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Abstract

Tumor microenvironment (TME) is the internal environment in which tumor cells survive, consisting of tumor cells,
fibroblasts, endothelial cells, and immune cells, as well as non-cellular components, such as exosomes and
cytokines. Exosomes are tiny extracellular vesicles (40-160nm) containing active substances, such as proteins, lipids
and nucleic acids. Exosomes carry biologically active miRNAs to shuttle between tumor cells and TME, thereby
affecting tumor development. Tumor-derived exosomal miRNAs induce matrix reprogramming in TME, creating a
microenvironment that is conducive to tumor growth, metastasis, immune escape and chemotherapy resistance. In
this review, we updated the role of exosomal miRNAs in the process of TME reshaping.
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Background
TME is a complex ecosystem and an important player in all
stages of tumorigenesis. TME consists of cancer cells,
cancer-associated fibroblasts (CAFs), endothelial cells, im-
mune cells, extracellular matrix (ECM), microvessels, and
biomolecules infiltrated [1–5]. Compared with the normal
internal environment, TME is more prominently character-
ized by hypoxia. Hypoxia caused by rapid appreciation of
tumor cells leads to release of matrix metalloproteinases
(MMPs), hypoxia inducible factor-1α (HIF-1α), vascular
endothelial growth factor (VEGF) and other stimulating fac-
tors. Reshaping TME provides a niche for interaction be-
tween tumor cells and surrounding fibroblasts, endothelial
cells, and immune cells [4, 6–9]. These cells interact with
tumor cells through TME to induce a variety of biological
events, such as appreciation, migration, angiogenesis,

immunosuppression, and drug resistance for tumor develop-
ment [10–14].
MicroRNAs (miRNAs) are a class of short ncRNAs

with 19-25 nucleotides in length [15]. Through regulat-
ing gene expression, miRNAs regulate a variety of im-
portant biological functions, such as proliferation,
apoptosis, differentiation, migration, invasion and drug
resistance. Genetic or epigenetic changes in cancer cells
can induce abnormal expression of miRNAs, thus caus-
ing abnormal expression of their target genes [16–21].
miRNAs function through 6-7 base complementary
binding to target mRNA and inhibition of target gene
expression at the level of protein [22–24]. From the lit-
erature, miRNAs can work as oncogenes to promote the
formation and biological changes of TME [25–28]. For
example, miR-9 and miR-200s induce normal fibroblasts
(NFs) in TME to transform into CAFs and promote
tumor metastasis [29, 30], miR-526b and miR-655 pro-
mote angiogenesis and lymphangiogenesis in TME [31],
and miR-340-5p and miR-561 induce formation of im-
munosuppressive microenvironment [32, 33]. How these
biologically active miRNAs are transmitted and function
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in cells and TME is an important breakthrough in the
study of TME.
Recently, exosomes are considered to be the key medi-

ators responsible for the heterogeneity of the TME and
carry biologically active cargos, such as protein, metabo-
lites, nucleic acids (e.g. ncRNAs), to shuttle between
tumor cells and TME, thereby affecting tumor develop-
ment [34–37]. Among the biologically active substances,
tumor-derived exosomal miRNAs can induce TME het-
erogeneity while changes in TME promote tumor pro-
gression. This paradigm, similar to a positive feedback
loop, makes the uncontrollable growth of the tumor
[38–43]. In this article we updated the interaction of
exosomal miRNAs and TME.

The overview of microenvironment and exosomes
in cancer
The components of tumor microenvironment
Growth, metastasis and treatment resistance of tumors
are inseparable from the support of TME, a dynamic
ecosystem containing multiple cell types and non-
cellular components. Some of the basic biological behav-
ioral features of tumors, such as proliferation, migration,
invasion, apoptosis inhibition, immune evasion, angio-
genesis, and metabolic reprogramming are all affected by
TME. The complex communication network in TME is
the basis for the regulation of these biological functions,
including autocrine and paracrine. Exocrine-mediated
communication is an important emerging pathway in
paracrine signal transduction [2].
Non-tumor cells in TME, such as fibroblasts, endothelial

cells and immune cells, are affected by tumor-related ac-
tive substances, and their original cellular functions
undergo tumor-like changes, constantly adapt to new en-
vironments and promote tumor growth. Due to the influ-
ence of TME, NFs are activated into CAFs. CAFs are the
most abundant stromal cells in TME, producing an ECM
that differs from normal ECM in terms of stiffness and
alignment, which support tumor cells migration [9]. Hyp-
oxia in TME causes tumor to secrete angiogenic factors to
act on endothelial cells and promote angiogenesis [44, 45].
The immune cells in TME show diversity, and they block
the immune response. The inflammatory molecules
around the tumor cells also cause the system to fail to
recognize and eliminate cancer cells [38, 46, 47]. These
make TME a complex heterogeneous environment and
often leads to an uncontrollable trend in the development
of tumors [48, 49].

The biosynthesis and function of extracellular vesicles
and exosomes
Extracellular vesicles (EVs) are nano-sized lipid bilayer
vesicles (40-1000nm in diameter) released by cells or de-
tached from the plasma membrane [50, 51]. EVs are

generally divided into two categories: ectosomes and
exosomes. Ectosomes are vesicles formed from the
plasma membrane sprouting outwards, including micro-
vesicles, microparticles and large vesicles with a size
range of 50-1000nm in diameter. Exosomes are small
extracellular vesicle (sEVs) in a size range of 40-160nm
in diameter with an endosomal origin. EVs have bio-
logical activities and mediate intercellular communica-
tion [36]. During tumor progression, EVs derived from
different cells (tumor cells, stromal cells, immune cells,
etc.) play an important role and participate in the forma-
tion of TME [44, 52–54].
In this review, we mainly focused on the exosomes.

However, because of absence of strict standards for exo-
some isolation and purification methods, the Inter-
national Society for Extracellular Vesicles encouraged
researchers to establish minimum requirements and
strictly control the integrity, size, molecular cargo, and
functionality of the vesicle population [38, 55–57], so
that we narrowed the research of exosomes based on the
widely accepted methods. Exosomes are small extracellu-
lar vesicles (40-160 nm in diameter) formed by dynamic
exocytosis [58–60]. Exosomes originate from the luminal
cavity or early intracellular bodies in the circulation
pathway of the plasma membrane. These membranes or
early intracellular bodies will sag inward to form intra-
luminal vesicles (ILV), which will further develop into
multivesicular bodies (MVB) [61, 62]. In general, multi-
vesicular bodies are fused with lysosomes to be de-
graded, but some multivesicular bodies are fused to the
cell surface under the traction of intracellular molecular
motors and eventually secreted outside the cell, which
called exosomes [36, 63].
Exosomes are involved in the biology of many diseases.

Exosomes can regulate the immune response and in-
flammation, possibly through transfer and presentation
of antigen peptides, to induce expression of inflamma-
tory genes in recipient cells [64, 65]. In metabolism and
cardiovascular diseases, exosomes induce metabolic dis-
orders in adipocytes and islet cells [66, 67]. Exosomes
may impair the formation of neurotoxic oligomers and
promote neurodegeneration [68–70]. More importantly,
exosomes are associated with tumor growth, angiogen-
esis, metastasis, sensitivity to chemotherapy, and im-
mune evasion [47, 71, 72].

miRNAs sorting to exosomes
Exosomes contain a variety of biologically active mole-
cules, such as proteins, lipids and nucleic acids. miRNAs
are one of them and play an important role in intercellular
cellular transport and signal transduction [73–75]. Exo-
somes can transfer metabolites and promote communica-
tion between different cells through the exchange of
exosomal miRNAs, and then play an immune response,
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tumor microenvironment remodeling and tumor metasta-
sis during tumor progression [38, 76–78]. Many reports
indicate that exosomes affect the biology of recipient cells
by transferring miRNAs from donor cells to recipient
cells, but the mechanism of how exosomes sorting miR-
NAs has not been thoroughly solved. According to exo-
somes database (www.exocarta.org), 2838 miRNAs are
listed in the latest update. Among the 2588 annotated
miRNAs in the human genome, 593 miRNAs have been
detected in exosomes [79]. Four potential mechanisms for
sorting miRNAs into exosomes were proposed. The
neural sphingomyelinase 2 (nSMase2) was the first mol-
ecule found to be linked with miRNAs packaging into
exosomes. Overexpression of nSMase2 leads to an in-
creased number of miRNAs loaded into exosomes. This
suggests that the neural sphingomyelinase 2 (nSMase2)-
dependent pathway is associated with the sorting of exo-
somal miRNAs [80]. The second is based on the control
of the sumoylated form of heterogeneous nuclear ribonu-
cleoprotein (hnRNP). Sumoylated hnRNPA2B1 controls
the sorting of exosomal miRNAs by recognizing the
GGAG and GGCU base sequence of the 3 ’end region of
miRNAs [81, 82]. The third is that most exosomal miR-
NAs isolated from urine or B cells were uridylated at 3 ′
ends. The sorting of miRNAs to ILV may also require
hydrophobic modification and GGAG base sequence at 3
′ end of the miRNAs. This indicates that the 3 ’ends of
miRNAs may be involved in directing miRNAs into exo-
somes [83, 84]. Finally, there are reports that Argonaute
proteins (functional carriers of miRNAs) are related to the
selection of exosomal miRNAs. Knocking out Argonaute
2 (Ago2) reduces the contents of certain exosomal miR-
NAs, such as miR-142-3p, miR-150, and miR-451 [85, 86].
In summary, some specific protein complexes and miR-
NAs own structural characteristics have affects the miR-
NAs' transfer to exosomes, but the complete sorting
mechanism and process have not yet been elucidated and
need further exploration.

The role of exosomal miRNAs in TME
During the progression of the tumor, primary tumor-
derived exosomal miRNAs can be transferred to non-
malignant cells in the tumor microenvironment to induce
heterogeneity [50, 87–89]. At the same time, with the
changes in biological activity of non-malignant cells in the
tumor microenvironment, non-malignant cells can also
secrete exosomal miRNAs to further regulate tumor cells
or other microenvironmental components [40, 90]. In
most studies, the stromal cell receptors of cancer-derived
exosomal miRNAs are cancer-associated fibroblasts
(CAFs), endothelial cells and immune cells dynamically
regulate each other in TME. Exosomal miRNAs on the
heterogeneity of TME is mainly reflected in the fact that
exosomal miRNAs can activate cancer-associated

fibroblasts and thus reshape ECM, which is beneficial to
the spread of tumor cells. Exosomal miRNAs promote
endothelial cells to form tubes, and the formation of abun-
dant vascular networks is conducive to the metabolism
and survival of tumor cells. Exosomal miRNAs also medi-
ate inflammatory cell infiltration and immune escape,
which is conducive to colonization and proliferation of
tumor cells. Through these macroscopic effects, exosomal
miRNAs can make TME more suitable for tumor develop-
ment [91]. Herein, we focused on the roles of exosomal
miRNAs in following aspects.

Reshaping ECM to promote tumor progression
Extracellular matrix (ECM) is composed of protein and
carbohydrates, with the functions of connection, support,
water retention, anti-stress and protection. ECM supports
the basic life activities of cells, such as proliferation, differ-
entiation, and migration [92, 93]. However, tumors are
often accompanied by dysfunction of ECM. Tumor devel-
opment is a complex process involving dynamic interac-
tions between malignant cells and their surrounding
stroma composed of cells and non-cellular components.
Within the stromal, fibroblasts represent not only the
major cell types, but also the main source of extracellular
matrix (ECM) and soluble factors [94, 95]. Normal fibro-
blasts exert multiple inhibitory functions against cancer-
initiating and metastasis through direct cell-cell contact,
paracrine signaling, and ECM integrity [96]. However,
tumor-derived exosomal miRNAs can trigger a series of
tumor-promoting signals, inducing normal fibroblasts
(NFs) transformation into CAFs, which changes the ori-
ginal ECM physiological state, thus creating the optimal
niche for the widespread growth of cancer cells [96, 97].
In tumors, tumor cell-derived exosomal miRNAs are

highly diverse and are capable of differentiating NFs into
CAFs through a variety of signaling pathways. Exosomal
miRNAs from cancer cells elicit a parenchymal signaling
response at the receptor site and effectively inducing
fibroblast activation, such as α-smooth muscle actin (α-
SMA), fibroblast growth factor 2 (FGF2) and fibroblast
activating protein (FAP) expression [98–100]. Matrix
composed of CAFs is conducive to the proliferation and
migration of tumor cells. In ovarian cancer, the cancer-
related exosomal miR-124 targets sphingosine kinase 1
(SPHK1) and upregulates α-SMA and FAP, which differ-
entiates NFs into CAFs and regulates CAFs migration
and invasion [101, 102]. High expression of exosomal
miR-27b-3p and miR-214-3p in myeloma cells triggers
proliferation and apoptotic resistance of bone marrow fi-
broblasts via the FBXW7 and PTEN/AKT/GSK3 path-
ways. At the same time, miR-27-3p and miR-214-3p
were up-regulated in fibroblasts co-cultured with mye-
loma, and activated expression of fibroblast activation
markers α-SMA and FAP. The biological behavior of
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bone marrow fibroblasts is programmed to alter the
myeloma microenvironment [103, 104]. Exosomal miR-
NAs in digestive system tumors also reshaped ECM in ad-
jacent sites and promote tumor progression. Exosomal
miR-27a derived from gastric cancer (GC) is transported
to fibroblasts, and thus results in decreased expression of
CSRP2, enhanced expression of α-SMA, and differenti-
ation of fibroblasts into CAFs [105]. Exosomal miR-10b
secreted by colorectal cancer cells can be transferred to fi-
broblasts, where it inhibits PIK3CA expression and PI3K/
Akt/mTOR pathway activity, promote expression of TGF-
β and α-SMA, and enable fibroblasts to acquire the char-
acteristics of CAFs [106, 107]. These changes promote the
proliferation, migration and invasion of tumor cells. Exo-
somal miRNAs have found similar effects in colorectal
cancer (CRC). Exosomal miR-2149-5p, miR-6737-5p, and
miR-6819-5p can inhibit the expression of TP53 in fibro-
blasts to promote tumor proliferation [108].
In addition, changes in ECM also affect angiogenesis, in-

flammatory response, and metabolic reprogramming.
Phenomenon was shown in melanoma where highly
expressed exosomal miR-155 inhibits the expression of
SOCS1, activates the JAK2/STAT3 pathway, up-regulates
the expression of FGF2, VEGFA and MMP9 in CAFs, and
promotes the formation of blood vessels in the tumor
[109, 110]. In hepatocarcinoma (HCC), exosomal miR-21
is transferred to CAFs, directly targeting PTEN to activate

PDK1/Akt signaling, up-regulating VEGF, MMP2, MMP9,
bFGF, and TGF-beta and thus promoting angiogenesis
[111, 112]. Exosomal miR-1247 targets B4GALT3 and ac-
tivates the beta1-integrin-NF-kappaB signaling pathway,
which activates CAFs to secrete the inflammatory cyto-
kines IL-6 and IL-8 and induce inflammatory infiltration
[113]. Exosomal miR-9 and miR-105 are derived from
breast cancer; the former promotes the activation of NFs
into CAFs by affecting MMP1, EFEMP1 and COL1A1
[30], and the latter activates MYC signal transduction to
induce metabolic reprogramming of CAFs, and adapts
CAFs to different metabolic environments, promoting
tumor growth [18]. Similar reports include miRNA-142-
3p in EVs secreted by lung cancer cells, which promotes
the cancer phenotype of lung fibroblasts [114] (Fig. 1 and
Table 1).
These researches show that cancer-derived exosomal

miRNAs can affect the physiological function of stroma.
Conversely, a reciprocal exosomal miRNAs exchange
from the stroma to cancer cells also modulates cancer
progression. For example, CAFs-derived exosomal miR-
148b in the matrix surrounding endometrial cancer can
up-regulate DNMT1, leading to changes in EMT-related
molecules like E-cadherin, N-cadherin, vimentin, and fi-
bronectin and promoting cancer cell metastasis [65].
CAFs are resistant to cisplatin and deliver exosomal
miR-196a, which binds to target CDKN1B and ING5,

Fig. 1. The mechanism of ECM reshaping by exosomal miRNAs . Exosomes secreted by the primary tumor cells are taken up by the receptor NFs,
wherein the exosomal miRNAs (miR-155, miR-21, miR-124, etc.) target the proteins (SOCS1, PTEN, SPHK1, etc.) and activate the molecules (FGF2,
bFGF, TGF-β, α-SMA, FAP, etc.). These exosomal miRNAs reshape the ECM by inducing the conversion of normal fibroblasts (NFs) into cancer-
associated fibroblasts (CAFs).
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mediates the expressions of p27, CDK2, CDK4, Cyclin
D1 and Cyclin E1 and thus induces cisplatin resistance
to cancer cells [115]. CAFs-derived exosomal miR-522
reduces the contents of lipid-ROS in gastric cancer cells
by inhibiting the expression of ALOX15, which leads to
a decrease in the sensitivity of gastric cancer to chemo-
therapy [12].
Compared with NFs, CAFs have the characteristics of

excessive proliferation and unique cytokines. This not
only induces the formation of new blood vessels, but
also promotes the entry of immune cells into TME,
which greatly changes the physiological function of ECM
to support tumor proliferation, metastasis and treatment
resistance [116, 117]. However, cells involved in ECM
formation are not only fibroblasts, but also chondro-
cytes, osteoblasts, and certain epithelial cells. Exosomal
miRNA remodeling of ECM can also be achieved by af-
fecting the function of these cells. For example, studies
have shown that cancer-secreted exosomal miR-940 pro-
motes osteogenic differentiation of mesenchymal cells by
targeting ARHGAP1 and FAM134A, and then induces
osteogenic phenotypes in the bone metastasis micro-
environment and promotes tumor metastasis [118]. But
research on the interaction of exosomal miRNAs with
these cells is not comprehensive. At the same time, the
composition of ECM not only includes collagen (synthe-
sized by fibroblasts, chondrocytes, osteoblasts and cer-
tain epithelial cells and secreted outside the cell), but
also includes non-collagen glycoproteins, glycans and
elastin. Whether exosomal miRNAs reshape ECM by af-
fecting these ingredients remains to be proven.

Promoting angiogenesis to enhance proliferation and
migration
Tumor growth depends to a large extent on the metab-
olism of cancer cells [119]. The disordered distribution
of tumor blood vessels and the loss of normal vascular
function lead to local hypoxia and impaired nutrient
supplies. At the same time, the distance gradient be-
tween different vascular beds also leads to the imbalance
of drug distribution and absorption [120]. These changes
of vascular network promote the formation of internal
microenvironment and intratumoral heterogeneity.
The exosomal miRNAs can be taken up by the vascu-

lar endothelial cells to change the original distribution
and physiological functions of the blood vessels in the
microenvironment. Exosomal miRNAs secreted by
tumor cells have been reported to promote angiogenesis
in TME. In nasopharyngeal carcinoma (NPC), exosomal
miR-23a mediates angiogenesis by repressing TSGA10
and phosphorylation of ERK, which enhances tube gen-
eration ability of human umbilical vein endothelial cells
(HUVECs) in vitro and in vivo [121, 122]. Glioma stem
cell-derived exosomal miR-21 stimulates VEGF/p-FLK/

VEGFR2 signaling pathway to promote angiogenesis in
endothelial cells [123, 124]. The exosomal miR-210-3p
secreted by HCC cells is transferred to endothelial cells,
targeting SMAD4 and STAT6 to promote angiogenesis,
and it is found that the higher miR-210-3p in the serum
of HCC patients is positively correlated with the micro-
vessel density in HCC tissues [125]. EVs and sEVs-
mediated miRNAs transfer also promotes angiogenesis
in TME. In NSCLC, EVs-mediated miR-142-3p trans-
ferred to endothelial cells and fibroblasts, inhibiting the
expression of TGFβR1, PDGFR-β and p-SMAD2/3 to
promote angiogenesis [114]. Human ovarian carcinoma
cell line SKOV-3 secretes miR-141-3p in small extracel-
lular vesicles (sEVs), which activates the JAK-STAT3
pathway in endothelial cells and promotes angiogenesis
[126]. Besides, exosomal miRNAs that promote angio-
genesis can also be derived from other cells. Exosomal
miR-100 from human mesenchymal stem cells (MSCs)
affects the mTOR/HIF-1α/VEGF signaling axis to pro-
mote angiogenesis in breast cancer [127].
The rich vascular network in TME is beneficial to the

proliferation and metastasis of cancer cells. Exosomal
miR-619-5p inhibits the expression of RCAN1.4, pro-
motes angiogenesis, and facilitates the growth and me-
tastasis of cancer cells [128]. Recent studies have shown
that circulating exosomal miR-205 expression is elevated
in OC patients and is related to microvessel density, and
exosomal miR-205 induces angiogenesis via the PTEN-
AKT pathway, and promotes tumor cell proliferation
in vitro [129]. Changes in the vascular microenviron-
ment are not only in the number of blood vessels, but
also in vascular permeability, adhesion, and ability to
form a ring. The colorectal cancer-derived exosomal
miR-25-3p can down-regulate KLF2 and KLF4, and
KLF2 affects the tube formation ability of HUVECs
through the VEGFR2/p-Erk/p-Akt pathway while KLF4
activates ZO-1/Occludin/Claudin5 pathway to affect the
growth of the aortic rings, which in turn changes the
vascular microenvironment [130, 131]. Under hypoxic
conditions, lung cancer cell-derived exosomal miR-23a
directly inhibits prolyl hydroxylase 1 and 2 (PHD1 and
PHD2) and accumulates HIF-1α in endothelial cells, in-
ducing angiogenesis, and exosomal miR- 23a also in-
hibits ZO-1, increasing vascular permeability and
transendothelial migration of cancer cells [132]. In hu-
man glioma, exosomal miR-9 promotes angiogenesis,
vascular permeability and adhesion through the MYC/
OCT4 pathway [133] (Fig. 2).
Exosomal miRNAs influence on vascular network is

not only promotion, but sometimes also play an inhibi-
tory effect. Studies have found that exosomal miR-451
acts as a tumor suppressor and targets LPIN1 to induce
apoptosis both in HCC cell lines and HUVECs. In
addition, miR-451a suppresses HUVECs tube formation
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and vascular permeability [134]. NPC-derived exosomal
miR-9 up-regulates MDK and activates the PDK/Akt sig-
naling pathway to inhibit the formation of endothelial
cells. High expression of MDK in NPC tumor samples is
positively correlated with microvessel density, revealing
the anti-angiogenic effects of exosomal miR-9 in the de-
velopment of nasopharyngeal carcinoma [135]. Except
for tumor-derived exosomal miRNAs, which inhibit
angiogenesis, non-tumor cells have similar functions.
miR-15a, miR-181b, miR-320c, and miR-874 in EVs re-
leased by human liver stem-like cells (HLSCs) possess
an anti-tumorigenic effect by inhibiting tumor angiogen-
esis [136]. According to these reports, it can be found
that exosomal miRNAs can regulate the vascular net-
work in TME through multiple signaling pathways, but
these molecular mechanisms have not been fully eluci-
dated and need to be explored in the future.

Promoting the formation of immunosuppressive
environment
In the TME, immune cells including lymphocytes, den-
dritic cells, and macrophages, regularly infiltrate tumor
tissues and adjacent sites. Through multiple signal trans-
duction pathways mediated by exosomal miRNAs, tumor
cells can inhibit the maturation and differentiation of
immune cells, thereby creating an immune microenvir-
onment suitable for tumor growth [41, 137, 138]. At the
same time, in hypoxia and low nutrient supplies in the

microenvironment, tumor cells often secrete metabolic
by-products, such as lactic acid, nitric oxide, reactive
oxygen species, prostaglandins and arachidonic acid,
leading to the formation of an inflammatory microenvir-
onment [139, 140]. Changes in the biological functions
of various immune cells in microenvironment and the
production of inflammatory mediators result in tumor
cell escaping from immune surveillance.
Dendritic cells (DCs) are the most powerful profes-

sional antigen presenting cells in the body. Mature DCs
can effectively activate the initial T cells and maintain
the central part of the immune response [141, 142].
Tumor-derived and endogenous exosomal miRNAs can
regulate cross-presentation in dendritic cells and with
other immune cells, this exomsomal miRNAs-mediated
intercellular communication may affect the maturation
of DCs [143, 144]. In pancreatic cancer, exosomal miR-
212-3p targets MHC class II TF RFXAP resulting in re-
duced expression of HLA-DR, -DP, and -DQ molecules
and thus interfering with the function of DCs cells [145,
146]. Exosomal miR-203 is able to reduce the expression
of TLR4, TNF-α and IL-12 in DCs, affecting the activa-
tion of natural killer cells (NKs) [147]. Up-regulated exo-
somal miR-let-7i in tumor-derived exosomes (TEX) can
be taken up by mDCs, resulting in changes in intracellu-
lar levels of IL-6, IL-17, IL-1b, TGFbeta, SOCS1, KLRK1,
IFNγ, and TLR4, thereby suppressing the immune re-
sponse [148]. miRNAs from regulatory T cells (Treg)

Fig. 2. The mechanism of angiogenesis promoted by exosomal miRNAs. Exosomes secreted by the primary tumor cells are taken up by the
receptor endothelial cells, wherein the exosomal miRNAs (miR-23a, miR-25-3p, miR-205, etc.) target the proteins (TSGA10, KLF2, PTEN, etc.) and
activate the molecules (VEGFR2, p-AKT, p-ERK, etc.). These exosomal miRNAs promote angiogenesis by regulating the number of local blood
vessels and physiological functions.
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can also affect the immune response, EVs-mediated
miR-150-5p and miR-142-3p can be transferred to DCs
to induce a cell-refractory phenotype, resulting in in-
creased IL-10 and decreased IL-6 expression [149], exo-
somal miR-let-7d is transferred to T helper 1 (Th1) cells
to inhibit Th1 cells proliferation and IFNγ secretion, and
IFNγ secreted by Th1 cells (a subtype of Naïve CD4 T
cells) plays a central role in anti-tumor immunity [150].
Tumor-associated macrophages (TAMs) are one of the

most abundant immune cells in TME. TAMs play a
huge role in the proliferation and migration of tumor
cells and counteract the cytotoxic effect of T lympho-
cytes and NKs, facilitating cancer cells to evade immune
surveillance [140, 151]. TAMs have strong plasticity and
can differentiate into immune-stimulating (M1-polar-
ized) TAMs or oppositely immune-suppressive (M2-po-
larized) TAMs, respectively, having different biological
functions [152]. TAMs in tumors often behave as M2
phenotype and are usually associated with poor progno-
sis [153]. A large number of studies have reported that
exosomal miRNAs can regulate the phenotypes of TAMs.
Exosomal miR-125b derivied from lung adenocarcinoma
cells promotes macrophage repolarization toward an anti-
tumor M1 phenotype [154]. Exsomal miR-125b-5p se-
creted by melanoma cells targets LIPA and increases the
expression of M1 phenotype markers IL-1β, CCL1, CCL2,
and CD80 [71]. Oppositely, exosomal miR-21 taken up by
CD14+ human monocytes inhibits the expression of the
M1 marker and increases the expression of the M2
marker. Knockout of miR-21 in Snail-expressing human
head and neck cancer cells attenuated M2 polarization of
TAMs, and miR-21 was found to be positively correlated
with M2 marker MRC1 in head and neck cancer tissues
[155]. In epithelial ovarian cancer (EOC), exosomal miR-
222-3p can be transferred to macrophages, down-
regulating SOCS3, inducing phosphorylation of STAT3,
and thus leading to polarization of the M2 macrophages
[156]. In hypoxia, EOC-derived exosomal miR-21-3p,
miR-125b-5p, miR-181d-5p, and miR-940 differentiate
TAMs into M2 phenotypes and promote tumor progres-
sion [157, 158]. Likewise, exosomal miR-301a-3p derived
from hypoxic pancreatic cancer cells activates the PTEN/
PI3Kγ signaling pathway to trigger M2 phenotype
polarization of macrophages [159, 160]. Mutant p53 colon
cancer cells-derievd exosomal miR-1246 induces M2
polarization of macrophages and reshapes the TME
through increase the expression of IL-10, TGFβ, and
MMPs [161] (Fig. 3).
Abnormal differentiation and function of myeloid cells

is a hallmark of cancer. Among them, myeloid-derived
suppressor cells (MDSCs) have the function of suppress-
ing adaptive immunity and innate immune response,
and play an important role in tumor immune escape
[162–164]. Exosomal miRNAs affect the function of

MDSCs by regulating the activity of transcription factors
and transcription activators, thereby reshaping the im-
mune microenvironment. In the research of glioblast-
oma, exosomal miR-10a targets RORA and affects the
differentiation of MDSCs through the NFκB pathway,
exosomal miR-21 targets PTEN and affects the activa-
tion of MDSCs via the p-STAT3/p-p65/p-Akt pathway
[165]. Exosomal miR-155 istransmitted to monocytes,
leading to nuclear translocation of NFkB and phosphor-
ylation of STAT1, reprograming conventional mono-
cytes into MDSCs [166]. Changes in the function of
MDSCs affect the progression of the tumor itself. Recent
research shows that exosmal miR-126a derived from
MDSCs promotes angiogenesis and benefit breast cancer
lung metastases [167].
The immunomodulation induced by exosomal miR-

NAs is complex and dynamic. In TME, tumor cells
interact with various types of immune cells and cross-
promote immunosuppressive activity. Among them, exo-
somal miRNAs play a pivotal role in them, but the
mechanism has not been elucidated. Thereby, the func-
tion of exosomal miRNAs in the reciprocal interplays
between cancer cells and hosts immune system merits
further investigation.

Perspectives of exosomal miRNAs
With the vigorous development of the biology of exo-
somes in tumors, more and more evidence indicates that
exosomal miRNAs play an important role in tumor pro-
gression and TME reshaping. Compared with miRNAs
released directly into the circulatory system, exosomal
miRNAs are protected by lipid bilayer encapsulation and
avoid degradation by ribonuclease in the blood. Noteba-
lely, exosomal miRNAs are more bioactive pool of circu-
lating miRNAs compared to those miRNAs transported
with liposomes [41, 168, 169]. Considering the advan-
tages of exosomal miRNAs and the widespread presence
of exosomes in all biological fluids (blood, breast milk,
semen, and urine), diagnostic and therapeutic technolo-
gies based on exosomal miRNAs have a bright future.
Some specific exosomal miRNAs have high diagnostic

value in tumors, and detecting them is helpful for early
diagnosis of tumors. For example, in prostate cancer,
breast cancer, and oral squamous cell carcinoma, the ex-
pression of exosomal miR-1246 is closely related to
pathological grades, distant metastasis and poor progno-
sis [170–173]. Circulating exosomal miR-375 is valuable
for the diagnosis of ovarian, rectal and prostate cancer
[174–176]. The combination of multiple exosomal
ncRNAs can enhance the diagnostic and prognostic po-
tential of exosomal miRNAs. For example, the combin-
ation of expression of plasma exosomal miR-30d-5p and
let-7d-3p is valuable diagnostic markers for non-invasive
screening of cervical cancer and its precursors [177].
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Circulating exosomal miRNA-21 and lncRNA-ATB are
related to the TNM stage of liver cancer and other prog-
nostic factors, including the T stage and portal vein
thrombosis [178].
Exosomal miRNAs, as a new tumor treatment method,

are being widely explored. Based on the fact that exoso-
mal miRNAs effectively bind to target mRNA and inhibit
gene expression in recipient cells, related exosomal en-
gineering techniques have been used to treat tumors by
delivering tumor suppressor exosomal miRNAs. For ex-
ample, delivery of exogenous miR-155 into DCs using
TEX as a vector results in increased expression of
MHCII (I/A-I/E), CD86, CD40 and CD83, promoting ac-
tivation of DCs. Exosomal miRNA-155 significantly in-
creases the levels of IL12p70, IFN-γ and IL10 and
improves immune function [179]. By fusing Her2 affinity
to the extracellular N-terminus of human Lamp2, and
then using the modified exosomes to co-deliver 5-FU
and miR-21 inhibitors (miR-21i), which targets colon
cancer cells, effectively reverses the resistance of tumor
cells and significantly enhances the toxicity of 5-FU re-
sistant cancer cells [180].
Although exosomal miRNAs have made exciting pro-

gress in oncology, most of these results are experimental.
Extension of exosomal miRNAs technologies to clinic re-
mains challenging. There is no doubt that the function of

exosomes is determined by their specific contents. A large
amount of literature has reported that tumor-derived exo-
somal miRNAs can reshape TME and promote tumor
progression, but little is known about the sorting mechan-
ism of exosomal miRNAs. Although the basic framework
of the endosome sorting complex required for transport
(ESCRT) and Ago2 in MVB sorting has been reported in
previous studies, it remains to be elucidate whether other
novel sorting signals are involved in the release of exoso-
mal miRNAs [86, 181–184].
The potential of exosomal miRNAs as diagnostic

markers is unquestionable, but how to improve the sen-
sitivity and specificity of exosomal miRNAs remains to
be solved. The combination of different exosomal car-
gos, such as proteins, lipids, RNA and miRNAs for can-
cer diagnosis and prognosis can more comprehensively
reflect the characteristics of tumors. At the same time,
the scope of application of exosomal miRNAs also needs
attention. The expression level of exosomal miRNAs is
related to tumor types, clinical stages or other under-
lying diseases, and there are differences between individ-
ual patients. Therefore, how to use exosomal miRNAs
accurately is also worth of considering.
The widespread use of exosomal miRNAs in clinical

treatment remains challenging. First, exosomes-based
therapeutic tools require more accurate and

Fig. 3. The mechanism of immune microenvironment reshaping by exosomal miRNAs. Exosomes secreted by the primary tumor cells are taken
up by the receptor immune cells, wherein the exosomal miR-212-3p target the MHC class II TF RFXAP complexus and activate the HLA-DR, -DP,
and -DQ molecules. The exosomal miRNAs (miR-222-3p, miR-21, miR-10a, etc.) target the proteins (SOCS3, PTEN, RORA, etc.) and activate the
molecules (p-STAT3, p-p65, p-AKT, p53, etc.). These exosomal miRNAs reshape inmune microenvironment by mediating immunosuppression.
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standardized exosomal purification methods, and the
economic cost of mass-producing exsomes for clinical
application cannot be ignored [56, 57]. The second is
that exosomal miRNAs-induced biological behavioral
changes are often released through the cultivation of
supra-physiological numbers of cell, and how many or-
ders of magnitude of exosomal miRNAs are needed to
achieve the corresponding efficacy in clinical applica-
tions remains to be determined.

Conclusion
Exosomal miRNAs, as a signaling molecule for communi-
cation between tumor cells and TME, play an important
role in the formation and remodeling of TME, but its regu-
latory mechanism is still worth of further exploration. At
present, most of the biological studies of exosomal miRNAs
have been revealed by cell-culture systems in vitro. But the
problems still remain whether exosomal miRNAs derived
from supra-physiological numbers of cell reflect the bio-
logical conditions in vivo. It is necessary to conduct more
experiments in vivo or in mammals.
With the increase of exosomes researches, people have

gradually discovered that the exosomes obtained by trad-
itional exosomal separation and purification methods
(ultracentrifugation, density-gradient centrifugation,
immune-affinity capture, and precipitation) not only
contain sEVs, but also contain non-membrane structure
vesicles (NVs). Components, double-stranded DNA
(dsDNA) and histones, are more in the NVs rather than
in exosomes or sEVs. Moreover, many of the most abun-
dant miRNAs were more associated with extracellular
NV fractions than with either parental cells or sEV frac-
tions [56]. This indicates that we may need to re-
evaluate the composition of exosomes, and it is urgent
to explore the generation and sorting mechanisms of
exosomal miRNAs or miRNAs in other type of sEVs.
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