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Abstract

Dendritic cells (DCs) secrete vast quantities of exosomes termed as dexosomes. Dexosomes are symmetric
nanoscale heat-stable vesicles that consist of a lipid bilayer displaying a characteristic series of lipid and protein
molecules. They include tetraspanins and all established proteins for presenting antigenic material such as the
major histocompatibility complex class I/II (MHC I/II) and CD1a, b, c, d proteins and CD86 costimulatory molecule.
Dexosomes contribute to antigen-specific cellular immune responses by incorporating the MHC proteins with
antigen molecules and transferring the antigen-MHC complexes and other associated molecules to naïve DCs. A
variety of ex vivo and in vivo studies demonstrated that antigen-loaded dexosomes were able to initiate potent
antitumor immunity. Human dexosomes can be easily prepared using monocyte-derived DCs isolated by
leukapheresis of peripheral blood and treated ex vivo by cytokines and other factors. The feasibility of
implementing dexosomes as therapeutic antitumor vaccines has been verified in two phase I and one phase II
clinical trials in malignant melanoma and non small cell lung carcinoma patients. These studies proved the safety of
dexosome administration and showed that dexosome vaccines have the capacity to trigger both the adaptive (T
lymphocytes) and the innate (natural killer cells) immune cell recalls. In the current review, we will focus on the
perspective of utilizing dexosome vaccines in the context of cancer immunotherapy.
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Background
Dendritic cells (DCs) are adept antigen-presenting cells
(APCs) of the mammalian immune system that function
as the link between innate and adaptive immunity by
recognizing, ingesting, processing, and presenting anti-
genic material to T lymphocytes, leading to either initi-
ation or repression of immune responses [1]. The
presentation of the antigenic material is conducted
through the major histocompatibility complex (MHC)

class I and II molecules to naïve cytotoxic T lympho-
cytes (CTLs, CD8+ T cells) and naïve helper T cells
(Ths, CD4+ T cells), respectively. DCs are a heteroge-
neous subpopulation of immune cells that are produced
from precursor cells like monocytes in the bone marrow
and are distributed among all organs and tissues via
blood circulation. Upon antigen recognition, DCs start
to travel through lymphatic vessels to the T cell zones of
lymphoid tissues. Throughout this journey, DCs are ma-
tured and express costimulatory molecules and when
reached their destination, they discern and stimulate
their cognate T lymphocytes [1].
DCs exert pivotal functions in inducing protective im-

mune responses throughout pathological conditions, e.g.
oncogenesis, since they are able to recognize tumor-
associated antigens (TAAs). DC-primed CD8+ CTLs are
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able to identify TAAs incorporated with MHC I proteins
on the cellular membrane of cancer cells and destroy
them [2]. Naïve CD4+ T cells are on the other hand dif-
ferentiated into effector cells which initiate B cell-related
TAA-specific antibody responses. In the meantime, DCs
also have the potential to induce T cell anergy and de-
velop a cancer-promoting local microenvironment
through expressing immune checkpoint molecules and
releasing anti-inflammatory cytokines like transforming
growth factor β (TGFβ) and interleukin 10 (IL10) [3].
Since cancer cells often lose the potential of undergoing
programmed cell death [4], activating the host immune
system through TAA-loaded DC-based vaccines is one
of the suggested approaches in cancer immunotherapy
to eradicate tumor cells. To date, sipuleucel-T (Pro-
venge, Dendreon Corporation) has been the only DC
vaccine that was granted the approval of the US Food
and Drug Administration for therapy of asymptomatic
metastatic castration-resistant prostate cancer (mCRPC)
[5]. The autologous DCs in sipuleucel-T were activated
using a recombinant fusion protein containing prostatic
acid phosphatase (PAP, a prostate TAA) and
granulocyte-macrophage colony-stimulating factor (GM-
CSF). Sipuleucel-T therapy was associated with an im-
provement in overall survival of four months in com-
parison with the participants of the placebo control
group [5].
The production of sufficient DCs for preparing cancer

vaccines can be challenging. The shifting molecular
composition of DCs renders obstacles in vaccine quality
control and the low abundance of TAA-MHC II com-
plexes on DC surface results in lower yields. According
to clinical investigations, DC vaccines rely mainly on
chemotactic signaling to access and localize in lymph
nodes and were unsuccessful to elicit pro-natural killer
cell (NK) effects due to the low expression of NK recep-
tor ligands. Furthermore, DC vaccines are susceptible to
immunosuppressive molecules and signals present in
tumor microenvironment [6]. Therefore, a novel plat-
form for more efficient delivery of high levels of TAAs
concomitant with co-stimulatory factors have been uti-
lized in the recent preclinical and clinical studies, called
dexosome vaccines.
DC-derived exosomes or dexosomes are small lipid

vesicles released from DCs that have received immune
signals. Within an activated DC, dexosomes incorporate
the processed peptides derived from antigenic material
with MHC I/II on their surface and deliver the func-
tional peptide-MHC complexes to distal naïve DCs. As a
result, the target DCs will be stimulated and acquire the
competency to trigger cognate T cells [7]. Therefore,
dexosomes function as vehicles that disseminate anti-
genic material amongst DCs, exerting a noble mechan-
ism designed for immune response amplification. This

theory is the major rationale for utilization of dexosomes
as vaccine tools in cancer immunotherapy. Dexosomes
present 10 to 100 folds more TAA-MHC II complexes
as compared to DCs [6]. Moreover, the molecular com-
position of dexosomes can be precisely defined for each
donor patient. Due to the stability of dexosomal lipid
composition, cryopreservation of the vaccine preparation
is possible for longer than six months at − 80 °C. Once
injected, dexosome vaccines are easily dispersed within
lymph nodes and can access to a variety of immune
cells, and their trafficking and localization is not reliant
on chemokines but rather on their surface receptor top-
ography. More importantly, dexosomes express ligands
for NK receptors and are not influenced by the immuno-
suppressive tumor microenvironment. The aim of this
review was to discuss: (i) diverse subsets of DCs and
their specific role in tumor microenvironment; (ii) exo-
somes and their biogenesis process; (iii) dexosomes and
how their function leads to activation of cognate T cells;
(iv) how DC status affects dexosome release; (v) the po-
tential therapeutic implications of dexosomes in preclin-
ical studies and clinical trials; and (vi) the future
direction of dexosome-based vaccines in cancer
immunotherapy.

Different subsets of DCs
DCs are a heterogeneous subpopulation of immune cells
that are grouped into various subsets, both in mouse
and human, according to their ontogeny, phenotype, tis-
sue localization, molecular composition, and biological
function [8, 9]. Conventional DCs (cDCs), plasmacytoid
DCs (pDCs) and monocyte-derived DCs (moDCs) com-
prise the three classic subsets of DCs in human [8, 9].
cDCs are subdivided into cDCs type 1 and 2 (cDC1s and
cDC2s) based on the repertoire of transcription factors
that regulate their development. Whereas IRF8 (IFN
regulatory factor 8), the DNA-binding protein inhibitor
ID2, and BATF3 (basic leucine zipper transcriptional
factor ATF-like 3) control the development of cCD1s,
IRF4, ID2, ZEB (zinc finger E-box-binding homeobox
protein), and Notch2/krueppel-like factor 4 (KLF4) regu-
late the development of cCD2s [10]. Both subgroups of
cDCs exhibit different phenotypical and functional char-
acteristics. cDC1s are CD141/BDCA3+ cells that were
shown to express the C-type lectin receptor DNGR1/
CLEC9A and the chemokine receptor XCR1 [11–13].
Moreover, they are involved in cross-presenting antigen-
MHC I complexes to CD8+ T cells. On the other hand,
cDC2s (CD1c+ cells) produce CD172a (a signal regula-
tory protein) and contribute to cross-presentation of
antigen-MHC II complexes to CD4+ T cells [14]. pDCs
represent an additional subset of DCs that are known
for expressing CD123, BDCA2, and BDCA4 proteins
and generating interferon (IFN) type I molecules [14,
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15]. moDCs are absent under homeostatic conditions,
but during inflammation, they are developed from
monocytes and travel to the inflamed regions and trigger
the polarization of CD4+ T cells [1, 16]. Additional sub-
sets of DCs have also been defined based on the data ob-
tained from high-throughput single-cell RNA
sequencing [17].
Because of the various migratory features and tissue

positioning of different DC subsets, DC biology is very
complicated [18, 19]. During certain pathological con-
texts, such as tumorigenesis, particular subsets of DCs
are recruited and each subset plays pivotal roles in exert-
ing antitumor immune responses by induction of certain
T cell subsets through expressing costimulatory factors
and pro-inflammatory cytokines [20]. Thereby, DCs may
present novel instructions for creating potent and effi-
cient protective immunity against tumor cells [21, 22].

Anti-tumor functions of different DC subsets in tumor
microenvironment
cDC1s
Cross-presentation of TAAs through DCs is mandatory
for effective stimulation of T cells and initiation of anti-
tumor cytotoxic effects [23]. cDC1s are dedicated to in-
corporate TAAs into MHC I proteins and present the
TAA-MHC I complexes to CD8+ CTLs [24, 25]. Certain
proteins associated with membrane trafficking are neces-
sary for this process, including Sec22b (a member of the
soluble N-ethyl maleimide (NEM)-sensitive factor at-
tachment protein receptor (SNARE) proteins) and
WDFY4. These proteins are not only necessary for con-
trolling tumor growth but also they are required for the
effectiveness of immunotherapies based on anti-PD1
(programmed cell death protein 1) agents [26, 27]. In
addition to the proteins involved in TAA cross-
presentation, there are other cDC1-associated proteins
required for promotion of antitumor immune recalls
[28]. For efficient stimulation of CD8+ T cells, TAAs
should be transferred to lymph nodes draining the
tumor via migrating CD103+ cDC1s in a CCR7-
restricted mode [29]. XCR1 expressed by cDC1s contrib-
utes to the development of antitumor immunity by or-
chestrating localization of DCs in response to XCL1 (the
XCR1 ligand) expressed by CTLs and NKs [30, 31].
cDC1s also promote local antitumor immune responses
via producing CXCL9 and CXCL10 chemokines that
stimulate CXCR3+ effector T cells and NKs [32, 33].
Moreover, these chemokines coordinate the localization
of memory CD8+ T cells in cDC1-abundant regions to
improve local restimulation of T cells [34, 35]. cDC1s
also produce and release a large amount of IL12 which
stimulates CTL and NK cytotoxic activity and promotes
production of IFNγ [36–39]. NKs were shown to have
the ability of employing circulatory cDC1s to nearby

tissues and tumors [40]. Flt3L molecules produced from
intratumor cDC1s preserve the viability and activity of
cDC1s inside the tumor micro environment and trigger
local differentiation of DCs from their precursor cells
[41]. Along with the induction of CTL expansion, cDC1s
are also capable of stimulating the production of CD4+

Th1 cells by cross-presenting TAA-MHC II complexes
[42]. The antitumor activity of cDC1s is supposed to be
further assisted by pDCs [43]. As main producers of type
I IFN, pDCs trigger antigen cross-presentation and
CD8+ CTL antitumor immune response [44, 45]. Taken
together, cDC1s represent an effective system for antitu-
mor CTL stimulation by interacting with components of
both the innate and adaptive immune systems.

cDC2s
Due to the absence of selective membrane markers re-
quired for precise detection of cDC2s in pathological
contexts and the unavailability of sufficient preclinical
investigations, the function of cDC2s in cancer immun-
ology remains to be fully elucidated. cDC2s contribute
to cross-presentation of TAA-MHC II complexes to
CD4+ T cells [46–50]. As a result, the activated CD4+ T
cells promote antitumor immune responses by secreting
IFNγ that triggers macrophages and NKs, blocks angio-
genesis, regulates the tumor stroma formation, and leads
to direct tumor cell lysis [51]. However, compared to
cDC1s, cDC2s are less potent in cross-processing TAAs,
migrating to tumor-draining lymph nodes, secreting
IL12, and activating CD8+ CTLs [29, 32, 36, 52].
The communication and interaction between DC sub-

sets and T cells plays a critical role at different stages of
antitumor immunity. Maximal stimulation of CTLs is
dependent on the activation of both cDC1s and cDC2s
[42, 51, 53]. It was demonstrated that cDC2s lose their
ability to induce CD4+ T cell differentiation during
tumor growth. However, when T regulatory cells (Tregs)
were depleted, cDC2 migration and activation capacity
of CD4+ T cells for producing IFNγ was enhanced [54].
Additionally, cDC2s were reported to activate CD4+ T
cells toward IL17-producing T cells [46].
Studies have shown that the functions of cDC1s and

cDC2s may overlap to some extent, for example they
both produce IL12 and depend on Flt3L for their devel-
opment [55, 56]. Moreover, the number of blood-borne
cDC1s and cDC2s is generally reduced in cancer patients
[57]. However, cDC2s are known for not having a
unique pattern of gene expression. Rather, they demon-
strate a common gene expression pattern with mono-
cytes with only a number of genes preferentially
expressed, e.g. CCL22 which encodes for a chemokine
that activates CCR4+ T cells [58]. It was shown that
tumor-associated cDC2s possess langerin-encoding
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CD207 gene as a marker both in human and mouse lung
tumors [59].

pDCs
pDCs participate in exerting protective antitumor im-
mune responses by producing IFNα that inhibits tumor
growth, angiogenesis, and metastasis [60]. Both ex vivo
and in vivo models [61, 62] demonstrated the direct
cytotoxic function of pDCs via producing and secreting
Granzyme B and TRAIL (TNF-related apoptosis-
inducing ligand) molecules [63, 64]. pDCs are also cap-
able of exerting indirect antitumor immunity by the
OX40L-mediated production of IFNγ and the CCR5-
mediated recruitment of NKs [65]. A unique subset of
pDCs were identified in head and neck squamous car-
cinoma that overexpress OX40 and was reported to
demonstrate synergizing effects with cDCs in inducing
effective TAA-specific CD8+ T cell responses [66].
moDCs.
Due to their overlapping functions of moDCs with

other myeloid cells, their role in exerting antitumor im-
munity in human is not clear yet. However, they prob-
ably play significant roles in stimulating the propagation
of naïve CD8+ T cells [67]. Preclinical investigations sug-
gested central roles for moDCs in regulating antitumor
immunity during chemotherapy, cell vaccination, and T
cell adoptive therapy [68–70].

Exosomes
Extracellular vesicles (EVs) are classified into three main
groups according to their origin and size: exosomes (30–
150 nm in diameter), apoptotic bodies and microvesicles
or shedding particles (both larger than 100 nm). Micro-
vesicles and apoptotic bodies are constructed by direct
sprouting of the cellular membrane in living and dying
cells, respectively. Exosomes, on the other hand, are
formed by inward budding as intraluminal vesicles
(ILVs) within the lumen of multivesicular bodies (MVBs,
or so-called late endosomes). Once the MVB fuses with
the cellular membrane, these ILVs are secreted to the
extracellular space as free exosomes [71]. It was initially
presumed that exosomes were an alternate route to ex-
crete waste products in order to sustain cellular homeo-
stasis. Today, however, it is well established that
exosomes play significant roles in intercellular commu-
nication and were reported to be correlated with a var-
iety of physiological and pathological conditions.
As a general rule, the composition of exosomes par-

tially mirrors the composition of the donor MVBs and
thus the parent cells. The nature and the abundance of
exosomal cargos depend on the cell type and state, the
stimuli that tune the construction and secretion of exo-
somes, and the molecular pathways that mediate their
biogenesis [72]. Exosomal proteins belong to distinct

functional groups. These include cell adhesion molecules
(CAMs) including tetraspanins, integrins, and milk fat
globule-EGF factor 8 protein (MFGE8, lactadherin), anti-
gen presentation molecules (MHC I and II and costimu-
latory molecules such as CD86), membrane transport
and fusion proteins like annexins and RAP1B/RABGDI,
Rab 2 and 7, heat shock proteins (HSPs), cytoskeletal
proteins, raft-associated proteins and glycolipids, pyru-
vate kinase and alpha enolase enzymes, and other pro-
teins inclusive of elongation factor 1α, clathrin, ferritin,
and the ESCRT (endosomal sorting complexes required
for transport) proteins Alix and Tsg101 [73]. While the
protein content may vary among different exosomes, the
exosomal lipid composition is generally conserved and
cell type-specific. The high density of lysobisphosphati-
dic acid in the internal lipid layer of MVB membrane fa-
cilitates the inward budding of MVBs and thus exosome
formation through interacting with Alix [74]. Exosomes
can influence the homeostasis of their recipient cells by
altering their lipid profile particularly in cholesterol and
sphingomyelin [74].

Biogenesis of exosomes
During the biogenesis of exosomes, cargos are first di-
rected to the location of exosome production at the
MVB membrane. Concurrently, the MVB membrane-
associated proteins and lipids are gathered as clusters in
distinct dynamic platforms, so-called microdomains of
the MVB membrane [71, 75]. Exosomal membrane car-
gos are either internalized from the cellular membrane
or obtained from the Golgi apparatus and reach endo-
somes prior to being sorted into ILV lumens [76]. The
crossroad between cargo sorting into MVBs for gener-
ation of exosomes and endosomal membrane recycling
is regulated by the syntenin protein [77]. Furthermore, a
posttranslational ubiquitin-like modification, so-called
the ISGylation process, was also recently suggested to
play a critical role in controlling MVBs’ fate. The au-
thors proposed that ISGylation of MVB protein compo-
nents promotes the fusion of MVBs with lysosomes [78].
If the MVBs are destined to form exosomes, the afore-
mentioned membrane microdomains cooperate with
other exosome-producing machines and cargos intended
for sorting into ILVs and contribute to the invagination
of the MVB membrane and formation of small vesicles,
followed by fission and releasing of ILVs into the lu-
minal medium in a stepwise manner (Fig. 1). The clus-
tering of exosomal cargos and subsequent sprouting of
MVB membrane can be performed by either the ESCR
T-dependent or -independent pathways.
The ESCRT apparatus is consisted of several protein

complexes, namely ESCRT 0, I, II, III and the associated
AAA ATPase Vps4, that function cooperatively in a
stepwise manner [79]. Components of the ESCRT 0 and
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I complexes collect the ubiquitinated transmembrane
molecules at the MVB microdomains by recruiting Hrs
heterodimer and signal transducing adapter molecule
(STAM) 1 and 2. Hrs also associates with Eps15 and cla-
thrin proteins and recruits clathrin to interact with the
ubiquitinated cargo [79]. Afterwards, the ESCRT II com-
plex employs the subunits of ESCRT III and the ATPase
Vps4 to create sprouts that bud toward the MVB lumen
and subsequently the microdomain fission is conducted.
The produced ILVs can now be directed for lysosomal
degradation unless their cargos are deubiquitinated by
DUBs (deubiquitylating enzymes) [80]. The ESCRT ma-
chinery is also associated with the ESCRT accessory pro-
tein Alix and syntenin that together connect exosomal
cargos with the ESCRT III subunit Vps32 (vacuolar pro-
tein sorting-associated protein 32) [81].
Studies have revealed that ILVs and thus exosomes

can be still generated and released when the main com-
ponents of the ESCRT protein complexes are silenced or
depleted [82]. The first step of the ESCRT-independent
pathway for exosome formation is the hydrolysis of
sphingomyelin to ceramide that imposes a negative
membrane curvature on MVBs [83]. Proteins of the tet-
raspanin family are among the key modulators of the
ESCRT-independent endocytic sorting pathway.

Different members of tetraspanins are gathered along
with other transmembrane and cytosolic proteins and
contribute to formation of clusters and then microdo-
mains that will finally sprout within the MVBs [84]. Sev-
eral tetraspanin proteins including CD9, CD81 and
CD82 were reported to be involved in regulation of exo-
somal cargo sorting [85]. Another protein playing a sig-
nificant role in the ESCRT-independent pathway is the
SIMPLE protein (the small integral membrane protein of
the lysosome/late endosome; also known as LITAF: lipo-
polysaccharide (LPS)-induced tumor necrosis factor
(TNF)). Mutation of the LITAF gene inhibited the gener-
ation of MVBs whereas the release of exosomes were in-
creased after COS cells were transfected with the LITAF
[86]. In general, it seems that both the ESCRT-
dependent and -independent pathways are highly inter-
connected and operate in a concerted manner through-
out the exosome biogenesis process while overlapping to
some extent.
As mentioned before, MVBs are either destined for

degradation by lysosomes due to their ubiquitinated
content or they may fuse with cellular membrane and
release exosomes. In the latter, MVBs are transferred to
their final destination in the cell periphery via actins and
the associated cytoskeletal proteins and microtubules

Fig. 1 Dexosome generation and release within the endosomal system of dendritic cells (DCs). Endocytic vesicles including a variety of
extracellular and membrane cargos join together to form early endosomes (EEs). Now EEs can follow two pathways: either returning to the
plasma membrane as recycling endosomes or transformation into late endosomes (LEs) or so-called multivesicular bodies (MVBs). Within MVBs,
the lipid membrane starts to sprout inwardly concomitant with packing of the ubiquitinated cargos into the nascent intraluminal vesicles (ILVs).
MVB membrane budding and cargo sorting of ILVs can be conducted using either ESCRT-dependent or -independent routes. Later, the
generated ILVs are targeted for lysosome degradation unless they are rescued by deubiquitinating enzymes (DUBs). MVBs are then directed
toward the DC periphery via cytoskeleton proteins and microtubules, and fuse with the plasma membrane using the SNARE protein components.
ILVs are now secreted to the extracellular environment as dexosomes
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[87]. Rab27A and B from the Rab GTPase protein family
induce the transfer of MVBs [88], and the SNARE pro-
tein complex mediates the fusion of MVBs with the
plasma membrane and subsequent exosome secretion
[74]. First, the calcium-sensing protein, synaptotagmin,
localizes on syntaxin (a plasma membrane protein) and
the MVB membrane. Now, the collected MVBs can dock
the cellular membrane by means of the SNARE complex
including three Q-SNARE subcomplexes (typically T-
SNARE) on the plasma membrane and one R-SNARE
subcomplex (typically V-SNARE) on the MVB, and re-
lease exosomes [89]. Once released, exosomes are car-
ried to and captured by the recipient cells where they
are either internalized by the cells, fused with the plasma
membrane, or stay attached to the cell surface.

Dexosomes
Dexosomal content
Exosomes produced and released by DCs are termed as
‘dexosomes’. As is the case with other exosomes, dexo-
somes have a characteristic molecular profile of their
own. Human dexosomes contain cargos that together
operate as a whole antigen-presenting entity. These in-
clude a variety of all the known antigen-presenting mol-
ecules, such as MHC I/II proteins and costimulatory
factors like CD86 [90], which are employed for cross-
presentation of peptide antigens to CD8+ and CD4+ T
cells and subsequent triggering of their proliferation.
Dexosomes also harbor CD1a, b, c, and d proteins that
are involved in cross-presentation of lipid antigens [90].
Dexosomal ICAM1 (intercellular adhesion molecule 1,
CD54) was shown to play pivotal role in regulating DC-
T cell communication [91]. As a ligand of Mac1 integ-
rins (CD11b/CD18) [92] and the lymphocyte function-
associated antigen 1 (LFA1, CD11a/CD18) [93], ICAM1
can either facilitate dexosomal capture by target DCs or
promote the interaction of T cells with dexosome-
receiving DCs that hold dexosomes on their external
surface. Expressing an abundance of microdomain-
organizing tetraspanin proteins including CD9, CD37,
CD53, CD63, CD81, and CD82, which regulate
dexosome-target DC interactions, are considered the
hallmark of dexosomes [94]. The presence of CD55 and
CD59 molecules on dexosomal surface prevents
complement-mediated degradation of dexosomes
throughout their extracellular journey [95]. Tsg101 and
Alix proteins determine the sorting of ubiquitinated car-
gos into ILVs during dexosome generation process [96].
MFGE8, that binds to phosphatidylserine on the external
surface of dexosomes, promotes dexosomal uptake
through interacting with integrins αvβ3 and αvβ5 on
APCs [97]. However, successful capture of MFGE8-
deficient dexosomes by bone marrow-derived DCs
(BMDCs), which produce little or no αvβ3 or αvβ5

integrins in vitro, proved the presence of MFGE8-
independent machineries involved in dexosomal uptake
[98]. While HSPs, FasL, and CD11b and c are common
between human and mouse dexosomes, MFGE8 was
only detected in murine monocyte-derived DC (MCDC)
dexosomes [98]. HSC73, a member of the HSP70 family,
is also abundantly present within the dexosomal cytosol
[97]. In cooperation with the members of the HSP90
family, HSC73 probably regulates the immunogenicity of
dexosomes by triggering different cells of the immune
system and playing pivotal roles in MHC loading and as
antigen chaperones [99]. In addition to proteins, dexo-
somes also harbor various RNA species with the aim of
intercellular communication and to induce certain post-
translational modifications in the recipient DCs. For ex-
ample, it was suggested that dexosomal transfer of
miRNAs could suppress the targeted mRNAs in DCs
[100], indicating that certain RNA profiles of dexosomes,
or particularly those of parent DCs, can impact dexo-
some immunogenicity.

Dexosomal membrane structure
In comparison with the cellular membrane, dexosomal
membrane shows an increased transverse diffusion of
phospholipids (flip-flop movements) which results in a
loss of lipid asymmetry in the membrane structure. The
elevated transbilayer movements of phospholipids along
with the rigidity of dexosomal membrane at neutral pH
control their fusion with other membranes which in re-
sult guarantees the stability of dexosomes in circulation
[101]. The phospholipid composition of dexosomes is
also distinct from their donor DCs. While the amount of
sphingomyelin is twice as high in dexosomes, phosphat-
idylcholine is much lower and cholesterol is absent from
dexosomal membrane. A remarkable enrichment of disa-
turated molecular species such as phosphatidylethanol-
amines was also distinguished in dexosomal membranes
in addition to a 50% decrease in molar ratio of diglicer-
ides:phospholipids. Further investigations demonstrated
the abundance of phospholipase D2 in dexosomes, and
that phospholipid D probably mediates the putative sig-
naling properties of dexosomes either by cooperating
with a second messenger like phosphatidic acid or by as-
sociation of dexosomes with the target DCs through the
fusogenic quality of phosphatidic acid [101, 102].

Dendritic cell status affects dexosome production and
release
While reticulocytes [103], T cells [104], mastocytes
[105], and resting B cells [106] secrete exosomes only
when a cell surface receptor is triggered, DCs [107],
macrophages [108], and most tumor cells constantly re-
lease exosomes in vitro. Both mature and immature DCs
have the ability to secrete dexosomes, however, the level
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of dexosome release changes throughout their cellular
life cycle. It is assumed that the maturation stage of DCs
adversely impacts the extent of dexosome secretion
in vitro [91]. According to Thery et al., production of
MVB and thus dexosomes is downregulated upon DC
maturation, indicating that dexosomes are probably pro-
duced by immature DCs in the periphery [97]. Another
example is the LPS-matured DCs that release 25–75%
less dexosomes compared to immature DCs [97]. Transi-
ent increase of dexosome secretion by immature DCs
upon cognate interaction with T cell clones indicates
that some stimulating signals produced by T cells prob-
ably trigger dexosome secretion [109]. On the other
hand, a more recent report showed that dexosome re-
lease increases upon DC maturation. Here, it was dem-
onstrated that maturation process reformed the
molecular make-up of dexosomes and improved their
cluster-forming ability, with the latter being associated
with the filtration-based technique utilized for dexosome
isolation [110]. Dexosomes from immature and mature
DCs show distinct bioactivities because of the variations
in their protein content. However, controversial findings
were reported in this respect. Compared to dexosomes
of immature DCs, dexosomes of mature origins were
shown to produce greater abundance of MHC I, II,
ICAM1, CD80 and CD86 molecules and resembled their
donor cells, presenting more immunostimulatory effects
[111]. However, a separate set of studies revealed that
immature DCs express an average of two- to threefold
more dexosomal proteins than mature DCs (0.5 ±
0.1 µg/million immature DC vs. 0.2 ± 0.1 µg/million ma-
ture DC) [91]. Because the qualitative variances between
dexosomes of immature and mature DC origins were as-
sumed irrelevant at first, the pioneer studies were con-
ducted using mostly dexosomes from immature human
or mouse DCs.
Additional factors such as DNA-damaging treatments,

like senescence induction or radiation, were also demon-
strated to affect the release of dexosome-like vesicles by
DCs [112]. In such deleterious treatments, activation of
p53 transcription factor upregulates the TSAP6 pathway
(the transmembrane protein tumor suppressor-activated
pathway 6) which subsequently enhances secretion of
dexosomes [112]. Exposure of DCs to various cytokines
may alter the phenotype and immunogenicity of released
dexosomes. For instance, cultured BMDCs turn into im-
munosuppressive cells when they are exposed to IL4 and
IL10. Dexosomes derived from such immunosuppressive
cells were shown to hinder delayed-type hypersensitivity
(DTH) and rheumatism in mice most probably by
recruiting MHC II and the CD95-CD95L signaling path-
way [113]. In another study, only when IFNγ was used
for maturation of MCDCs, the NK-activating ligands
ULBP1 and IL15Rα were identified on the surface of

secreted dexosomes [111]. The use of IL3 and IL4 for
maturation of human MCDCs resulted in overexpression
of MHC proteins on the dexosomal surface when com-
pared to GM-CSF/IL4-exposed DCs. However, immuno-
genic properties of the secreted dexosomes remained
unaltered in vitro [114]. On the contrary, BMDCs
treated with GM-CSF and IL10 released immunosup-
pressive dexosomes that were able to inhibit inflamma-
tion in an arthritis model [115].

Dexosome function
Dexosomes incorporate whole or partially processed
antigen-derived peptides with MHC I/II molecules on
their external surface and deliver the functional peptide-
MHC complexes to distal cells including APCs. As a re-
sult, the target naïve DCs will acquire the competency to
stimulate cognate T cells via T cell receptors (TCRs)
and initiate adaptive immune responses. This function
has been clearly defined by different research groups
studying mouse [116], rat [117], and human [118] dexo-
somes. It is generally assumed that the whole dexosomal
protein content is transferred as a complete patch and in
a concerted manner to the recipient cells. This way, a
preformed functional antigen-stimulating machinery is
transported to the target cells which will then become
functional in terms of cognate T cell stimulation. Given
the fact that a single human DC in culture has the po-
tential of secreting 1 million MHC II molecules per day
and only a limited number of peptide-MHC I/II com-
plexes are adequate for stimulating a T lymphocyte
[119], the dexosomal pathway is capable of rapidly dis-
seminating and amplifying the cellular immune
response.

Dexosome-mediated T cell activation: Direct and indirect
pathways
Several mechanisms have been suggested on the topic of
how dexosomes contribute to cross-presentation of
TAAs by means of MHC proteins and trigger T cell im-
munity in lymph nodes. One theory suggests direct trig-
gering of T cells by dexosomes in vitro (Fig. 2a).
However, the direct dexosome-T cell route was reported
unsuccessful in inducing naïve T cells and is less likely
to arise extensively in vivo [120]. Most probably, dexo-
somes are not able to interact with T cells until they are
captured by other DCs which extract and process the
antigenic material from the TAA-MHC complexes and
use them for priming specific T cells [121]. Furthermore,
it is more probable that the direct mechanism is only ef-
ficient in restimulating memory T cells, formerly-
activated T cells, or T cell clones, lines and hybrids
[122]. Therefore, dexosomes possess less T cell stimula-
tory capacity than their parent DCs [117], although their
stimulation potency can be promoted when they are
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immobilized or when their concentration is enhanced
[117, 122].
Rather than a direct route for dexosome-T cell activa-

tion, accumulating evidence revealed that dexosomes or
any other APC-originated exosomes initiate T cell im-
munity via indirect presentation of antigens to the adja-
cent APCs [7]. According to this hypothesis, the
biological cycle of dexosome release continues as follows
(Fig. 2b): immature naïve DCs regularly circulate within
the body in order to identify exogenous molecules and
antigens originating either from infectious sources or tu-
mors. Once encountered, DCs present at the locality of
infection or tumors capture the antigens, e.g. TAAs, and
process and convert them to smaller peptide fragments
which are then incorporated into MHC I and II mole-
cules. Upon maturation, the antigen-MHC complexes
are located on the external surface of DCs and they start
to travel to local lymph nodes where they prime
antigen-specific T cell responses. Throughout this mi-
gration, the antigen-MHC molecules and other immu-
nostimulatory factors are sorted into dexosomes and
released to the extracellular space. The secreted dexo-
somes then proceed to lymph nodes where they transfer
their components to the resident naïve DCs. ICAMs and
integrins contribute to uptake of dexosomes by by-
stander DCs. After binding to DCs, some of dexosomes
(and not all of them) are internalized and the remaining
vesicles probably retain on the external surface of DCs.
The fraction of internalized dexosomes depends on the
maturation status of the target DCs. Mature DCs

maintain dexosomes mostly on their external surface
whereas immature DCs tend to internalize them. It is as-
sumed that the surface-retained dexosomes still have the
capacity to stimulate T cells [120]. If internalized, the
peptide-MHC complexes are processed via the endoso-
mal route, leading to the transfer of dexosome-borne
antigenic peptides to MHCs [120, 122, 123]. Afterwards,
these antigen-MHC complexes are carried back to the
DC membrane surface where they are presented to T
cells [90]. Stimulation of naïve T cells was demonstrated
to take place only in the presence of APCs [120]. The
activation status of parent DCs affects the efficiency of
indirect T cell stimulation mechanism to a great extent.
For instance, LPS- or IFNγ-matured DCs release dexo-
somes that abundantly express ICAM1 which improves
dexosomal capture, MHC and CD86 molecules which
facilitate T cell priming [111].
A second indirect route proposed for dexosome-

mediated T cell priming is a process called ‘dexo-
some-to-DC cross-dressing’ in which dexosomes
convey their peptide-MHC molecules to DCs by dir-
ectly fusing with their plasma membrane (Fig. 2c)
[124]. This allows T cells to immediately recognize
MHC-incorporated peptides and take advantage of
the costimulatory factors and additional molecules on
DC surface without the necessity for internalizing or
processing of the antigens by DCs. To support this
pattern, Thery et al. demonstrated that dexosomes
could prime T cells only in the presence of mature
CD8α− DCs, even if the mature DCs were MHC II-

Fig. 2 Dexosome function. a Direct presentation of antigens by dexosomes to T cells (Antigens are not captured or processed by DC in this
pathway). b Indirect presentation of antigens by dexosomes to T cells. Here, antigens are first captured and processed by DCs through the
endocytic pathway and are subsequently cross-presented on DC surface to T cells. c Indirect antigen presentation to DCs through cross-dressing
of DCs by dexosomes. d Indirect antigen presentation by dexosomes to DCs via tumor cells. Here, antigens, i.e. TAAs, are captured by tumor cells
and then cross-presented to T cells

Nikfarjam et al. Journal of Experimental & Clinical Cancer Research          (2020) 39:258 Page 8 of 20



deficient [125]. This proves the presence of
dexosome-to-DC cross-dressing of antigen-MHC mol-
ecules which depends greatly on CD80 and CD86
costimulatory molecules for stimulation of T cells
[125]. However, dexosome MHC I cross-dressing of
adjacent DCs did not trigger the stimulation of
ovalbumin-specific CD8+ T cells. Instead, dexosomes
were internalized (as mentioned before) and the
antigen-MHC I complexes were subsequently pre-
sented on the DC surface [126].
A third mechanism through which dexosomes can in-

duce T cells occurs via cancer cells (Fig. 2d). Based on
recent observations, dexosome-treated human breast
adenocarcinoma cells (in comparison with untreated
cells) were able to restimulate formerly activated T cells,
resulting in extensive proliferation of IFNγ-secreting T
cells [127]. Reception of dexosomes by cancer cells indi-
cates the feasibility of converting cancer cells to more
powerful immunogenic targets which presents novel ave-
nues for development of therapeutics that enhance
tumor immunotargeting.

Dexosome function in cancer
In a cancer setting, a significant role of DCs and dexo-
somes is to identify and destroy tumor cells. Indeed,
DCs represent the initial bridge between the host im-
mune system and the ongoing oncogenesis process. This
is the first stage of cancer-immunity cycle that attempts
to eradicate tumor cells by activating T cells [128]. Dur-
ing oncogenesis, TAAs are produced and secreted and
then captured and processed by proximal DCs for cross-
presentation to T cells, which results in anti-TAA T cell
priming. However, T cell propagation is only stimulated
when given additional prerequisites are met within the
local tumor microenvironment [128]. These include
local immunogenic signals, i.e. proinflammatory cyto-
kines and pathogen- or damage-associated molecular
patterns (PAMPs or DAMPs), which force DCs to
present the received TAAs to cognate T cells through
MHC I/II and costimulatory proteins [128]. Dexosome-
based antitumor signaling route is able of modulating
tumor cells beyond the level of conventional ligand-
receptor signaling routes, leading to elaborate modifica-
tions which control tumor progression and antitumor
immune responses. Munich et al. revealed that dexo-
somes can stimulate caspase activity and result in tumor
cell apoptosis via expressing the ligands of TNF super-
family such as TNF, FasL and TRAIL on their external
surface [129]. Consistent with these findings, a study
demonstrated that hyperthermic CO2-treated dexosomes
were able to suppress proliferation and trigger apoptosis
to a certain extent in gastric cancer cells [130]. More-
over, dexosomes were shown to induce propagation of

splenic cells and promote cytotoxic ability against L1210
tumor cells [131].

Dexosomes as potential cell-free tools for cancer
immunotherapy
Dexosomes represent promising antitumor entities be-
cause of their potent immunostimulatory effects, their
insensitivity to the immunosuppressive tumor micro-
environment, and their potency to reduce tumor burden
in laboratory models. In the following section, we will
focus on the ability of dexosomes to initiate effective in-
nate and adaptive immune responses in preclinical
models.

Dexosome-mediated innate immune responses
Accumulating evidence have demonstrated that dexo-
somes mediate interactions that result in stimulation of
cells of the innate immune system. Of note, in addition
to MHCs, dexosomes carry proteins that are able to trig-
ger or inhibit immune recalls in an antigen-independent
manner. Dexosomes can stimulate NKs by providing li-
gands that bind to NK-activating receptors. This process
is either mediated by dexosomal HLA-B-associated tran-
script 3 (BAT3; BAG6 (BCL2-associated athanogene 6);
a ligand for natural cytotoxicity triggering receptor 3
(NCR3)) [132] or by UL16-binding molecules, i.e. MHC
I polypeptide-related sequence A and B (MICA and
MICB; ligands of NKG2D (natural killer group 2 mem-
ber D)), on dexosomes [133]. In a murine model of ad-
vanced melanoma, dexosomes were shown to induce
IL15Rα and NKG2D-dependent proliferation of NKs
and promote IFNγ release which result in antimetastatic
effects of NKs within the local tumor environment
[134]. In human melanoma, dexosomes expressing
NKG2D ligands on their surface could directly interact
with NKG2D and NKs, supporting the hypothesis that
dexosomes are capable of stimulating antimetastatic im-
mune responses through a non-MHC-dependent man-
ner. Similar to DCs, dexosomes can affect NKs to
produce IFNγ by the interaction of dexosomal TNF with
TNF receptor on NKs [129]. Dexosomes also express
TLR4 (Toll-like receptor 4) and TLR1/2 ligands on their
surface which cause enhanced expression of TNF and
subsequent activation of NKs [135]. These findings de-
scribe novel characteristics of dexosomes in regulation
and elicitation of NK-related immune responses, and
propose new approaches for evaluating dexosome-
mediated antitumor efficacy.

Dexosome-mediated adaptive immune responses

1 CD8+ T cells.
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Several studies revealed that dexosomes have the po-
tential of activating CD8+ T cell clones in vitro either
alone [136] or when incubated with DCs that produce
allogeneic MHC I proteins [137]. These findings indicate
functionality of dexosomal antigen-MHC I assemblies.
The first evidence supporting dexosome-mediated trig-
gering of CD8+ T cells was reported in 1998 by Zitvogel
and colleagues [107]. They showed that dexosomes iso-
lated from BMDCs containing TAA-MHC I complexes
acted efficiently in both suppression and eradication of
an established malignancy in immune-competent but
not immune-deficient mice [107]. The efficiency of this
process was improved when dexosomes were adminis-
tered concomitantly with mature DCs or chemical adju-
vants that encouraged DC maturation [118]. Zitvogel
et al. also demonstrated that dexosomes were more ef-
fective than their parent DCs in terms of tumor suppres-
sion, and that autologous (not allogeneic) dexosomes
could induce TAA-targeted CTL response ex vivo, em-
phasizing the role of dexosomal MHC I throughout this
process [107]. Dexosomes of mature DCs (in compari-
son with the dexosomes of immature DCs) were more
effective in triggering CD8+ T cell immunity, indicating
the importance of costimulatory factors present on
dexosomes of mature DC origins [138]. Another study
demonstrated that human dexosomes loaded directly
with MART1 peptide (melan-A antigen; a TAA) har-
bored intact functional peptide-MHC I assemblies to
target DCs ex vivo [118]. Here, it was further shown that
dexosome-pulsed DCs were more effective in activation
of CD8+ T cells than peptide-pulsed DCs. Induction of
CD8+ T cell recalls was also confirmed when DCs lack-
ing the TAP molecules (transporter associated with anti-
gen processing) were used as the recipient [139]. In
endocytic pathway, internalized antigens are carried
from endosomes into the cytosol for proteasomal deg-
radation [140]. Antigen-derived peptides are then carried
by the TAP molecules into the endoplasmic reticulum
or back into the antigen-containing endosomes, where
they can be incorporated onto MHC I molecules [141].
However, Lawand et al. recently reported that some anti-
gens may enter the endocytic pathway in a TAP-
independent manner, indicating the possibility of other
transporters dedicated to antigen translocation into
endosomes for cross-presentation to CTLs [139].
Dexosome-mediated transference of peptide-MHC I

assemblies to DCs was also observed in vivo. Autologous
dexosomes loaded with antigenic peptides were able to
transfer them to allogeneic DCs and initiate peptide-
specific stimulation of CD8+ T cells in mouse. Intri-
guingly, intravenous administration of autologous dexo-
somes alone did not trigger any CD8+ T cell response
[118]. Likewise, no noticeable level of antigen-specific
CD8+ T cells was observed when MHC I-restricted

peptide of ovalbumin (OVA, SIIN-FEKL) was loaded
onto dexosomes [142]. Conversely, whole OVA protein-
loaded dexosomes (with indirect method) were capable
of initiating protein-targeted CD8+ T cell response. This
effect depended mostly on CD4+ T cells and partly on B
cells, particularly marginal zone B cells [142]. Further in-
vestigation by Hao et al. revealed that CD8+ T cell
propagation induced by dexosomes loaded with protein
relied on CD4+ T cells [143] and CD11c+ DCs [144].
A number of strategies was adopted in order to pro-

mote dexosomal-mediated antigen-specific CD8+ T cell
responses. Viaud et al. introduced IFNγ as a key cyto-
kine that stimulates dexosomal expression of CD40,
CD80, CD86, and CD54 molecules which result in in-
duction of direct and powerful antigen-dependent CD8+

T cell responses by dexosomes derived from IFNγ-
matured MCDCs [111]. Another strategy is to inject
dexosomes comprising a danger signal like a TLR ligand,
such as polyinosinic:polycytidylic acid (poly (I:C)) or
CpG-ODN, that boost DC maturation [118]. Here, a hu-
manized MHC I-deficient murine model was used for
administration of two therapeutic dosages of dexosomes
pulsed with human peptides and coinjected with CpG-
ODN, and it was found that tumor development was sig-
nificantly decreased compared to mice that received
tumor peptide-CpG-ODN [118]. αGC-loaded dexosomes
were also reported to promote CD8+ T cell responses
against a concurrently loaded antigen [145]. When DCs
were exposed to the lysates of B16F10 melanoma cells
with the aim of loading TAAs onto dexosomes, the pre-
pared vaccine led to stimulation of melanoma-specific
CD8+ T cells and recruitment of CTLs, NKs, and NKTs
in the subcutaneously grafted melanoma tumors in mice.
Consequently, tumor development was remarkably de-
creased and survival prolonged. DCs loaded with gastric
TAAs demonstrated the ability to trigger the prolifera-
tion of CTLs. Additionally, by binding to TLR ligands,
dexosomes can activate adjacent DCs to express trans-
membrane TNF and produce pro-inflammatory cyto-
kines [146].
Several investigations attempted to change the mo-

lecular make-up of dexosomes to generate tolerogeneic
vesicles with immunosuppressive features. Genetically-
modified BMDCs produce IL4, IL10 or FasL molecules
that repress the inflammation caused by DTH in a mur-
ine model of collagen-induced arthritis [147, 148]. Simi-
larly, when donor dexosomes were injected to a rat
model of cardiac transplantation, chronic allograft rejec-
tion response was remarkably delayed [149]. Dexosomes
produced from TGFβ1- and IL10-matured DCs could
also induce immune tolerance in a skin allograft murine
model [150]. Moreover, DCs overexpressing indoleamine
2,3-dioxygenase (IDO) molecules produced dexosomes
that reduced inflammation in a rheumatoid arthritis
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model [151]. Lu et al. recently demonstrated that in a
murine model of autochthonous hepatocellular carcin-
oma, mice treated with dexosomes isolated from DCs
that expressed α-fetoprotein (AFP) had remarkably more
IFNγ-producing CD8+ T cells, enhanced levels of IL2
and IFNγ, fewer Tregs and reduced levels of IL10 and
TGFβ [152]. Therefore, dexosomes are capable of pro-
moting T cell stimulation along with downregulating im-
munosuppressive responses, which serve as a promising
tool to create efficient antitumor vaccines.

2. CD4+ T cells.

While dexosomes can present antigens and directly
trigger cognate CD8+ T cell clones, lines [138], or
primed CD4+ T cells [153], they need to be captured by
bystander DCs to activate naïve CD4+ T cells [91, 125,
153]. Dexosomes were reported to transfer peptide-
MHC II complexes to MHC II-deficient DCs, and
allowed them to trigger antigen-specific CD4+ T cells
[91, 125]. As reported for CD8+ T cells, dexosomes of
mature DCs were also more effective in CD4+ T cell ac-
tivation in vitro [91]. Peptide- or protein-loaded dexo-
somes could hinder tumor growth by recruiting CD4+

and CD8+ T and B cells in vivo [142]. Further in vivo
studies demonstrated that dexosomes loaded with anti-
gens and generated using TLR3 agonist, poly (I:C), and
OVA initiated the propagation of OVA-specific CD4+ and
CD8+ T cells [154]. These results were remarkably super-
ior compared to using CpG-B and LPS for TLR9 and
TLR4, respectively. When antigen-pulsed dexosomes from
mature, but not immature, DCs were injected from male
into female mouse models, the male skin grafts were
rejected because activated CD4+ T cells were differenti-
ated into effector CD4+ T cells in vivo [91].
As previously mentioned for CD8+ T cells, dexosomes

are able to initiate propagation of antigen-specific CD4+

T cells once they are loaded with whole protein antigens.
It was assumed that this effect depended upon a func-
tional compartment belonging to B cells, since the pro-
liferation of CD4+ T cells was not detected in B cell
receptor signaling deficient btk−/− mice [155]. These
findings imply that dexosome-borne antigens are
ingested, processed, and presented by DCs to T and B
cells, a hypothesis further approved in an investigation
where allogeneic I-Ad+ dexosomes could stimulate allo-
specific CD4+ T cell proliferation in I-Ab+ mice [121].
Dexosomes loaded directly or indirectly with peptide-
MHC II assemblies could trigger specific CD4+ T cell re-
sponses in vivo [121, 125]. In vitro, dexosomes could not
trigger antigen-specific T cell activation unless mature
CD8α− DCs were also present in the culture environ-
ment. These mature DCs could be MHC II-deficient,
but had to express CD80 and CD86 costimulatory

factors. Moreover, in comparison with CD8α+ DCs,
CD8α− DCs were more powerful in induction of CD4+ T
cell immunity [125]. In another study, it was reported
that CD8α+, but not CD8α−, DCs purified from the
lymph nodes of dexosome-treated mice were capable of
stimulating antigen-targeted CD4+ T cell proliferation
ex vivo [121, 156]. Qazi et al. compared the efficiency of
dexosomes directly loaded with OVA peptide with dexo-
somes derived from OVA-pulsed DCs in initiating spe-
cific CD4+ T cell responses in vitro and in vivo, and
showed that both dexosomes could elicit T cell prolifera-
tion in vitro, with peptide-loaded dexosomes being more
effective. Conversely, in vivo, only dexosomes produced
from OVA-pulsed DCs could induce CD4+ T cell prolif-
eration, emphasizing the significance of indirect antigen-
loading approaches in clinical applications. Moreover,
these dexosomes were able to induce the polarization of
T cells to the Th1 type in a B cell-dependent fashion,
which highlights the importance of B cells in producing
T cell responses through a dexosome-dependent path-
way [155].

3. B cells

Exosomes originated from various APC origins con-
tribute to the elicitation of B cell immunity both
ex vivo and in vivo. Segura et al. demonstrated that
dexosomes can harbor both antigen-MHC assemblies
and ICAM1 molecules to less-efficient APCs, such as
B cells, leading to T cell stimulation in an indirect
way [91]. Naslund et al. also demonstrated B cells
were essential for optimal triggering of CD8+ T cells
via dexosomes [157]. Mycoplasma-infected BMDCs
release dexosomes that are able to initiate polyclonal
propagation of primary B cells independent of CD40,
LPS, or CpG signaling pathways in vitro [158]. In an-
other study, allogeneic BMDC dexosomes were ad-
ministered systematically (intravenous/intraperitoneal
injection) to rats before transplantation with the aim
of exploring anti-allograft immune responses. Here,
dexosomes could initiate the in vivo production of
IgG2a and b antibodies (type I antibodies) specific to
dexosomal antigens, and resulted in extended survival
of the allograft [159]. Likewise, BMDCs pulsed with
diphtheria toxoid or OVA antigen resulted in the pro-
duction of antigen-specific type I antibodies [155,
160]. Titers of specific antibodies can be amplified by
simultaneous pulsing of BMDCs with αGC and an
antigenic protein [145].
Taken together, all the above-mentioned reports con-

firm that dexosomes are perfectly capable of exerting
potent immune responses and hence possess great thera-
peutic values against a variety of immune-related dis-
eases, including malignancies.
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Dexosome-based cancer immunotherapy in clinical trials
In light of their great capacity as immunotherapeutic
agents, dexosomes have been employed as cell-free anti-
cancer vaccines in several clinical trials, including two
phase I [161, 162] and one phase II [163] clinical trials
in end-stage cancer patients. Since preparation of dexo-
some vaccines is possible using cells isolated from a sin-
gle step of leukapheresis, hundreds of individual
dexosome vaccine preparations have been created thus
far. The process of good manufacturing practice of dexo-
some cancer vaccines is represented in Fig. 3. Quality
control criteria for the produced vaccines include desig-
nation of tetraspanin proteins (CD63, CD81, and CD82)
as well as the overexpression of HLA-DR and other dex-
osomal hallmarks including Tsg101 and HSP70 [111].
Loading of TAAs on dexosomes was verified by pulsing
dexosomes with or without HLA-A2− DCs and an
antigen-specific T cell clone. In the phase II trial, manu-
facturing of dexosome batch relied on the increased pro-
portion of tetraspanin and HLA-DR (MHC II) proteins
in comparison with the control [111, 163]. While natural
epitopes of dexosomal MHC I proteins were eluted
using acid in the phase I trials, no precedent elution was

conducted in the phase II trial. This alteration in elution
strategy was due to the ability of peptides with higher af-
finity to coincide with or compete against the natural
epitopes present on dexosomal membrane, as was dem-
onstrated by in vitro functional tests utilizing MART1-
specific CTL clones [111, 163].

Phase I clinical trials
Autologous MCDC cultures loaded with HLA-elicited
MAGE-A3, -A4, -A10, and MAGE-3DPO4 peptides
(melanoma-associated antigens) were employed in the
primary phase I studies. In both trials, four doses of
dexosome vaccinations were administered at weekly in-
tervals. Thirteen HLA-A2+ participants with pretreated
final stage (IIIb and IV) non-small cell lung carcinoma
(NSCLC) overexpressing MAGE-A3 or -A4 antigens
were qualified to receive dexosome immunotherapy in
the first line of phase I trials [161], and nine participants
completed the therapy. One week following the last vac-
cination, three of the tested patients, who had not shown
MAGE-sensitive immune responses before
immunization, exhibited systemic MAGE-specific im-
mune reactivity as confirmed by DTH response.

Fig. 3 The good manufacturing practice of dexosome cancer immunotherapy. Advanced cancer patient is first subjected to leukapheresis.
Following elutriation, monocytes are isolated in a cell therapy unit good manufacturing practice laboratory, and are then differentiated into
immature dendritic cells (DCs) using GM-CSF and IL4, and may go through a quality control (QC) check as well. Afterwards, MHC I and II
molecules incorporated with tumor-associated antigens (TAAs) are loaded onto DCs in the presence of IFNγ. TAA-loaded dexosomes are then
produced and can be collected from culture supernatants. Each dexosome preparation is checked for immunological features (e.g., the content of
tetraspanins, MHC II and costimulatory molecules) and immunostimulatory potential (e.g., the capacity to trigger a cognate T cell clone) before
releasing of a certain batch. Released batches may subsequently be cryopreserved (at − 80 °C) for future administrations. Manufacturing of
dexosome vaccines for cancer immunotherapy requires roughly three weeks following leukapheresis (this involves the time for in vitro cell
culture steps, production and isolation of dexosomes, QC checks, and first-line therapy of the patient with metronomic cyclophosphamide)
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Increased MAGE-specific T cell function was only ob-
served in one of five patients, as determined by enzyme-
linked immunospot (ELISPOT) assay. This low-level T
cell reactivity was attributed to the possible suppression
of Tregs (CD4+ CD25+ T cells). In two of three partici-
pants, Tregs were amplified (compared to the baseline
levels) as a percentage of total CD4+ T cells following
dexosome therapy. An improvement of the NK lytic ac-
tivity was detected in two of four tested samples. Taken
as a whole, the NSCLC phase I trial was well tolerated
and showed an acceptable safety profile, with disease sta-
bility shown in two participants who had progressive tu-
mors at diagnosis. Additionally, disease stability
continued for over twelve months in two of four partici-
pants who had initially stable disease [161].
In the second study of phase I trials, fifteen partici-

pants with the following criteria were enrolled: stage
IIIb/IV, HLA-A I+ or HLA-B35+ and HLA-DPO4+

leukocyte phenotype, MAGE-3-overexpressed malignant
melanoma (MM) [162]. The MCDC dexosome adminis-
tration format included four vaccine doses at weekly in-
tervals. Two dosages of either MHC II proteins (0.13
and 0.40 × 1014 molecules) or peptides (10 and 100 µg/
mL) were administered. Evaluation of the therapy effi-
ciency was conducted two weeks postimmunization.
One of the patients showed a partial reactivity to dexo-
some therapy. In this patient, a depigmentation halo sur-
rounding naevi was observed, and the arterial
neovasculature was disappeared and tumor retracted.
This participant received four months of continuation
therapy with dexosomes which resulted in the disease
stabilization and toxicity reduction. Stabilization of the
disease for up to twenty four months was too observed
in another participant who was given continued dexo-
some therapy. Taken together, this study resulted in two
stabilized diseases along with one minor, one partial,
and one mixed reactivity at lymph nodes or skin. A
number of these results were achieved in participants
with invasive tumors who had formerly gone through
other therapies or received alternate anticancer vaccines.
As observed in the first phase I trial, neither MAGE-
specific CD4+ and CD8+ T cell activation nor DTH re-
sponse were identified in the peripheral blood of patients
[162]. However, it was demonstrated that immature
MCDC dexosomes express NKG2D ligands on their
membrane which bind to NKG2D on NKs, resulting in
pro-NK effects [134]. After four weeks of vaccine admin-
istration, the number of circulatory NKs were remark-
ably enhanced. After dexosome immunotherapy, the
expression of NKG2D and NK cytotoxicity were main-
tained in 50% of patients who had NK function deficit at
the beginning of the study [134]. Moreover, it was found
that dexosome therapy could trigger NK proliferation
in vivo in an IL15Rα-dependent fashion. These findings

were in consistence with the improved control of tumor
metastasis in B16F10 melanoma cell-inoculated mice by
NK1.1+ cells [134]. Human dexosomes derived from im-
mature DCs were reported to present BAG6 molecules
on their surface [164], which is a ligand for NKp30 re-
ceptors expressed on NKs [165]. Cytokine release from
NKs was reported to be directly correlated with the ex-
pression levels of BAG6 on dexosomes [164]. Further-
more, dexosomal surface expression of TNF were able to
trigger the production of IFNγ by NKs [129].

Phase II clinical trials
Defective antitumor effects of first-generation dexo-
somes (IFNγ-free dexosomes) in the induction of NKs
and T cells in the phase I trials encouraged researchers
to design and develop innovative strategies in order to
promote dexosome-dependent antitumor host immune
responses. As mentioned before, one strategy is to utilize
dexosomes originated from LPS- or IFNγ-matured DCs,
which exhibit greater T cell immunity [111]. A clinical-
grade process for production of dexosome vaccines was
developed when these results were applied to human
DC cultures [111]. Here, IFNγ was employed for stimu-
lating human DCs in culture, and subsequently, dexoso-
mal costimulatory factors and ICAMs were upregulated,
resulting in second-generation dexosomes (IFNγ dexo-
some) with increased immunostimulatory capacity [111,
166]. The phase II clinical trial aimed to investigate
whether maintenance immunotherapy of advanced
NSCLC patients using IFNγ dexosomes could result in
progression-free survival (PFS) at four months postche-
motherapy [163]. Twenty two HLA-A2+ patients who
had inoperable (stage IIIb or IV) NSCLC with neutro-
phils ≥ 1.5 × 109/L and showed immune responses or dis-
ease stabilization following four rounds of a first-line
platinum-based chemotherapy were qualified for receiv-
ing IFNγ dexosome [163]. The utilized TAAs included
MAGE-A1, -A3, NY-ESO, MART1 (all MHC I-
restricted peptides) and EBV (MHC II-restricted pep-
tides). Patients first received three weeks of metronomic
oral low-dose cyclophosphamide (CTX). This regimen
was proven to decrease Treg activity and induce IFNγ-
and IL17-generating T cell clones according to several
preclinical [167–169] and clinical investigations [168,
170]. Therefore, dexosome-mediated priming of T cells
is facilitated, and NK and T cell functions are preserved.
Of these participants, seven patients (32%) showed dis-
ease stability following nine times of dexosome vaccin-
ation, and proceeded to receive the therapy at three-
week intervals. Unfortunately, the main clinical outcome
of the phase II trial, a PFS of 50%, could not be achieved
and no remarkable immune reactivity was reported in
the study. Despite loading of multiple epitopes and CTX
adjuvant therapy, the use of IFNγ dexosomes was

Nikfarjam et al. Journal of Experimental & Clinical Cancer Research          (2020) 39:258 Page 13 of 20



insufficient to manifest TAA-specific T cell reactivity
[163]. However, one participant elicited a long-term dis-
ease stabilization which allowed for surgical removal of
the tumor and the eligibility for local adjuvant radiother-
apy. Moreover, second-generation dexosome therapy
was reported to promote NKp30-mediated NK function.
Although downregulated in stage IV NSCLC, NKp30 ac-
tivation improved the release of TNFα and IFNγ by
blood NKs, which was detected after four cycles of dexo-
some vaccination. More significantly, this augmented
NKp30-mediated NK function was associated with lon-
ger PFS [163]. Moreover, the aforementioned
membrane-associated NKp30 ligand, BAG6, was de-
tected on the membrane of dexosome vaccine prepara-
tions and was reported to be responsible in NKp30-
dependent pro-NK activity. To further support this the-
ory, it was shown that the concentration of MHC II
molecules in dexosome inocula and NKp30-dependent
NK activity correlated with the levels of dexosomal
BAG6. This is different from the results obtained in MM
phase I trial where NKG2D (and possibly IL15 or
IL15Rα) mediated dexosome-related NK responses [134,
162]. Since dexosome preparations employed in the
phase I MM study were not obtained from IFNγ-
matured DCs (where IFNγ results in BAG6 overexpres-
sion [171]), the NKG2D ligand-mediated NK activation
was probably manifested more dominantly in the ab-
sence of BAG6-NKp30 pathway.

Application of distinct subsets of DCs to ameliorate
cancer immunotherapy
The unique characteristics of diverse DC subsets can
be employed to generate more potent and efficient
antitumor immune responses. Since DCs are hardly
present in the peripheral blood (approximately 1% of
total leukocytes), most of DC-based vaccine prepara-
tions are derived from moDCs differentiated in vitro
from CD34+ progenitors or CD14+ monocytes by the
addition of growth factors (such as IL4 and GM-CSF)
and maturation factors (e.g. CD40L or TLR agonists)
and subsequently loaded with antigenic material
[172–175]. However, ex vivo differentiated moDCs
differ from the primary circulatory DCs both in
phenotypic and transcriptional features [176] and are
less efficient in migratory capacity and T cell activa-
tion [177, 178]. Recent investigations in cancer im-
munotherapy recommend using autologous DCs and
focus on DC subset specificity [179]. Different subsets
of DCs are probably correlated with improved survival
rate in various tumor types [29, 36, 40]. Given the as-
sumption that all subsets of DCs are capable of trig-
gering antitumor immunity, a number of clinical trials
were performed [180–182] utilizing autologous pri-
mary pDCs and cDC2s [183]. Although cDC1s remain

the most effective candidate against cancer, according
to their potent CD8+ T cell activation potential, their
separation from the peripheral blood is still a major
challenge for their clinical use [183]. Flt3L-dependent
mobilization can be used for stimulation of all DC
subsets, including cDC1s, in vivo [180, 182]. However,
ongoing attempts are investigating new approaches
for optimization of cDC1-based vaccines for applica-
tion in clinical setting. Recently, the role of the Notch
signaling route was proposed in promoting in vitro
differentiation of cDC1s [184, 185]. An alternative
and promising strategy is to directly reprogram der-
mal fibroblasts into cDC1s [186]. The effectiveness of
cDC1-based cancer vaccines was tested in several ex-
perimental models and the results will pave the way
for their application in clinical trials in the near fu-
ture [187].
Regardless of the recent breakthroughs in immuno-

therapy of cancer, manipulation of DCs or their EVs for
development of more effective vaccine tools has not yet
attained its maturity, and the optimization of mecha-
nisms at subcellular and molecular level is still in de-
mand for promoting their antitumor effects. It was
shown that cellular maturity in cDC1-based vaccines can
be reached by stimulating TLR3 (poly I:C) and TLR8
(R848) [188, 189]. The method of antigen loading is a
major factor governing the priming of T cells. For in-
stance, in a personalized clinical trial of ovarian cancer
[190], moDCs incubated with lysates of autologous oxi-
dized whole cancer cells extended survival. Another
strategy is to use engineered DCs with a chimeric recep-
tor that can exclusively uptake TAA-bearing EVs and
lead to efficient antitumor immune responses [191]. Pro-
cessing and cross-presentation of antigens can be pro-
moted by regulating the proteolysis of internalized
antigens through the abrogation of molecules regulating
vesicular trafficking including YTHDF1 and SEC22B [27,
192]. Alternatively, to generate potent T cell responses,
the cDC1-intrinsic immunosuppressive signals can be si-
lenced using siRNA molecules that delete PDL1 and 2
[193]. The synergic application of immune checkpoint
blockade and DC-based vaccines promises one of the
most efficient approaches for cancer immunotherapy.
Another promising strategy is to promote the cross-
presentation potential of cDC1s by directly targeting
CLEC9A, which contributes to internalization of dead
cells and presentation of antigenic material to CD8+ T
cells [194, 195]. Anti-CLEC9A molecules can deliver
maturation signals to cDC1s as recently demonstrated
by infusion of a chimeric recombinant protein inside the
tumor mass [196]. Chemokines that regulate the em-
ployment of cDC1s in tumors can also be targeted to
promote the clinical efficacy of DC-based vaccines as
was demonstrated using intratumoral injection of
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CCL21-expressing DCs to trigger antitumor immune re-
sponses in a phase I lung cancer clinical trial [197]. Tar-
geting XCR1 was also demonstrated to be involved in
TAA delivery to cDC1s and subsequent activation of
CD8+ T cells [198, 199]. Next-generation DC-based vac-
cines, including dexosome vaccines, will most probably
recruit the above-mentioned strategies to promote the
differentiation of cDC1s ex vivo and utilize their dexo-
somes for generating efficient therapeutic responses.

Conclusions
The idea of employing dexosomes as anticancer vaccine
vehicle is utilizing the nature’s antigen delivery system
for vaccination. However, the low clinical efficacy of
dexosome vaccines in induction of adaptive immune re-
sponses can be explained by the advanced stage of the
disease, the limited number of patients, who had re-
ceived antitumor therapies prior to enrollment, and the
lack of appropriate preselection criteria [200]. According
to the phase II trial data [163], dexosome immunother-
apy was probably most effective in patients with measur-
able levels of serum BAG6, which is possibly related to
NKp30 functional defects. In other words, patients who
showed downregulation or defective functions of NK re-
ceptors (particularly NKG2D or NKp30) were most
likely to benefit from dexosome therapy [163]. The pres-
ence of local or systemic immunoregulatory mechanisms
such as the expression of PDL1 on NSCLC cells in asso-
ciation with PD1 overexpression in myeloid-derived sup-
pressor cells, Tregs and tumor-infiltrating lymphocytes
is another possibility for the observed poor immune re-
activity. Another conceivable explanation is that the uti-
lized dexosome MHC I/II-restricted TAAs were not
sufficient to stimulate tumor-targeted T lymphocyte re-
activity. Moreover, the pharmacokinetic of the injected
dexosomes is not yet fully determined. Although it is ex-
pected that the injected dexosomes reach T cell zones of
secondary lymphoid organs in acceptable quantities, they
may have travelled to the macrophages of subcapsular
sinus or DCs of lymphatic sinus where they interact with
innate lymphocytes [201].
Dexosome vaccines function more successfully when

combined with other therapy regimes. For instance, in
CTX-exosome combination therapy, CD8+ T cell prim-
ing against the preestablished tumor was synergistically
increased in mice [167]. However, in humans, CTX-
dexosome combination chemotherapy appeared to be ef-
ficient only if genuine adjuvants were present. The
therapeutic outcome observed here is probably
dependent on the repression of tumor-elicited tolerance
along with promotion of tumor-mediated immunogen-
icity, since CTX is capable of alleviating Treg function
[167, 170]. This CTX-mediated strategy was imple-
mented in the phase II trial [163, 166], although it is

presumed that the relevant clinical outcome would have
been more successful in earlier stages of disease. An-
other proposed combination therapy is to join PD1/
PDL1 blocking (or coblocking with anti-CTLA4 therapy)
with dexosome vaccine, which results in the suppression
of tumor-infiltrating lymphocytes and T cell activation.
However, one major obstacle is that the presently estab-
lished regimen for chemotherapy of NSCLC is not able
to trigger immune-related cellular death [202]. There-
fore, combination therapy utilizing immunogenic cyto-
toxic drugs poses an appropriate option in treatment of
malignancies. A last conceivable option is to combine
dexosome vaccine with NK-based therapies, such as
anti-KIR Ab (anti-killer cell immunoglobulin-like recep-
tor antibody) [203], in order to generate synergistic im-
munogenic results against NK-dependent cancers.
Furthermore, establishing an immortalized DC line li-
brary, tailored for expression of a single MHC I and/or
II allele or no MHC proteins, will make continuous pro-
duction of dexosomes possible, and decrease therapy ex-
penses and the delay caused by extended culture times.
Despite the obstacles hurtled thus far, the vision of
dexosome cancer immunotherapy still stands highly
promising, offering multiple benefits over living cell
transplantation. Thus, one can envision that dexosomes
might replace cell-based therapeutic strategies in the
long run.
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