Identification of TNBC subtype-specific pathways, gene
ontology, and networks
Identification of TNBC subtype-specific pathways
GSEA identified a number of KEGG [25] pathways
enriched in Immunity_H and Immunity_L (Fig. 4a,
Additional file 4: Figure S3A). Typically, the
immune-associated pathways were highly active in Im-
munity_H and included antigen processing and
presentation pathways, B and T cell receptor signaling,
chemokine signaling, cytokine–cytokine receptor inter-
actions, IL-17 signaling, Jak–STAT signaling, natural
killer cell-mediated cytotoxicity, NF-kappa B signaling,
NOD-like receptor signaling, TNF signaling, and
Toll-like receptor signaling (Fig. 4a, Additional file 4:
Figure S3A). This result confirmed the elevated immune
activity in Immunity_H. Besides, we identified various
cancer-associated pathways that were hyperactivated in
Immunity_H, including apoptosis, calcium signaling,
MAPK signaling, PI3K–Akt signaling, and RAS signaling
(Fig. 4a, Additional file 4: Figure S3A). This suggests that
the activities of these cancer-associated pathways are
positively associated with TNBC immunity. In contrast,
the TNBC subtype Immunity_L was enriched in path-
ways related to Hippo signaling, DNA replication,
mismatch repair, spliceosome, adherens junctions,
pyrimidine metabolism, glycosylphosphatidylinositol
(GPI)-anchor biosynthesis, and RNA polymerase (Fig. 4a,
Additional file 4: Figure S3A). This indicates that the ac-
tivities of these pathways could be negatively associated
with TNBC immunity. In fact, a previous study has shown
that the activities of MAPK and PI3K–Akt cascades posi-
tively correlated with the activation of various immune
pathways, while the activity of the mismatch repair path-
way showed a negative correlation with immune activa-
tion in TNBC [12]. Furthermore, we confirmed that all
the cancer-associated pathways hyperactivated in Immuni-
ty_H were positively associated with the immune scores,
whereas the pathways hyperactivated in Immunity_L likely
showed a negative correlation (Spearman’s correlation
test, P < 0.05) (Fig. 4b).

Fig. 4 Identification of TNBC subtype-specific pathways, gene
ontology, and networks. a. KEGG pathways enriched in Immunity_H
and Immunity_L. b. The cancer-associated pathways upregulated in
Immunity_H positively correlated with the immune scores, and the
pathways upregulated in Immunity_L negatively correlated with the
immune scores in TNBC (Spearman’s correlation test, P < 0.05). c.
Gene modules significantly differentiating TNBC by subtype, survival
time, or survival status. d. A network significantly active in
Immunity_H, centered on five TFs (highlighted in red). e. A network
significantly active in Immunity_L, centered on two TFs (highlighted
in red). f. Kaplan–Meier curves showing that the expression of the
hub TF genes is positively associated with survival prognosis in
TNBC (log-rank test, P < 0.05). TF, transcription factor; FDR, false
discovery rate
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Identification of TNBC subtype-specific gene ontology
We performed a weighted gene co-expression network
analysis of the METRABRIC dataset by WGCNA [26]
and identified a set of gene modules (gene ontology) as-
sociated with the highly expressed genes previously deter-
mined. We found several gene modules that significantly
differentiated TNBC by subtype, survival time, or survival
status (Fig. 4c). As expected, the immune response was
significantly elevated in Immunity_H (P = 4.0*10− 54),
while was depressed in Immunity_L (P = 1.0*10− 32).
Moreover, a high immune response was associated with a
better survival prognosis in TNBC patients (P = 5.0*10− 4).
This finding is in line with the previous observation that
the subtype Immunity_H is associated with better clinical
outcomes than the other subtypes. Similar results were
observed for the TCGA dataset (Additional file 4: Figure
S3B). The other two immune-associated gene modules,
i.e., myeloid leukocyte activation and response to type I
interferon, were also enriched in Immunity_H (P =
3.0*10− 14 and 2.0*10− 13, respectively), and were reduced
in Immunity_L (P = 2.0*10− 16 and 2.0*10− 11, respectively).
In contrast, cell adhesion molecule (CAMD) binding ac-
tivity was significantly increased in Immunity_L (P =
1.0*10− 30) and decreased in Immunity_H (P = 2.0*10− 35).
This suggests that CAMD activity has a strong inverse
correlation with tumor immunity in TNBC. Interestingly,
CAMD activity correlated with reduced survival (P
= 0.001 for OS, and P = 0.002 for DFS). Cell cycle process
was also increased in Immunity_L (P = 0.04), suggesting

that the cell cycle signature correlates with reduced tumor
immunity. This finding is consistent with results from pre-
vious studies [38, 39].

Identification of TNBC subtype-specific networks
WGCNA generated a gene module (green color, Fig. 4c)
that was specifically significant in Immunity_H. We
identified 98 hub genes from the gene module, including
five transcription factor (TF) genes, i.e., CORO1A,
STAT4, BCL11B, ZNF831, and EOMES. The five TFs
interact with each other and form a subnetwork with di-
verse immune and cancer-related genes that they regu-
late (Fig. 4d). Typically, CD247 (the marker gene for a T
cell subpopulation) was regulated by all these TFs, and
the cytotoxic T cell marker gene CD8A was co-regulated
by CORO1A, STAT4, and EOMES. MAP4K1 (Mitogen--
Activated Protein Kinase Kinase Kinase Kinase 1), which
is involved in multiple immune and cancer-related path-
ways including B cell receptor signaling, JNK, EGF/
EGFR, TGF-β, and MAPK signaling, was also regulated
by the five TFs. CORO1A encodes a member of the WD
repeat protein family which is involved in diverse cellu-
lar processes including cell cycle, apoptosis, signal trans-
duction, and gene regulation. The main pathways related
to CORO1A include cytoskeletal signaling and phago-
some function, and its relatedness with immune regula-
tion has been revealed [40, 41]. The association of the
other TFs STAT4 [42], BCL11B [43], and EOMES [44]

Fig. 5 Performance in the classification of TNBC subtypes based on immune signatures. F-score, weighted average of F-scores
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with immunity has been examined, whereas the role of
ZNF831 in immune regulation remains unexplored.
WGCNA also generated a gene module (turquoise

color, Fig. 4c) that was more enriched in Immunity_L.
This module included 112 hub genes, two of which en-
code the TFs IRF8 and SPI1. A subnetwork of the hub
genes centered on IRF8 and SPI1is shown in Fig. 4e.
IRF8 (interferon regulatory factor 8) has been shown to
play a negative role in immune cell regulation [45].
Thus, the IRF8-centered regulatory network may be re-
sponsible for the depressed immunity of the TNBC sub-
type Immunity_L. SPI1 (Spi-1 proto-oncogene) encodes
a transcription factor that activates gene expression dur-
ing immune cell development. As a result, the deregula-
tion of SPI1 may affect immunity. In fact, SPI1 showed
significantly lower expression levels in Immunity_L than
in Immunity_H (Student’s t test, P = 9.1*10− 28, fold
change > 2). Therefore, the down regulation of SPI1 may
contribute to the decreased immunity of the Immuni-
ty_L subtype. The contribution of the IRF8- and SPI1--
centered regulatory network to the depressed immunity
of Immunity_L is evidenced by a previous study showing
that IRF8 and SPI1 together negatively regulated im-
mune cell differentiation [45].
Interestingly, survival analyses showed that elevated

expression levels of these TF genes (except SPI11) were
consistently associated with better survival prognosis in
TNBC (Fig. 4f ), suggesting the pivotal role of these TFs
in TNBC immunity and prognosis.

Class prediction of TNBC subtypes based on
immunogenomic profiling
We first used 10-fold cross validation (CV) to evaluate
the classification performance in METABRIC and then

predicted the TNBC subtypes in the other three datasets
using the METABRIC dataset as the training set. The
10-fold CV accuracy was 89% in classifying the METAB-
RIC dataset. The classification accuracies were 70, 84,
and 63% in TCGA, GSE75688, and GSE103091, respect-
ively. The weighted F-scores in these classifications were
89, 71, 83, and 63% for METABRIC, TCGA, GSE75688,
and GSE103091, respectively (Fig. 5). These results dem-
onstrate that the immunogenomic profiling-based classi-
fication of TNBC is stable and predictable.

Discussion
A number of prior studies have identified TNBC sub-
types on the basis of genomic profiling [2–4, 34]. How-
ever, very few studies have investigated the classification
of TNBC specifically based on immune signatures. To
fill this knowledge gap, we focused on identifying
immune-related TNBC subtypes using immunogenomic
profiling. Our results show that TNBC could be classi-
fied into three stable subtypes: Immunity High, Immun-
ity Medium, and Immunity Low. Furthermore, we
demonstrated that this classification was reproducible
and predictable. The Immunity High TNBC subtype was
enriched not only in immune signatures, but also in
many cancer-associated pathways including apoptosis,
calcium signaling, MAPK signaling, PI3K–Akt signaling,
and RAS signaling (Fig. 4a). This is in line with our pre-
vious study showing that diverse immune signatures
positively correlated with the MAPK and PI3K–Akt sig-
naling pathways in TNBC [12]. In contrast, the Immun-
ity Low TNBC subtype was impoverished in immune
signatures but enriched in Hippo signaling, DNA repli-
cation, mismatch repair, spliceosome, adherens junction,
pyrimidine metabolism, glycosylphosphatidylinositol

Fig. 6 Comparison of the proportions of immune cell subsets between TNBC subtypes. Kruskal-Wallis test, P values are shown
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(GPI)-anchor biosynthesis, and RNA polymerase path-
ways (Fig. 4a). It is rational that the mismatch repair
pathway activity was significantly negatively correlated

with immune signatures in cancer, since deficient mis-
match repair often results in elevated tumor immunity
[18]. Interestingly, we found that the Hippo signaling

a

b

Fig. 7 Comparison of the somatic copy number alteration (SCNA) levels between TNBC subtypes. a. Comparison of the arm-level SCNAs
between Immunity_H and Immunity_L. The red asterisks indicate the chromosome arms in which Immunity_H presents higher amplification or
deletion frequency than Immunity_L. b. Comparison of the focal SCNA levels between Immunity_H and Immunity_L
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pathway had a significantly negative correlation with
immune signatures in TNBC. This observation is in
agreement with findings from previous studies showing
that the Hippo signaling pathway plays a key role in
regulating tumor immunity [46–48]. Deficiency of Hippo
pathway components such as kinases LATS1/2 (large
tumor suppressor 1 and 2) [46], effector YAP (Yes-asso-
ciated protein) [47], and transcriptional co-activator
TAZ (WW domain-containing transcription regulator 1)
[48] could promote anti-tumor immunity. Overall, these
results revealed potential positive or negative associa-
tions between pathway activities and immune activities
in TNBC.
Immunity_H had stronger immune cell infiltration and

anti-tumor immune activities, e.g., high levels of cyto-
toxic T cells and B cells infiltration (Fig. 1). When we
used CIBERSORT [28] to calculate the proportions of 22
immune cell subsets in TNBC, we found that CD8 T
cells, CD4 T cells, NK cells, and M1 macrophages
tended to be present in significantly higher numbers in
Immunity_H than in Immunity_L (Mann–Whitney U
test, P < 0.05) (Fig. 6). This analysis again confirmed ele-
vated anti-tumor immune activity in Immunity_H. The
high anti-tumor immune activation could explain why
Immunity_H had more favorable clinical outcomes com-
pared to the other subtypes (Fig. 2d). In fact, numerous
studies have demonstrated that the density of
tumor-infiltrating lymphocytes (TILs) is positively associ-
ated with survival prognosis in various cancers [35, 49, 50].
Immunity_H more highly expressed most HLA genes,
which is indicative of stronger immunogenicity compared
to the other subtypes. However, Immunity_H did not show
higher TMB or neoantigen load than the other subtypes.
This suggests that the differential immunogenicity between
the TNBC subtypes cannot be attributed to TMB and
neoantigens. In addition, we did not find lower clonal het-
erogeneity in Immunity_H, as estimated by ABSOLUTE
[29], than in the other subtypes, although, in some studies,
clonal heterogeneity was shown to have a significant nega-
tive correlation with tumor immunity [13, 51]. Interestingly,
Immunity_H exhibited more active stem cell-associated
biological processes than the other subtypes (Add-
itional file 5: Figure S4), while it showed no significant dif-
ferences in proliferation and epithelial-to-mesenchymal
transition (EMT) processes.
Furthermore, we compared SCNA levels between

Immunity_H and Immunity_L subtypes. We found that
Immunity_H had significantly lower arm-level SCNAs
than Immunity_L (Wilcoxon signed-rank test, P = 0.04,
0.001, 0.0006 for comparisons of amplification, deletion,
and total alteration frequencies, respectively) (Fig. 7a).
Moreover, Immunity_H had significantly lower focal
SCNA levels than Immunity_L (Mann–Whitney U test,
P = 0.01, 0.02, 0.01 for comparisons of amplification,

deletion, and total alteration levels, respectively) (Fig.
7b). These findings demonstrated that Immunity_H had
lower levels of SCNAs compared to Immunity_L, sup-
porting the notion that high tumor aneuploidy correlates
with reduced tumor immune infiltration [52].
Currently, immunotherapy for TNBC is an active field

of investigation [53], and the stronger immunogenicity
exhibited by TNBC compared to other breast cancer
subtypes suggests that immunotherapy could be a viable
option for TNBC patients [12]. However, some prelimin-
ary TNBC immunotherapy clinical trials have not shown
significant patients’ improvement (personal communica-
tion). Thus, the immune signature-based classification of
TNBC may aid the stratification of TNBC patients to
identify those responsive to immunotherapy. It is im-
aginable that patients with an Immunity_H subtype of
TNBC would be more likely to respond to anti-PD-1/
PD-L1 therapy than patients with other TNBC subtypes,
since PD-L1 is more highly expressed in Immunity_H
TNBC, and PD-L1 expression is a predictive biomarker
for the response to PD-1/PD-L1-directed immunother-
apy [36, 54].

Conclusions
The identification of TNBC subtypes based on immune
signatures has potential clinical implications for TNBC
treatment.
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