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Abstract

Background: Ionizing radiation (IR) therapy is the standard first-line treatment for newly diagnosed patients with
glioblastoma (GBM), the most common and malignant primary brain tumor. However, the effects of IR are limited
due to the aberrant radioresistance of GBM.

Methods: Transcriptome analysis was performed using RNA-seq in radioresistant patient-derived glioma stem-like
cells (GSCs). Survival of glioma patient and mice bearing-brain tumors was analyzed by Kaplan–Meier survival
analysis. Lipid droplet and γ-H2AX foci-positive cells were evaluated using immunofluorescence staining.

Results: Lipolytic inhibitor G0/G1 switch gene 2 (G0S2) is upregulated in radioresistant GSCs and elevated in
clinical GBM. GBM patients with high G0S2 expression had significantly shorter overall survival compared with
those with low expression of G0S2. Using genetic approaches targeting G0S2 in glioma cells and GSCs, we
found that knockdown of G0S2 promoted lipid droplet turnover, inhibited GSC radioresistance, and extended
survival of xenograft tumor mice with or without IR. In contrast, overexpression of G0S2 promoted glioma cell
radiation resistance. Mechanistically, high expression of G0S2 reduced lipid droplet turnover and thereby
attenuated E3 ligase RNF168-mediated 53BP1 ubiquitination through activated the mechanistic target of
rapamycin (mTOR)-ribosomal S6 kinase (S6K) signaling and increased 53BP1 protein stability in response to IR,
leading to enhanced DNA repair and glioma radioresistance.

Conclusions: Our findings uncover a new function for lipolytic inhibitor G0S2 as an important regulator for
GSC radioresistance, suggesting G0S2 as a potential therapeutic target for treating gliomas.
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Introduction
Glioblastoma (GBM), a WHO grade IV brain tumor is
the most common and malignant primary cancer of the
central nervous system with a grim median survival of
14.6 months upon diagnosis [1]. Radiotherapy is the
standard first line treatment for newly diagnosed pa-
tients with gliomas, but its effectiveness is limited given

the tumor’s intrinsic resistance and propensity for re-
currence [2, 3]. Although possible mechanisms have
been attributed to GBM resistance to radiation treat-
ments [4–6], the molecular mechanisms regulating ra-
diation resistance of GBM are still unclear.
G0/G1 switch gene 2 (G0S2) was initially identified in

lymphocytes through pharmaceutical stimulation of the
G0 to G1 cell cycle transition [7, 8]. G0S2, a small 12
kDa protein, localizes to the mitochondria [9, 10], endo-
plasmic reticulum [11], and lipid droplets within the adi-
pocytes [12]. G0S2 has been shown to play various
important roles in cellular functions such as cell prolifer-
ation [13], apoptosis [10], and oxidative phosphorylation
[9] in humans and mice. G0S2 is demonstrated to func-
tion as a lipolytic inhibitor in lipid metabolism to regu-
late lipid droplet turnover [12], and lipid droplets were
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identified as a signature of GBM and inversely correlated
with GBM patient survival [14]. Acumulated data have
indicated that G0S2 is also involved in cancer [10, 15–
17], including glioma [18]. However, the function of
G0S2 in cancers is still largely unknown.
Here, by analyzing gene expression profiles in glioma

stem cells (GSCs) treated with fractionated radiation, we
found that G0S2 is significantly upregulated in radiore-
sistant GSCs. We firstly examined G0S2 expression in
glioma cells and clinical specimens. We then assessed
the role of G0S2 in radiation response in glioma
stem-like cells (GSCs) and glioma cell lines. Finally, we
determined the mechanism by which G0S2 enhances
radioresistance in gliomas.

Materials and methods
Cell lines
Glioma U87, LN229, T98G, U251 and LN444 cells were
from ATCC (Manassas, VA, USA). Patient-derived
glioma stem cell (GSC) lines, GSC 84, GSC 157, GSC
1123 and GSC 83 were from Dr. Ichiro Nakano [19].
GSC cells were maintained in DMEM/F12 supplemented
with B27 (1:50), heparin (5 mg/ml), basic FGF (20 ng/
ml), and EGF (20 ng/ml), and glioma cells were cultured
in 10% FBS/DMEM as we previously described [19, 20].

Antibodies and reagents
The following antibodies were used in this study: an anti-
G0S2 (dilution 1:200; Proteintech, IL, USA); an
anti-phospho-Histone H2A.X (Ser139) (dilution1:1000;
EMD Millipore, Billerica, MA, USA); anti-53BP1 (dilu-
tion1:500), anti-RNF168 (dilution1:500), anti-CXCL5 (dilu-
tion 1:1000) and anti-Rad51 (dilution 1:1000)(Abcam,
Cambridge, MA, USA). The secondary antibodies were
from Jackson ImmunoResearch Laboratories (West Grove,
PA, USA). Cell culture media and other reagents were from
Invitrogen (Carlsbad, CA, USA), Sigma-Aldrich (St. Louis,
MO, USA) or Peprotech (Rocky Hill, NJ, USA).

Patient samples
Four fresh samples of human GBM samples and paired
normal brain (peritumoral) tissues were obtained from
Renji Hospital, Shanghai, China.

Plasmids
G0S2 and RNF168 cDNAs were amplified by RT-PCR from
normal human brain tissues and sequenced. The cDNAs
were then subcloned into a lentivirus LeGO-iG vector.
shRNAs for G0S2 and 53BP1 were purchased from
Thermo Fisher Scientific (Waltham, MA, USA). pMT107-
His-Ub was described in our previous report [20].

Cell transfections
Cell transfections were performed as we previously
described [20].

RNA-Seq and differentially expressed gene analysis
Total RNA was extracted and purified using the Qiagen
RNeasy Mini kit (Valencia, CA, USA) according to the
manufacturer’s instructions. The quality of RNA was
assessed by bioanalyzer before sequencing. Libraries for
poly(A)+ RNA were prepared according to the Illumina
protocol. Libraries were sequenced on Illumina HI-SEQ
2500 platforms. The criteria of Differentially Expressed
Genes detection in this study are false discovery rate
(FDR) < 0.01 and a fold change > 2. Gene Expression
Omnibus (GEO) accession code: GSE79772.

Western blotting assay
Western blotting assay was performed as we previously
described [20]. Briefly, cells were lysed, and then the
lysates were centrifuged. Protein concentrations were
determined with a BCA protein assay kit. Equal amounts
of cell lysates (a total of 30 μg of protein) were resolved
in a 2X SDS lysis buffer and analyzed.

Cell apoptosis assay
Cell apoptosis assay was performed using BD Annexin V:
FITC Apoptosis Dectection Kit (BD Biosciences, San Jose,
CA, USA), according to the manufacturer’s instructions.
Cells (5 × 105) were washed in PBS and centrifuged at 200
x g for 5min. The supernatant was aspirated. The cell pel-
let was incubated with annexin-V-FITC (at 1 mg/ml in
Hepes buffer with 1.8mM CaCl2) for 5–10min at room
temperature, and added 1ml Hepes containing 10mg/ml
propidium iodide. Cells were analysed immediately by
flow cytometry.

RNA extraction and quantitative real-time PCR analysis
Total RNA was extracted from indicated cells using Trizol
(Invitrogen, Carlsbad, CA, USA), according to the manufac-
turer’s instructions. Quantitative Real-Time PCR was per-
formed in triplicate using the QuantiTect SYBR Green PCR
Kit (Qiagen, Valencia, CA, USA) on a Rotorgene 6000 series
PCR machine (Corbett Research, Valencia, CA, USA). All
mRNA quantification data were normalized to ACTB, which
was used as an internal control. The following G0S2 primer
sets were used: 5′-GGCCTGATGGAGACTGTGTG-3′
and 5′-CTTGCTTCTGGAGAGCCTGT-3′.

BODIPY 493/503 staining of neutral lipid droplets
GSCs were incubated under normal growth conditions
with 100 μM of oleic acid (OA) (Sigma-Aldrich, catalog
number: O3008) complexed to albumin at a molar ratio
of 8:1for 16 h, and then incubate on BODIPY staining
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solution in the dark for 15 min at 37 °C according to
the manufacturer’s instructions.

Immunofluorescent staining and confocal microscopy
Cells grown on coverslips were permeabilized with 0.3%
Triton X-100-PBS for 15min and blocked with 3% BSA
for 60min. After overnight incubation of primary anti-
bodies at 4 °C, the slides were incubated with Alexa
Fluor-labeled secondary antibodies, and then were further
stained with Hoechst 33258 for 10min and evaluated with
a LSM710 confocal microscope (Zeiss, Germany).

Tumorigenesis studies
Athymic (Ncr nu/nu) female mice at an age of 6–8
weeks (SLAC, Shanghai, China) were used. Mice were
randomly divided into 5–6 per group. Four thousand
GSCs or 1 × 106 human glioma cells were stereotactically
implanted into the brain of the animals as we previously
described [20, 21]. Mice were euthanized when neuro-
pathological symptoms developed.

Radiation treatment
Cells or mice were irradiated at indicated doses with an
X-RAD 160 irradiation system (Precision X-Ray, Inc.,
Kentwood, MI, USA). A radiation shield was used to
protect animal body.

Colony formation assay
Clonogenic survival assay was performed as previously
described [22, 23]. Briefly, approximately 5000 cells after
IR were seeded in a 0.5% Noble Agar top layer with a
bottom layer of 0.8% Noble Agar in each of the triplicate
wells of a 24-well plate. TMZ was added into the top
layer. Medium was added after plating and changed
every 3 days thereafter. Colonies were scored after 2–4
weeks using Olympus SZX12 stereomicroscope.

Statistical analysis
Statistical analyses were performed in a GraphPad Prism
version 5.0 for Windows (GraphPad Software Inc., San
Diego, CA, USA). Survival analysis was carried out by
Kaplan-Meier analysis and was compared with the log-rank
tests. Comparison of treatments was analyzed using
One-way ANOVA with Newman-Keuls post-test or a
paired two-way Student’s t test as we previously described
[21]. P values less than 0.05 were considered significant.

Results
G0S2 is upregulated in radioresistant glioma stem cells
To identify novel mediators of radiation resistance in
GBM, we treated a patient-derived glioma stem cell (GSC)
line (GSC 1123-C) with repeated fractionated radiation to
establish a radioresistant GSC line (GSC 1123-R). As
shown in Additional file 1: Figure S1A, we subjected GSC

1123-C to four rounds of fractionated radiation of 6 Gy
every 4 days (total 24 Gy), generating GSCs with greater
radiation resistance GSC 1123-R, a pool of cells. GSC
1123-R cells at passage 10 or less were further analyzed.
As shown in Additional file 1: Figure S1B and S1C,
annexin V staining for apoptotic cells revealed that only
6.1% ± 0.5% of GSC 1123-R cells underwent apoptosis
during the 48 h after a single-6 Gy dose irradiation, com-
pared with a 11.2% ± 0.4% of GSC 1123-C cells. Clono-
genic assays showed that the surviving fraction of cells
receiving single 4- or 6-Gy IR was significantly higher for
GSC 1123-R cells than for GSC 1123-C cells (Add-
itional file 1: Figure S1D and S1E). This observation dem-
onstrates that GSC 1123-R cells are more resistant to
radiation when compared with GSC 1123-C cells, and
were stable in radiation resistance.
Next, we performed transcriptome analysis of GSC

1123-R and GSC 1123-C using RNA-seq. Differential
gene expression analysis identified 32 genes that were
differentially expressed in GSC 1123-R compared with
GSC 1123-C (false discovery rate < 0.01, and a folder
change > 2), including ALDH1A3 (Aldehyde dehydro-
genase 1A3) and G0S2 (Fig. 1a). To validate these
RNA-seq results, we performed quantitative real-time
PCR (QRT-PCR) analysis of ALDH1A3 and G0S2 ex-
pression. The data showed an agreement in the ex-
pression levels of these genes between the RNA-seq
and QRT-PCR analyses (Fig. 1b). We further con-
firmed that protein expression of G0S2 was higher in
GSC 1123-R cells compared with GSC 1123-C cells
(Fig. 1c). This result suggests that G0S2 could regu-
late glioma radioresistance.
We then assessed expression of G0S2 in glioma cells

and clinical specimens of patients. We downloaded the
GSE67089 dataset [19] and examined G0S2 mRNA ex-
pression in proneural (PN), mesenchymal (MES) sub-
typed GSCs, astrocytes, 16WF neural stem cells (NSCs)
and five established glioma cell lines. As shown in Fig.
1d, G0S2 was expressed at the highest levels in MES
GSCs compared with all other cells. G0S2 was also
co-expressed with MES-associated genes, CD44 and
ALDH1A3 in MES GSCs [19]. The expression level of
G0S2 protein was also the highest in MES GSCs, GSC
1123 and GSC 83 (Fig. 1e) when compared to other cell
lines that were analyzed. In clinical tumor samples, com-
pared to paired normal brain tissues, G0S2 was found
highly expressed in three of four clinical GBM tissue
samples (Fig. 1f ). To support our findings, we down-
loaded GSE7696 [24] and GDS1962 [25] datasets and ex-
amined expression level of G0S2 mRNA in GBM, low
grade (WHO grade II and III) and normal brain tissue
controls included in these datasets. As shown in Fig. 1g
and h, compared with normal brain tissues and low
grade gliomas, the expression level of G0S2 mRNA was
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Fig. 1 G0S2 is upregulated in radioresistant glioma stem cells (GSCs). a Heatmap of mRNA-Seq analysis of differentially expressed genes (2-fold
change and FDR < 0.01) between GSC 1123-C and GSC 1123-R cells. b Quantitative RT-PCR (QRT-PCR) analysis of ALDH1A3 and G0S2 mRNA
expression in GSC 1123-C and GSC 1123-R cells. ACTB (encoding β-actin) was used as a control. Error bars, SD. *, p < 0.05. c Western blotting (WB)
assays of ALDH1A3 and G0S2 expression in GSC 1123-C and GSC 1123-R cells. d Expression level of G0S2 mRNA in proneural (PN) and
mesenchymal (MES) GSCs, neural progenitors (NSC 16WF), normal astrocytes and glioma cell lines from the GSE67089 dataset [19]. e WB
analysis of G0S2 expression in GSC and glioma cells. β-actin was used as a control. f WB analysis of G0S2 expression in four paired
clinical GBM samples and normal brain tissues. g Expression level of G0S2 mRNA is significantly higher in GBM compared with normal
brains. Expression data of G0S2 mRNA were downloaded from the GSE7696 dataset [24] and analyzed. h Expression level of G0S2 mRNA
is correlated with glioma progression. Expression data of G0S2 mRNA were downloaded from GSE1962 dataset [25] and analyzed. i
Expression level of G0S2 mRNA is higher in recurrent GBM compared with paired newly diagnosed GBM. Expression data of G0S2 mRNA
were downloaded from GSE4271 dataset [44] and analyzed. j Kaplan–Meier analysis of patients with high G0S2 mRNA-expressing glioma
tumors versus low G0S2 mRNA-expressing tumors in GBM from the GSE13041 dataset. Statistical analysis was performed by log-rank test
in a GraphPad Prism version 5.0 for Windows. Median survival (in months): low, 12.83; high, 10.58. Black bars, censored data. Data in (B, C,
E and F) represent two independent experiments with similar results
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significantly elevated in GBM, while no significant differ-
ences were measured between normal and low grade gli-
omas. We also found that the expression level of G0S2
was markedly higher in recurrent GBM than paired
newly diagnosed GBM (Fig. 1i).
Last, we examined the relationship of G0S2 expression

and glioma patient survival by Kaplan–Meier survival ana-
lysis using the GSE13041 dataset [26]. Segregating patients
in the GSE13041 dataset by G0S2 expression revealed a
statistically significant worse prognosis for GBM patients
with high G0S2 (> 1.2 x median level) compared with
those with low (< 1.2 x median level) (Fig. 1j). The median
patient survival times of these patients were 10.6 and 12.8
months, respectively (p < 0.05). This result supports that
G0S2 is upregulated in radiation resistant GSCs and may
be involved in glioma progression.

G0S2 mediates lipid droplet turnover and glioma
irradiation response
Since G0S2 is upregulated in radioresistant GSCs, we
determined whether G0S2 is involved in glioma radi-
ation resistance. We used lentivirus-mediated short hair-
pin RNAs (shRNAs) targeting G0S2 or a non-silencing
control to deplete G0S2 in two patient-derived GSCs,
GSC 1123 and GSC 83 (Fig. 2a). We treated GSC 1123/
shG0S2, GSC 1123/shC, GSC 83/shG0S2, and GSC 83/
shC cells with fractionated irradiation (IR) at clinically
relevant doses. As shown in Fig. 2b, knockdown of G0S2
markedly sensitized GSC 1123 and GSC 83 GSC cells to
IR treatments as determined using clonogenic assays.
As G0S2 is a lipolytic inhibitor of adipose triglyceride lip-

ase (ATGL) and regulates lipid droplet turnover [12], we
examined whether G0S2-mediated radioresistance is related
with G0S2 lipolytic inhibitor activity. GSC 1123 and GSC
83 cells transduced with or without G0S2 shRNAs were in-
cubated in normal medium with oleic acid (OA) for 16 h to
promote lipid droplet formation (Fig. 2c). Using BODIPY
493/503, a nonpolar probe selective for neural lipids such
as TAG [27], we identified that lipid droplets in GSC 1123/
shG0S2 and GSC 83/shG0S2 cells were significantly smaller
and lower numerous compared to those in the control cells,
respectively (Fig. 2c and d). We then assessed cell apoptosis
using fluorescence activated cell sort (FACS). As shown in
Fig. 2e and f, knockdown of G0S2 promoted cell apoptosis
in GSC 1123 cells, and IR treatment further increased cell
apoptosis, whereas OA pre-treatment inhibited IR-induced
cell apoptosis in GSC 1123/shG0S2 cells. These results sup-
port that G0S2-enhanced radioresistance is related with
G0S2-regulated lipid droplet stability.
We further assessed the effect of G0S2 depletion on

tumor growth in the brain of mice in response to IR
treatment. Ten days after intracranial implantation of
GSCs, half of the mice of each group (GSC 1123/shC or
GSC 1123/shG0S2) received local IR to the brain for 4

consecutive days at 2.5 Gy/day. Kaplan-Meier survival
assay showed that in mice with GSC 1123/shC tumors
but without IR treatments, median survival was 17.0
days post-implantation. In contrast, the animals with
shG0S2 tumors survived 21.5 days (p < 0.01) (Fig. 2g). IR
treatment had a modest effect on control animal sur-
vival, with median survival times of 17.0 and 23.0 days
(p < 0.01), respectively. However, the combination of
shG0S2 and IR led to the most significant extension of
animal survival with a median survival time of 33.0 days
when compared to a median survival time of 23.0 days
of control mice with IR treatment (p < 0.01) (Fig. 2g).
This result suggests that a significant benefit to knock-
down of G0S2 and radiation over radiation alone.
To further determine the role of G0S2 in glioma response

to IR, we stably overexpressed G0S2 in two glioma cell lines
with low levels of endogenous G0S2 expression (Fig. 3a),
LN229 and U87, and then treated U87/G0S2, U87/Control,
LN229/G0S2, LN229/Control, U251/G0S2, and U251/Con-
trol with fractionated radiation. As shown in Fig. 3b, over-
expression of G0S2 rendered resistance to IR in U87 and
LN229 cells compared with the controls, respectively. Con-
sistent with the results in vitro, in mice that received U87
cells, survival of control animals were significantly extended
in mice with IR treatments, increasing median survival
times from 35.5 to 54.0 days (p < 0.001). In contrast, IR
treatments did not significantly enhance survival of
G0S2-overexpressing glioma tumors (Fig. 3c). The effect of
G0S2 overexpression on temozolonide (TMZ) sensitivity
was also determined. As shown in Fig. 3d, G0S2-overex-
pression modestly enhanced TMZ resistance of U87 and
U251 GBM cells only in the lower effective doses. This data
suggests that G0S2 enhanced survival is greater for radi-
ation responses compared to chemotherapy.

G0S2 regulates glioma cell DNA repair in response to IR
Emerging evidence suggests that activation of DNA re-
pair is an important factor for glioma radiation resist-
ance [4, 5]. We hypothesize that G0S2 also regulates
glioma radiation response through activation of DNA
repair. Since γ-H2AX foci have been widely used as a
sensitive indicator for DNA repair [28, 29], we used im-
munofluorescence staining to test and quantify γ-
H2AX foci-positive cells in response to IR in GSC
1123/shC, GSC 1123/shG0S2–1 and 1123/shG0S2–2
cells. As shown in Fig. 4a and b, after 8 h post-IR with
10 Gy, GSC 1123/shC cells showed γ-H2AX foci forma-
tion. Compared with the controls, knockdown of G0S2
in GSC 1123 cells significantly enhanced IR-induced
γ-H2AX foci-formation (Fig. 4a and b). IR-induced up-
regulation of γ-H2AX was further confirmed by west-
ern blotting assay (Fig. 4c). In contrast, compared with
the controls, overexpression of G0S2 in glioma LN229
and U87 glioma cells significantly prevented IR-induced

Wang et al. Journal of Experimental & Clinical Cancer Research          (2019) 38:147 Page 5 of 13



γ-H2AX foci formation in these cells (Fig. 4d and e).
Additionally, overexpression of G0S2 also inhibited
IR-induced γ-H2AX expression (Fig. 4f ). This data sug-
gests that G0S2 involves glioma response to IR treat-
ment through regulating DNA repair pathways.

G0S2 promotes 53BP1 stability in glioma cells in response
to IR
Accumulated evidence has established critical roles for the
tumor suppressor p53-binding protein 1 (53BP1) in

non-homologous end-joining (NHEJ) double-stand break
(DSB) DNA repair [30–32], and Rad51 in homologous re-
combination (HR) DSB DNA repair [33]. In addition,
53BP1 and Rad51 are important for glioma tumorigenesis
[6, 34]. Based on our results above, we hypothesized that
G0S2 enhances radiation resistance of gliomas through
regulation of Rad51 or 53BP1. As shown in Fig. 5a, LN229/
Control and LN229/G0S2 cells without IR treatment
showed basal levels of γ-H2AX, Rad51 and 53BP1 protein
expression. At 2 h and 8 h post-IR, protein levels of
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γ-H2AX, Rad51 and 53BP1 were elevated in both cell lines.
Compared with LN229/Control cells, the levels of γ-H2AX
protein were significantly lower in LN229/G0S2 cells at 2 h
and 8 h post-IR whereas the levels of 53BP1 protein were
markedly higher (Fig. 5a). The levels of Rad51 protein did
not show any differences in LN229/G0S2 cells compared
with LN229/Control cells at 2 h and 8 h post-IR treatments,
respectively (Fig. 5a). Immunofluorescent staining also indi-
cated that the ratio of 53BP1 foci positive cells were higher
in LN229/G0S2 cells compared with LN229/Control cells
at 8 h post-IR (Fig. 5b and c). We also determined cell
apoptosis in these isogenic LN229 cells in response to IR.
As shown in Fig. 5a, levels of cleaved PARP, a marker of
cell apoptosis [35] were markedly increased in response to
IR. However, levels of cleaved PARP were not affected by
overexpression of G0S2 compared with the controls.
Lastly, we assessed the expression of 53BP1 mRNA in
LN229/G0S2 cells compared with in LN229/Control cells
in response to IR. However, we did not find appreciable
changes of the levels of 53BP1 mRNA in these isogenic
cells (Additional file 2: Figure S2), suggesting that alter-
ations are regulated at the post-translational level. In sum,
these results show that 53BP1 protein expression is regu-
lated by G0S2 in glioma cell responses to IR treatment.

Since 53BP1 stability is regulated by ubiquitination in
DNA repair [36, 37], we tested if G0S2 regulates 53BP1 ubi-
quitination and stability in glioma cells in response to IR.
As shown in Fig. 5d, comparing untreated with irradiated
glioma cells, 53BP1 unbiquitination was significantly
enhanced by IR in control U87 and LN229 cells at 8-h
post-IR. However, G0S2 overexpression inhibited
IR-stimulated 53BP1 ubiquitination compared with the
controls. We subsequently assessed the protein stability of
53BP1 in the presence of cycloheximide (CHX) that blocks
de novo protein synthesis with or without G0S2 overex-
pression in response to IR. As shown in Fig. 5e and f, over-
expression of G0S2 markedly inhibited 53BP1 protein
degradation compared with the control. Moreover, the
treatment with MG132, a proteasome inhibitor, significantly
delayed 53BP1 degradation in G0S2-overexpressed cells.
This data supports the notion that G0S2 regulates ubiquiti-
nation and proteasome-dependent degradation of 53BP1 in
gliomas in response to IR.
To further demonstrate that G0S2 regulates glioma radio-

resistance through 53BP1, we knocked down 53BP1 using
shRNAs in U87/G0S2 and LN229/G0S2 cells and deter-
mined γ-H2AX expression and γ-H2AX foci formation in
response to IR. As shown in Fig. 5g, knockdown of 53BP1
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with similar results. d Clonogenic survival assay. Colonies formed by surviving cells 26 days with TMZ treatment are shown. Error bars, SD. *, p < 0.05
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with two different shRNAs, sh53BP1–1 and sh53BP1–2, in-
creased γ-H2AX protein levels in U87/G0S2 and LN229/
G0S2 cells compared with the controls in response to IR.
Depletion of 53BP1 markedly attenuated γ-H2AX foci cell
formation in U87/G0S2 and LN229/G0S2 cells compared
with the controls (Fig. 5h and i). Moreover, knockdown of
53BP1 enhanced U87/G0S2 cell radiosensitivity compared
with the control (Fig. 5j), and significantly extended animal
survival with median survival times of 38.5 days compared
to 32.5 days of control animals (Fig. 5k). Taken together,

these data support that G0S2 regulates glioma radioresis-
tance through mediating 53BP1 stability in response to IR.

G0S2 activates mTOR-S6K signaling and thereby inhibits
RNF168 expression and RNF168-mediated 53BP1
ubiquitination in response to IR
E3 ubiquitin ligase RNF168 mediates 53BP1 stability and
sensitivity of cancer cells to DNA damaging agents and
irradiation [37, 38], and RNF168 expression is inhibited
by rapamycin (mTOR)-ribosomal S6 kinase (S6K)
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signaling [38]. Moreover, exogenously supplied oleic acid
(OA) activates mTOR-S6K signaling [39]. We hypothesized
that G0S2 reduces lipid droplet turnover and thereby acti-
vates the mechanistic target of rapamycin (mTOR)-riboso-
mal S6 kinase (S6K) signaling, reduces E3 ligase RNF168
expression, inhibits RNF168-mediated protein ubiquitina-
tion of 53BP1, and increases 53BP1 stability in response to
IR. To assess this, we detected effects of G0S2 overexpres-
sion on S6K phosphorylation (p-S6K) and RNF168 protein
expression in U87 and LN229 cells. As shown in Fig. 6a,
overexpression of G0S2 significantly increased p-S6K levels
and decreased RNF168 protein expression. We then transi-
ently transfected RNF168 into U87/G0S2 and LN229/
G0S2 cells, and found that ectopic expression of RNF168
inhibited 53BP1 expression (Fig. 6b) and 53BP foci cell for-
mation (Fig. 6c and d) upregulated by G0S2 overexpression
in indicated glioma cells compared to the controls at 8 h
post IR, whereas it increased γ-H2AX expression (Fig. 6b)
and γ-H2AX foci cell formation inhibited by G0S2 overex-
pression (Fig. 6c and e). We further found that overexpres-
sion of RNF168 enhanced 53BP1 ubiquitination inhibited
by G0S2 overexpression in U87 and LN229 cells in re-
sponse to IR (Fig. 6f). Our results demonstrate that G0S2
regulates glioma radioresistance through mTOR/S6K/
RNF168/53BP1-regulated DNA repair.

Discussion
In this study, we described a novel mechanism of radiation
resistance in GBM linked to upregulation of G0S2. G0S2 is
upregulated in radioresistant GSCs and elevated in clinical
GBM biopsies. Modulation of G0S2 expression affects
GBM responses to IR treatments in vitro and in vivo
through mTOR/S6K/RNF168/53BP1-regulated DNA
repair, suggesting G0S2 as a potential mediator of glioma
responses to IR. Moreover, G0S2-induced radioresistance
is related with G0S2-mediated lipid droplet stability.
Our data demonstrate for the first time that G0S2 func-

tions as a mediator of radiation resistance in gliomas. G0S2
is a 12 kDa small protein that was initially shown to be in-
volved in cell cycle progression [7, 8]. G0S2 was then char-
acterized as an inhibitor of adipose triglyceride lipase
(ATGL) to regulate lipolysis [12]. Recently, G0S2 was de-
scribed as a positive regulator of hypoxia-induced ATP pro-
duction [9]. G0S2 was rapidly and transiently induced by
hypoxia, and physiological enhancement of G0S2 expression
prevented cells from ATP depletion and induced a cellular
tolerance for hypoxia stress [9]. G0S2 also was identified as
a NF-κB-dependent downstream factor of TNF-α in primary
foreskin fibroblasts [10]. PN-MES transition of GSCs pro-
moted radioresistance in a TNF-α/NF-kB-dependent man-
ner [40]. Here, we show that G0S2 modulates radiation
responses of gliomas. Expression level of G0S2 was upregu-
lated in radioresistant GSCs. Knockdown of G0S2 by
shRNAs sensitized glioma cells to IR treatments in vitro and

glioma tumorigenicity. In contrast, overexpression of G0S2
increased the resistance of glioma cell and tumor to IR treat-
ments, demonstrating an undescribed function of G0S2 in
glioma radioresistance.
Our results suggest that G0S2 mediates glioma

radioresistance through 53BP1-regulated DNA repair. Ac-
cumulated data demonstrate that 53BP1 is critical in radi-
ation response of tumors [36, 37], including glioma [6].
Depletion of endogenous 53BP1 sensitized glioma cells to
IR treatment in vitro and in vivo [6]. Moreover, 53BP1 sta-
bility was shown to be regulated by ubiquitination in re-
sponse to irradiation [31, 37]. Here, our results support this
notion and show that G0S2 overexpression inhibited 53BP1
ubiquitination and upregulated 53BP1 foci cell formation in
glioma cells, and thereby reduced γ-H2AX expression and
γ-H2AX foci cell formation in response to irradiation. Con-
sistent with this, depletion of 53BP1 inhibited G0S2
overexpression-induced radioresistance.
Our results also suggest that G0S2 mediates 53BP1

ubiquitination and stability through mTOR/S6K
signaling-regulated RNF168 expression. 53BP1 stability
is regulated by E3 ubiquitin ligase RNF168 in DNA dam-
age [37, 38]. mTOR-S6K phosphorylates RNF168 at
Ser60 and thereby inhibits its E3 ligase activity, acceler-
ates its proteolysis, and impairs its function in DNA
damage response [38]. Additionally, mTOR-S6K signal-
ing is activated by exogenously supplied oleic acid (OA),
a monounsaturated omega-9 fatty acid [39]. In this
study, we show that lipolytic inhibitor G0S2 reduces
lipid droplet turnover and thereby activates mTOR-S6K
signaling, inhibits E3 ligase RNF168 expression and
RNF168- mediated 53BP1 protein ubiquitination in re-
sponse to IR. Thus, our data suggest that G0S2 regulates
53BP1 stability and DNA repair through mTOR-S6K
signaling-mediated RNF168.
Previous studies have shown G0S2 to be both onco-

genic and tumor suppressive. G0S2 was found epigenet-
ically silenced in lung cancer and breast cancer lines
[10], and engineered expression of G0S2 induced cell
apoptosis through G0S2 binding to and antagonizing
Bcl-2 in a lung and a colon cancer cell line [10] but not
in breast cancer cell lines [41]. In a chronic myeloid
leukemia cell line, K562, G0S2 gene was found to be si-
lenced by gene methylation, and upregulation of G0S2
expression by retroviral transduction or treatment with
5-azacytidine inhibited the proliferation of K562 cells
both in vitro and in a xenograft model [42]. Although
Zagani et al. [43] demonstrated that Eμ-Myc transgenic
mouse model was not the correct model to conduct
studies on G0S2, they found deletion of the G0S2 gene
in mice did not show any effect on the latency of can-
cer progression in the Eμ-Myc model of lymphoma
[43]. By analyzing The Cancer Genome Atlas (TCGA),
Fukunaga et al. showed that pateients in the higher
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G0S2 expression group had a poorer prognosis [18].
They also demonstrated that G0S2 expression levels
were higher in recurrent tumor specimens that that at
the initial diagnosis in the same patients [18]. Here in
this study, we show that G0S2 promotes tumor growth in
gliomas. Compared with paired normal brain tissues, we
further found that the level of G0S2 expression was ele-
vated in clinical tumor specimens. Patients with high level
of G0S2 expression in GBM have a poorer prognosis com-
pared with those with low level of G0S2 expression. Our
analysis of GSE7969 and GDS1962 datasets supports this
observation demonstrating that G0S2 expression was

increased in GBM tumors compared with normal brain
tissues. By using genetic approaches targeting G0S2, we
found that shRNA knockdown of G0S2 inhibited glioma
tumorigenesis in vivo. Conversely, overexpression of G0S2
promoted tumor growth in orthotopic glioma models. The
differences between our results and some of earlier studies
of G0S2 in other cancers could reflect context-dependent
mechanisms of action in different type of cancers.
That G0S2 functions as an oncogene or tumor suppres-

sor may be related with G0S2 lipolytic inhibitor activity.
G0S2 suppressed mouse embryonic fibroblasts (MEF)
oncogenic transformation induced by overexpression of
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bars, SD. *, p < 0.05. f RNF168 overexpression increased 53BP1 ubiquitination inhibited by G0S2 overexpression in response to IR. His-Ub and HA-RNF168
were transiently transfected into glioma U87/G0S2 and LN229/G0S2 cells. Data in (a, b and f) represent two to three independent experiments with
similar results
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HRAS or EGFR, which was independent of G0S2 lipolytic
inhibitor function [41]. Lipid droplets were shown to be in-
versely correlated with GBM patient survival [14]. Deple-
tion of SOAT1, an inhibitor of lipid droplet formation,
suppressed GBM growth [14]. In this study, we demon-
strate that G0S2-induced radioresistance is related with
G0S2-regulated lipid droplet stability in gliomas.
Knockdown of G0S2 promoted lipid droplet turnover,
cell apoptosis, inhibited radioresistance in GSCs, and
extended xenograft tumor animal survival. Consistent
with this, oleic acid treatment promoted lipid droplet
formation and reduced G0S2 shRNA-inhibited cell
apoptosis induced by IR. The molecular insight of rela-
tion between lipid droplet turnover and tumorigenicity
warrants further inverstigation.

Conclusions
In summary, our results demonstrate a previously unknown
function of G0S2 in enhancing glioma radioresistance
through regulation of 53BP1 protein stability, which is
related with G0S2 lipolytic inhibitor function. The newly
elucidated roles of G0S2 in glioma radioresistance also pro-
vide a strong rationale for targeting this molecule in clinical
treatment of human gliomas.

Additional files

Additional file 1: Figure S1. Establish redioresistant glioma stem cells.
A. Experiment protocol for establishment of radioresistant GSCs. B. Flow
cytometric analysis for GSC 1123-C and GSC 1123-R cells stained with
annexin V and propidium iodide at indicated time points after exposure
to 6 Gy of ionization radiation or not. C. Quantification of apoptotic cells
from B. Error bars SD. *, p < 0.05. D. Representative images of clonogenic
survival assay of GSC 1123-C and GSC 1123-R cells. Colonies formed by
surviving cells 15 days after IR are shown. Scale bars. 1 mm. E. Quantifica-
tion of colonies in D. Error bars, SD. *, p < 0.05. (EPS 6598 kb)

Additional file 2: Figure S2. Quantitative real-time-PCR (QRT-PCR) ana-
lysis of 53BP1 mRNA expression in LN229/G0S2 and LN229/Control cells
after IR treatment. ACTB was used as an internal control. Errors bars, SD. *,
p < 0.05. (EPS 837 kb)
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