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Abstract

clinical trials of the anti-cancer efficacy of statins.

As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovas-
cular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the
anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed
drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anti-
cancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that
certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical
anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcom-
ings associated with conventional cancer treatments, suggesting that statins should be considered in the context of
combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer
treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins
and their effects on different malignancies. We also provide recommendations for the design of future well-designed
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Background

Currently, cancer remains the leading cause of death in
every country in the world, and the burden of cancer
morbidity and mortality is growing rapidly worldwide [1].
The global cancer burden in 2040 is expected to be 28.4
million cases, representing an increase of 47% over 2020
[1]. The development of new drugs to improve cancer
treatment can take many years and is extremely expen-
sive [2]. One way to reduce this time-frame and cost is
to repurpose existing drugs that show potential cyto-
toxic activity. Drug repurposing has been used in cancer
treatment for many years. Although these drugs have an
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alternative original indication, they are now being widely
used in cancer treatment [3].

Statins are powerful competitive inhibitors of
3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reduc-
tase (HMGCR) and are commonly used as lipid-lowering
drugs. The source of human plasma cholesterol is either
dietary intake or de novo biosynthesis by cells. Statins
reduce plasma cholesterol levels by reducing de novo
cholesterol biosynthesis and inducing changes in low-
density lipoprotein (LDL) receptor expression. However,
in the past, studies have shown that statins exhibit pleio-
tropic effects independent of their lipid-lowering prop-
erties. It has been reported that the epigenetic effects
of statins mediate these pleiotropic effects, at least to
some extent [4]. Among them, the anti-tumor proper-
ties of statins have attracted particular attention. For
example, Kodach et al. found that statins act as DNA
methyltransferase (DNMT) inhibitors, demethylating
the bone morphogenetic protein 2 (BMP2) promoter,
activating BMP signaling, inducing differentiation of
colorectal cancer (CRC) cells, and reducing “stemness”
[5]. As repurposed drugs, statins are being investigated
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for both the prevention and treatment of cancer. There-
fore, the anticancer mechanisms of statins have attracted
a lot of attention. Among them, the most widely studied
is the mevalonate pathway. The flux of the mevalonate
pathway is an absolute requirement for all cells, includ-
ing cancer cells. YAP and TAZ are master transcriptional
regulators of normal organ growth and tumor growth [6].
Studies have revealed that the mevalonate pathway pro-
motes YAP/TAZ nuclear localization and activity, while
statins impair the YAP/TAZ-dependent transcriptional
responses by blocking the mevalonate pathway, thereby
inhibiting the development of cancer cells [7]. In addition
to the mevalonate pathway, a variety of other anticancer
mechanisms of statins have been uncovered one after
another.

The development of statins as “cholesterol-lowering”
drugs began in the mid-1970s. Simvastatin, lovastatin,
and pravastatin are all fungal-derived compounds with
very similar structures, although the additional hydroxyl
groups make pravastatin more hydrophilic than simvas-
tatin or lovastatin. In contrast, fluvastatin, pitavastatin,
cerivastatin, atorvastatin and rosuvastatin are synthetic
derivative compounds with similarities in structure,
such as common fluoride side groups (Fig. 1). Statins
may have different intracellular effects depending on
their chemical structure [8]. Compared with hydrophilic
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statins (such as pravastatin and rosuvastatin), lipophilic
statins (such as simvastatin) show a greater ability to
penetrate the cell membrane and enter hepatocytes and
non-hepatocytes through passive diffusion [9, 10]. Fur-
thermore, lipophilic statins have higher pro-apoptotic
activity than hydrophilic statins [11]. Due to their higher
cytotoxic potential, lipophilic statins may be beneficial
in cancer treatment [12].

Here, we review the anti-cancer mechanisms of statins
as well as the new perspectives and unique significance of
statins in adjuvant cancer therapy to provide a reference
for future clinical trials and applications of statins.

Conventional and off-label of statins

Statins were initially developed to lower lipids and pre-
vent cardiovascular disease. Statins act as competitive
inhibitors of HMGCR and can prevent cardiovascular
diseases such as atherosclerosis by reducing cholesterol
synthesis [13—15]. The effect of statins on cardiovascu-
lar morbidity and mortality in patients with and without
atherosclerotic disease has been well proven. Further-
more, statins appear to exert pleiotropic effects inde-
pendent of their lipid-lowering properties, including
effects on diabetes, neurological diseases, coronary
heart disease, inflammation and cancer [16]. Given the
anticancer effects of statins, and the fact that statins are
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well-tolerated, inexpensive, and less toxic than conven-
tional chemotherapy drugs, many researchers considered
repurposing statins as a promising strategy for the treat-
ment of cancer.

Anti-tumor effects of statins

The anti-cancer properties of statins have attracted con-
siderable interest in recent decades [17]. A growing
number of population-based studies and interventional
clinical trials indicate that statins produce a series of pos-
itive anti-cancer effects (Tables 1 and 2) [56—60].

Population-based studies

In recent years, a large number of population-based
observational studies on the anti-tumor effects of statins
have been carried out successively (Table 1); most such
studies indicate that statins prolong survival and improve
prognosis in cancer patients. A 15-year large-scale obser-
vational study of a Danish subgroup showed that the use
of statins in cancer patients was associated with a reduc-
tion in cancer-related mortality (including 13 cancers)
compared with patients who did not use statins [61].
Another retrospective study conducted on 146,326 men-
opausal women in 40 clinical centers in the USA, with an
average follow-up time of 14.6 years, showed that peo-
ple who currently use statins have a significantly lower
risk of cancer death (hazard ratio (HR), 0.78; 95% confi-
dence interval (CI), 0.71-0.86) and all-cause mortality
(HR, 0.80; 95% CI, 0.74—0.88) compared with people who
have never used statins [57]. A meta-analysis of 1,111,407
cancer patients showed that the use of statins reduced
all-cause mortality and cancer-specific mortality by 30%
and 40%, respectively [58]. Recently, a study involving
303 patients with advanced pancreatic cancer showed
that the use of statins (simvastatin and atorvastatin) was
associated with increased overall survival in patients
[62]. In addition, in patients receiving radiotherapy, sur-
gery and chemotherapy for advanced pancreatic cancer,
statin treatment was associated with a 2-year increase
in survival, suggesting that statins help improve the out-
come of interventions for advanced pancreatic cancer
[63]. A meta-analysis of breast cancer studies showed
that the overall use of statins was associated with lower
cancer-specific and all-cause mortality. Furthermore,
while lipophilic statins were found to be associated with
lower breast cancer-specific and all-cause mortality, the
protective effect of hydrophilic statins on these outcomes
was weak, suggesting that the protective effects of statins
on breast cancer are affected by the type of statin [64].
However, in another meta-analysis of 7,858 breast can-
cer cases, no association between statin use and breast
cancer risk was observed at a mean follow-up of approxi-
mately 5 years [relative risk (RR), 1.02; 95% CI, 0.89-1.18]
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[65]. Given that this conclusion is limited by the relatively
short follow-up time of the studies analyzed, further
studies are required to investigate the effect of long-term
statin use on breast cancer risk. In prostate cancer, a
study conducted in 4,204 men who underwent prostate
biopsy suggested that people who used statins had a sig-
nificantly reduced risk (8%) of prostate cancer compared
with people who did not use statins (RR, 0.92; 95% CI,
0.85-0.98) [22]. Another analysis of 1,001 prostate cancer
patients (289 statin users) reported a 0.19 hazard ratio for
prostate cancer-specific death among statin users com-
pared with men who did not use statins (95% CI, 0.06—
0.56) [66]. A recent clinical study showed that statin use
is associated with a reduced risk of phosphatase and ten-
sin homolog (PTEN)-negative and fatal prostate cancer
[23]. However, the results of a population-based epidemi-
ologic study showed that the use of statins was not asso-
ciated with overall prostate cancer risk [67], although the
credibility of the results of the study are open to question
due to the relatively small sample size and the existence
of potential selection and recall biases. In gastric cancer,
a recent nationwide cohort study suggested that the use
of statins is related to a decrease in gastric cancer mortal-
ity in the general population, but has no correlation with
the incidence of gastric cancer [30]. A recent prospective
observational study of ovarian cancer patients conducted
in Australia suggested that the increase in patient survival
is related to the use of lipophilic statins, but not to hydro-
philic statins [59]. In a large-scale population study of
4,913 patients with diffuse large B-cell lymphoma, statins
improved the survival rate in a dose-dependent manner
[39]. A study of 999 colon cancer patients showed that
the use of statins after diagnosis was significantly associ-
ated with a lower risk of death from any cause (adjusted
RR, 0.67; 95% CI, 0.51-0.87) and a lower risk of cancer
death (adjusted RR, 0.66; 95% CI, 0.49—-0.89) [31]. Simi-
larly, a recent meta-analysis showed that statin use was
significantly associated with a decrease in overall mor-
tality and cancer-specific mortality of CRC [32]. In liver
cancer, a meta-analysis involving 59,073 patients showed
that statin use was significantly associated with a reduced
risk of hepatocellular carcinoma (HCC) progression
compared with those who did not use statins (RR, 0.54;
95% CI: 0.47-0.61) [68].

Inconsistencies in observational studies regarding sta-
tin use and cancer morbidity and mortality may be due to
significant differences in follow-up periods and potential
shortcomings in retrospective and observational stud-
ies. For example, statin users might be more health-con-
scious and might see their doctor more frequently than
non-users, so non-users are more likely to be diagnosed
with cancer at a later stage compared with statin users.
In addition, the race diversity of the population in studies
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Table 2 Statin use in interventional clinical anticancer studies
Cancer Statins Combination agent Population Findings Ref/CTG.ID
Breast cancer Fluvastatin (After the diagnosis) NR 40 Fluvastatin decreased breast [47]
tumor proliferation and
increased apoptosis
Atorvastatin (After the diag- NR 42 Atorvastatin decreased breast [48]
nosis) cancer proliferation by
influencing the expression of
cyclin D1 and p27
Simvastatin (After the diag- FAC 60 Simvastatin may improve [49]
nosis) the efficacy of FAC in LABC
patients
Simvastatin (After the diag- NR 50 NR NCT03454529
nosis)
Prostate cancer Fluvastatin (After the diagnosis) NR 33 Fluvastatin is associated with [50]
promising effects on tumor
cell apoptosis
Atorvastatin (After the diag- ADT 400 NR NCT04026230
nosis)
Gastric cancer Simvastatin (After the diag- Cisplatin/Capecitabine 244 Adding simvastatin to capecit-  [51]
nosis) abine-cisplatin did not
increase PFS in patients with
gastric cancer
Pravastatin (After the diagnosis) ECC 30 Adding pravastatin to ECC [52]
did not improve outcome
in patients with advanced
gastric cancer
Lung cancer Simvastatin (After the diag- Gefitinib 106 Simvastatin may improve the [53]
nosis) efficacy of gefitinib in that
subgroup of gefitinib-resist-
ant NSCLC patients
Simvastatin (After the diag- Irinotecan/Cisplatin 62 NR NCT00452634
nosis)
Liver cancer Pravastatin (After the diagnosis) Sorafenib 312 Adding pravastatin to sorafenib  [54]
did not improve survival in
patients with advanced HCC
Atorvastatin (After the diag- NR 240 NR NCT03024684
nosis)
Pravastatin (After the diagnosis) TAE/5-FU 83 Pravastatin prolonged the [55]
survival of patients with
advanced HCC
Colorectal cancer Simvastatin (After the diag- Cetuximab/Irinotecan 52 NR NCT01281761
Nnosis)
Pancreatic cancer Simvastatin (After the diag- Gemcitabine 106 NR NCT00944463
nosis)
Ovarian cancer Simvastatin (After the diag- NR 20 NR NCT04457089
nosis)
Glioblastoma Atorvastatin (After the diag- Radiotherapy/Temozolomide 36 NR NCT02029573
nosis)
Endometrial cancer Rosuvastatin (After the diag- Megestrol acetate 43 NR NCT04491643
nosis)
Kidney cancer Atorvastatin (After the diag- Zoledronate 11 NR NCT00490698
nosis)
Head and neck cancer Atorvastatin (After the diag- NR 414 NR NCT04915183

Nosis)

Abbreviations: ADT Androgen deprivation therapy, CRC Colorectal cancer, DDS Disease-specific survival, ECC Epirubicin, cisplatin and capecitabine, EGFR-TKIs Epidermal
growth factor receptor-tyrosine kinase inhibitor, FAC Fluorouracil, adriamycin and cyclophosphamide, GBM Glioblastoma multiforme, GC Gastric cancer, HCC
Hepatocellular carcinoma, LABC Locally advanced breast cancer, MM Multiple myeloma, NHL Non-Hodgkin lymphoma, NR Not reported, NSCLC Non-small cell lung
cancer, OS Overall survival, PCa Prostate cancer, PFS Progression-free survival, TAE Transcatheter arterial embolization, 5-FU 5-fluorouracil
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could be limited. Therefore, it is difficult to determine
causality from observational studies. Inconsistent find-
ings highlight the importance of well-designed clinical
trials to accurately determine the potential of statins as
single- or combination-therapy anticancer drugs.

Interventional clinical trials

In addition to population-based studies, the ability of
statins to kill tumors has also been investigated in sev-
eral interventional clinical trials (Table 2). A periopera-
tive trial showed that high-dose (80 mg/day) neoadjuvant
fluvastatin decreased breast tumor proliferation and
increased apoptosis compared with low-dose (20 mg/
day) treatment [47]. Similarly, another clinical trial in
breast cancer patients treated with a high dose of ator-
vastatin (80 mg/day) in the first 2 weeks before surgery
suggested that this treatment decreased breast cancer
proliferation by influencing the expression of cyclin D1
and p27 [48]. Recently, Longo et al. revealed that neoad-
juvant fluvastatin treatment prior to radical prostatec-
tomy may be effective in inducing intratumoral apoptosis
in patients with localized prostate cancer [50].

Statins have also been shown exert antitumor effects
by enhancing the response of combination therapy.
Recently, Yulian et al. found that simvastatin combined
with FAC (Fluorouracil, adriamycin and cyclophospha-
mide) improved the response to neoadjuvant chemother-
apy in patients with advanced local breast cancer [49].
Cantini et al. found that high-intensity statins enhanced
the clinical activity of programmed death receptor-1
(PD-1) inhibitors in patients with malignant pleural mes-
othelioma and advanced non-small cell lung cancer [69].
Han et al. found that simvastatin may improve the effi-
cacy of gefitinib in gefitinib-resistant non-small cell lung
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cancer (NSCLC) patients [53]. Kawata et al. reported that
pravastatin prolonged survival in patients with advanced
HCC who received 5-fluorouracil (5-FU) treatment after
transcatheter arterial embolization (TAE) [55]. However,
Jouve et al. found that adding pravastatin to sorafenib
did not improve survival in patients with advanced HCC
[54]. Similarly, Kim et al. found that adding simvastatin
to capecitabine—cisplatin did not increase PFS in patients
with gastric cancer [51]. Konings et al. also found that
adding pravastatin to ECC (epirubicin, cisplatin and
capecitabine) did not improve outcome in patients with
advanced gastric cancer [52].

In summary, the anti-cancer properties of statins have
been demonstrated in several clinical and epidemiologi-
cal studies. However, these effects are not consistent and
in several clinical studies, statins were not associated with
a reduction in cancer mortality and morbidity, with some
even suggesting the opposite effect. Therefore, the anti-
cancer properties of statins require further exploration of
mechanism of action to maximize design of experiments
for further validation in clinical trials.

Anti-cancer mechanisms of statins

The anticancer properties of statins have been demon-
strated in many preclinical and clinical studies. There-
fore, the mechanism underlying the anti-cancer effect of
statins has aroused widespread interest. The many anti-
cancer mechanisms of statins that have been proposed in
recent years are summarized in Fig. 2 and Table 3.

The mevalonate pathway

Metabolic changes are a hallmark of cancer cells [135].
However, it has always been a challenge to identify drugs
that target multiple tumor types and cancer-specific

Inducing
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Fig. 2 Statin targets in cancer therapy
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Fig. 3 The mevalonate pathway and its transcriptional regulation. The mevalonate pathway begins with the end-product of glycolysis,
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acetyl-CoA, which is metabolized through several enzymatic steps to mevalonate, IPP, GPP, FPP, GGPP and cholesterol. Both FPP and GGPP can

be post-translationally added to proteins, especially small monomeric GTPases (such as Ras, Rho, or Rac). Cholesterol is produced by cells via

the mevalonate pathway or LDLR-mediated LDL endocytosis from the serum. When intracellular cholesterol levels are low, SCAP mediates the
translocation of SREBP2 to the Golgi apparatus, where it is cleaved by proteases. The active N-terminal fragment is released and translocated to
the nucleus, where it binds to the SRE regions of the HMGCR and LDLR promoters to induce gene expression. The inhibitory feedback mechanism
mediated by cholesterol is indicated in blue. The mevalonate pathway can be blocked by statins

metabolic dependence. The mevalonate pathway is an
important and complex signaling pathway for the pro-
duction of various isoprenoids, such as cholesterol,
vitamin D, lipoproteins, polyol and ubiquinone [136].
Accumulating evidence indicates that mevalonate path-
way (Fig. 3) flux, which is an absolute requirement for all
cells, is increased in carcinogenic lesions and is a general
feature of cancer [137]. This increased demand for meva-
lonate is a hallmark of tumorigenesis, and the increased
availability of mevalonate pathway intermediates leads
to adaptive changes that promote the adaptability of
tumor cells [138]. A central motivation for targeting the
mevalonate pathway is that selective and well-tolerated
inhibitors already exist. Statins block HMGCR synthesis

of mevalonate and are prescribed for the treatment of
hypercholesterolemia in millions of people. Moreover,
numerous in vivo and in vitro studies have shown that
statins exert anti-cancer properties by inhibiting the
mevalonate pathway. Here, we further divide these effects
into those that are induced via non-cholesterol-mediated
pathways and cholesterol-mediated pathways.

Non-cholesterol-mediated pathways

The mevalonate pathway starts with acetyl-CoA, which
is derived from the decarboxylation of pyruvate, the
final product of glycolysis. Three molecules of acetyl-
CoA are then condensed into 3-hydroxyglutaryl-CoA,
which is converted to mevalonate by HMGCR [139] in
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a reaction that represents the rate-limiting step in this
pathway. Mevalonate is then phosphorylated by meva-
lonate kinase and metabolized to isopentenyl pyroph-
osphate (IPP) [140-142], which is the factor that defines
the key role of the mevalonate pathway in the synthe-
sis of farnesyl pyrophosphate (FPP) and geranylgeranyl
pyrophosphate (GGPP) via reactions that are catalyzed
by farnesyl diphosphate synthase (FDPS) and GGPP
synthase (GGPPS) [141, 143]. FPP is the basic compo-
nent required for the production of squalene, which is a
precursor of cholesterol and a key product of the meva-
lonate pathway. Cholesterol is mediated by additional
enzymes, such as squalene epoxidase and squalene
synthase [144, 145]. Cholesterol plays a vital role in
the establishment and maintenance of the structure
and function of cellular membranes. It is also a precur-
sor of steroid hormones, vitamin D and bile acids [146,
147]. In addition, cholesterol is essential for the biogen-
esis of lipid rafts composed of lipids and proteins. These
dynamic assemblies float within the cell membrane and
participate in membrane transport, signal transduction,
and cell polarization [148]. The synthesis of FPP and
GGPP is essential for the post-translational modifica-
tion referred to as prenylation of various proteins. This
reaction is mediated by farnesyltransferase (FTase) I
and geranyltransferases (GGTases) I and II. The locali-
zation, membrane anchoring and function of hundreds
of signaling proteins depend on post-translational pre-
nylation [139, 149]. These proteins include small mono-
meric GTPases (guanosine-triphosphate hydrolase) (e.g.
Ras, Rho or Rac) and the y-subunit of G-protein coupled
receptors, which are involved in numerous important
intracellular signaling pathways [150]. These small mon-
omeric GTPases promote their anchoring and activation
on the plasma membrane through isoprenylation and
association of these signaling molecules with effectors to
regulate a wide range of cellular functions, such as endo-
cytosis/exocytosis, differentiation, cytoskeletal rear-
rangement and contraction, migration, apoptosis, and
proliferation [151, 152]. Inhibition of HMGCR by statins
depletes the pools of mevalonate (MA), IPP, FPP and
GGPP in cells. This process interferes with the function
of Ras and Rho family GTPases [153—157]. Indeed, lower
GGPP and FPP concentrations, leading to reduced RAS
and Rho isoprenylation, signal transduction, and DNA
synthesis, are important functional consequences of
statins in the treatment of cancer [119, 158—162]. Inhib-
iting the farnesylation of these proteins restricts their
activity and might hinder cancer cell proliferation [163,
164]. Studies have shown that the inhibitory effect of
simvastatin on the proliferation, migration and invasion
of the gastric cancer cell lines MKN45 and MGC803 is
due to a reduction in GGPP and RhoA activity mediated
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by inhibition of B-catenin and the Yes-associated protein
(YAP) signaling pathways. Statins activate the intrinsic
apoptotic pathway by disrupting the prenylation of key
regulatory proteins. Therefore, the depletion of isopre-
noids leads to the apoptosis of a variety of cancer cells
[112, 165]. Simvastatin has also been shown to signifi-
cantly inhibit the proliferation and migration of two cell
lines of intestinal (NCI-N87) and diffuse (Hs746T) met-
astatic gastric tumor histological subtypes. Furthermore,
the anti-proliferative effects of simvastatin in gastric
cancer cells were reversed by the addition of meva-
lonate, FPP and GPP [92]. Simvastatin also activates cas-
pase-3/-7/-9, which in turn induce apoptosis in human
cancer cell lines through depletion of isoprenoids, a pre-
cursor to the prenylation of the small Rho GTP-enzyme
[73, 166]. Fujiwara et al. reported that statins promote
cell death by increasing the activation of caspases-3/-9,
inducing Bcl-2 interacting mediator of cell death (Bim)
expression, arresting the cell cycle at the G1 phase, and
by decreasing the mitochondrial membrane potential
(Aym) through inhibition of Ras/ERK and Ras/mTOR
pathways [167]. Statins stimulate membrane FasL
expression and lymphocyte apoptosis via the RhoA/Rho-
associated protein kinase (ROCK) pathway in murine
melanoma cells in vitro [168]. A recent study showed
that statins inhibit pyrimidine nucleotide biosynthesis by
inhibiting the mevalonate pathway, and also induce oxi-
dative stress and apoptosis in p53-deficient cancer cells
[169]. Statin-induced GGPP depletion blocks macropi-
nocytosis and starves cells with oncogenic defects [170].
Lovastatin-induced MCE-7 cancer cell death is mediated
via the liver kinase B1 (LKB1)-AMP-activated protein
kinase (AMPK)-p38 mitogen-activated protein kinase
(p38MAPK)-p53-survivin signaling cascade [74]. Yin
et al. found that pituitary tumor-transforming gene 1
(PTTG1) was significantly overexpressed in malignant
breast cancer cell lines, and simvastatin downregulates
its expression by inhibiting GGPP [171]. Freed-Pastor
et al. revealed that mutant p53 can disrupt mammary
acinar morphology by up-regulating the mevalonate
pathway, thereby exerting a carcinogenic effect, while
statins inhibit the mevalonate pathway to exert a tumor
suppressor effect [172]. Epithelial-to-mesenchymal
transition (EMT), which is an effective mechanism of
cancer metastasis, is a dynamic multi-gene program-
ming cycle [173]. Lipophilic statins have been found to
function as antagonists of EMT signaling pathways in
stem-like cells in breast cancer by inhibiting the meva-
lonate pathway [174]. In prostate cancer, lovastatin
and simvastatin inactivate RhoA, thereby inducing cell
apoptosis and cell cycle arrest in the G1 phase [90].In
ovarian cancer, statins promote cell apoptosis in a dose-
dependent manner via a GGPP-mediated mechanism
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[175]. Accumulating evidence shows that statins inhibit
tumor metastasis by disrupting geranylgeranylation and
farnesylation of small GTPases [160, 176—178]. These
findings support the view that statins may be promising
anti-cancer drugs.

Cholesterol-mediated pathways
A link between cellular cholesterol levels and cancer was
first reported a century ago [179]. Since then, several
studies have shown that cholesterol levels in tumors are
elevated compared to those in normal tissues [180, 181].
Variation in the mechanisms by which tumor cells
increase intracellular cholesterol have been observed,
including increased expression of low-density lipopro-
tein receptor (LDLR) or insufficient feedback regulation
of LDL [182-188]. Cholesterol promotes the progres-
sion of sex hormone-responsive breast cancer and pros-
tate cancer by providing estrogen and androgens [189].
In addition, cholesterol is very important for cell pro-
liferation and the cell cycle, especially for progression
to S-phase [190], and plays a central role in lipid rafts.
Cancer cells have an increased requirement for choles-
terol and contain more lipid rafts than normal cells to
meet the need for tumor-promoting cell signaling pro-
teins [147]. Cells acquire cholesterol from plasma via
LDLR-mediated endocytosis, or synthesize cholesterol
de novo via the mevalonate pathway. The discovery of
sterol regulatory element binding proteins (SREBPs) is a
breakthrough in understanding the regulation of meva-
lonate pathway genes. These transcription factors are
synthesized as inactive precursors on the endoplasmic
reticulum membrane, where they bind to SREBP cleav-
age activating proteins (SCAPs), which function as sterol
sensors. SREBP-2 is transported to the Golgi apparatus
by SCAPs when intramembranous cholesterol levels
are reduced. SREBPs are cleaved by two proteases in
the Golgi apparatus, and then their active fragments are
released and translocated to the nucleus, where they bind
to the sterol regulatory elements (SRE) in the promoter
regions of the HMGCR and LDLR genes to induce their
expression. Transcriptional activation of HMGCR leads
to the de novo biosynthesis of cholesterol via the meva-
lonate pathway. After LDLR transcription is activated,
receptor-mediated endocytosis of low-density lipopro-
tein leads to increased cellular cholesterol uptake. When
the intracellular cholesterol level is high, SCAPs prevent
the translocation and activation of SREBPs, resulting in
the transcriptional inactivation of HMGCR and LDLR
[191-194]. The complexity of these precisely controlled
regulatory mechanisms ensures that cholesterol homeo-
stasis is maintained within cells [195]. Dysregulation of
cholesterol homeostasis or key molecules in cholesterol
are not only related to several well-known carcinogenic
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pathways, but also related to inflammasome- and
miRNA-mediated cancer development. SREBP2 not only
regulates the transcriptional activity of cholesterol bio-
synthesis genes and LDLR-mediated cholesterol influx,
but also regulates the transcriptional activity of Nod-
like receptor protein 3 (NLRP3) inflammasome-related
inflammation. The causal relationship between chronic
inflammation and cancer is widely established. Inflam-
masomes, which are large intracellular multi-protein
signaling complexes formed in response to inflamma-
tion, participate in the activation of inflammatory pro-
tease caspase-1 and the pro-inflammatory cytokines
interleukin (IL)-1p and IL-18 [196]. NLRP3 regulation
is closely related to the development and progression
of tumors, including head and neck squamous cell car-
cinoma [197], colorectal cancer [198] and breast cancer
[199]. MicroRNA 33 (miRNA33) binds to the SREBP2
gene to positively regulate SREBP2 expression. Hyperac-
tivation of cholesterol biosynthesis leads to uncontrolled
cell growth [200].

Newly synthesized free cholesterol is transported
to subcellular membranes by cholesterol transfer pro-
tein; however, to avoid excessive accumulation of free
cholesterol, surplus cholesterol is esterified by acyl-
CoA:cholesteryl acyltransferase 1 (ACAT1) to form cho-
lesteryl esters (CEs), which are stored as lipid droplets
(LDs) in cells [201]. Although CEs serve as a cholesterol
reservoir, the accumulation of CEs or ACAT1 overex-
pression promote tumorigenesis. In a xenograft model
of glioblastoma, ACAT1 ablation was shown to reduce
tumor progression [202]. ACAT1 overexpression was
also found in hepatocellular carcinoma [203]. In addition,
the migration ability of breast cancer cells and the pro-
gression of prostate cancer was found to be suppressed
by inhibiting the expression of ACAT1 [204, 205]. When
de novo biosynthesis is the main source of intracellular
cholesterol, most cells acquire cholesterol from LDL in
the circulatory system via LDLR-mediated endocyto-
sis [206]. Proprotein-convertase-subtilisin-kexin type-9
(PCSK9) overexpression promotes lysosomal degradation
of LDLR [207], leading to hypercholesterolemia and ulti-
mately, the occurrence of hepatocellular carcinoma [208].
Excess cholesterol also produces oxysterols, which are
natural ligands for liver X receptors (LXRs). The binding
of cholesterol to LXRs triggers conformational changes
of the receptor, thereby enhancing the interaction with
the co-activator protein and promoting the transcription
of cholesterol efflux-related genes [209], including ATP-
binding cassette (ABC) subfamily A member 1 (ABCA1),
ABC subfamily G member 1 (ABCG1) and ABCG5/8.
The excess cholesterol can be exported to lipid-poor
apolipoprotein A-I (ApoA-I) via ABCA1 or ABCGI, and
generate high-density lipids proteins (HDLs), which are
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transported back to the liver [210-213]. When the intra-
cellular cholesterol level is high, the LXR can upregulate
ABCAI transcription [213]. However, in cancer cells,
ABCAL1 expression is inhibited via the phosphatidylinosi-
tol-3-kinase (PI3K)/protein kinase B (AKT)/mechanistic
target of rapamycin complex 1 (mTORC1) pathway [200].
MiR-183 promotes the proliferation and anti-apoptotic
properties of colon cancer cells by directly degrading
ABCA1 mRNA to maintain high levels of intracellular
cholesterol [214]. Similarly, miR-27a-3p also inhibits can-
cer cell apoptosis by blocking cholesterol efflux or target-
ing ABCA1 [215]. LXR overexpression has been shown to
have anti-proliferative effects in gastric cancer cells [216].
Cholesterol and its oxygenated derivatives bind with high
affinity to the G protein-coupled receptor (GPCR) known
as smoothened receptor (SMO), which activates the
Sonic Hedgehog (SHH) pathway [217]. The SHH path-
way is considered to be an oncogenic signaling cascade
based on its ability to promote cell cycle progression and
stem cell proliferation by increasing glioma-associated
oncogene homolog 1 (GLI1) activity, which subsequently
activates hedgehog targeting genes, thereby enhancing
tumor formation [218]. Statins arrest SHH signaling in
medulloblastoma cells and fibroblasts by inhibiting cho-
lesterol synthesis, thus attenuating tumor proliferation
[219]. Similarly, Fan et al. recently found that statins sup-
press medulloblastoma growth without bone toxicity by
repressing hedgehog signaling in tumor cells [220]. These
studies illustrate the inseparable correlation between
cholesterol and cancer, and reveal that statins exert anti-
cancer properties by inhibiting the de novo synthesis of
cholesterol.

Statins regulate autophagy

Both autophagy and apoptosis are important biologi-
cal phenomena involved in various processes such as
development and growth. The major distinction between
autophagy and apoptosis is their purpose. For exam-
ple, during stress conditions, autophagy primarily tar-
gets certain toxic components to preserve cell survival
[221, 222]. When autophagy is insufficient to reduce
stress and compensate for cellular damage, this results
in autophagic cell death, which is similar to apoptosis
[223, 224]. Since the discovery of autophagy, numerous
studies have shown that autophagy is associated with the
progression of pathological conditions, especially can-
cer [225-227]. Autophagy has been shown to reduce the
viability of tumor cells or play a protective role in cancer.
Thus, autophagy seems to play a dual role in tumorigen-
esis and tumor progression [228]. The tumor-suppres-
sive function of autophagy is primarily important in the
early stages of cancer development, representing a criti-
cal quality control mechanism that maintains genomic
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integrity by regulating the degradation of damaged pro-
teins or organelles (such as dysfunctional mitochondria)
[228, 229]. Autophagy also facilitates oncogene-induced
senescence [230] and contributes to cancer immune
surveillance [231]. The tumor-promoting effects of
autophagy are exerted mainly in the later stages of tumor
development. Due to the rapid proliferation of cancer
cells, the nutritional requirements for anabolic pathways
are high. Autophagy contributes to cancer cell metabo-
lism by recycling cellular substrates [232]. Autophagy
also promotes the survival of cancer cells under stress
conditions, such as tumor hypoxia, nutrient deprivation
or endoplasmic reticulum (ER) stress [233, 234]. In sum-
mary, interfering with autophagy is a reasonable thera-
peutic strategy to improving the effect of anti-cancer
treatments in the clinic.

A variety of anti-cancer drugs have been developed
based on their ability to regulate autophagy. The first
report of statin-induced autophagy showed that hydro-
phobic statins, such as simvastatin, induced autophagy
in rhabdomyosarcoma A204 cells [235] through deple-
tion of the GGPP pool [236]. After deletion of the
autophagy-related gene 5 (ATG5) or ATG7 gene in
SPC-A-1 cells, fluvastatin inhibits bone metastasis
by inducing autophagy in lung adenocarcinoma cells
[237]. In HEK293 human embryonic kidney cells, ator-
vastatin induces autophagy in a mevalonate (MEV)
pathway-dependent manner by inhibiting GGPP syn-
thesis [89]. Autophagy was induced in U251 cells by
treatment with simvastatin for 24 h, and this effect was
reversed by the addition of MEV, which again suggests
that the MEV cascade is involved in statin-mediated
autophagy [238]. In human leukemia cells treated with
simvastatin for 24-72 h, the induction of autophagy
flux appeared to be mediated by the inhibition of cho-
lesterol production, rather than the synthesis of FPP
or GGPP [239]. Atorvastatin induced autophagy in the
Huh7 and HCT116 gastrointestinal tumor cell lines
independent of the MEV pathway [240]. Simvastatin
can impair autophagy flux and induce breast cancer cell
death by stimulating the extracellular regulated protein
kinases 1 and 2 (ERK1/2) and Akt pathways [79]. Lov-
astatin stimulates autophagy through the Rac/phospho-
lipase C/inositol 1,4,5-triphosphate axis, and markedly
decreases the viability and migration ability of malig-
nant pleural mesothelioma tumor cells [241]. Due to
the resistance of tumor cells to apoptosis-based ther-
apy, and the stimulatory effect of cancer cell apoptosis
on the survival and proliferation of neighboring cells,
the induction of autophagic cell death is preferred to
apoptosis as a strategy to combat cancer. Studies have
shown that the combination lovastatin and farnesyl-
transferase inhibitors can stimulate non-apoptotic
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Fig. 4 The relationship between statins and ferroptosis. Iron overload, lipid reactive oxygen species (ROS) accumulation, and lipid peroxidation
are prerequisites for the activation of cell death by ferroptosis. Ferroptosis is governed by three antioxidant axes, i.e, the GSH/GPX4, FSP1/CoQ10/
NAD(P)H and GCH1/BH4 axes. The FSP1/CoQ10/NAD(P)H axis relies on the mevalonate pathway to generate CoQ10. IPP, the precursor of CoQ10,
is also a limiting substrate for enzymatic isopentenylation of Sec-tRNA, thereby influencing the expression of GPX4. Statins regulate the GSH/GPX4

{ tati
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and FSP1/CoQ10/NAD(P)H axes via the mevalonate pathway, thereby inducing cell death by ferroptosis

cell death and impair autophagy flux [242]. Angiogen-
esis plays a critical role in cancer progression. Atorv-
astatin stimulates autophagy in human umbilical vein
endothelial cells. Furthermore, high-dose atorvastatin
activates apoptosis and inhibits angiogenesis. Ator-
vastatin stimulates autophagy through upregulation
of light chain 3-phosphatidylethanolamine conjugate
(LC3II), which effectively reduces proliferation and
viability of cancer cells [243]. The benefits of statins as
adjuvant therapy for cancer have been widely reported.
The combination of lovastatin and cisplatin has been
found to enhance expression of the autophagy marker
LC3B-II and decrease the viability of cancer cells
through the induction of autophagic cell death [244].
Autophagy has been shown to play a central role in
the induction of chemotherapeutic resistance [245,
246]. The anti-cancer effects of the chemotherapeu-
tic agent temozolomide (TMZ), which is used to treat
glioblastoma (GBM), are markedly reduced by TMZ-
induced autophagy. A recent study showed that simv-
astatin inhibits the autophagic flux induced by TMZ by
blocking autophagolysosome formation, thereby sen-
sitizing glioblastoma cells to TMZ-induced cell death
[112]. However, a recent study showed that atorvasta-
tin reduces cell viability and promotes cervical cancer
cell apoptosis by inducing the activation of caspase-3
and poly (ADP-ribose) polymerase (PARP) and upreg-
ulating Bim. However, atorvastatin induced cellular
autophagy in cervical cancer cells, and pharmacologic

inhibition of autophagy using autophagy inhibitors
remarkably enhanced atorvastatin-induced apoptosis
of cervical cancer cells [247].

In summary, statins are capable of modulating
autophagy, making them promising candidates for the
treatment of cancer. However, the regulatory effects of
statins on autophagy require further clarification.

Statins induce ferroptosis

The term ferroptosis, which was coined in 2012 [248], is
a form of programmed cell death (PCD) that differs from
apoptosis, necrosis, pyroptosis and autophagy [249, 250].
Ferroptosis is associated with the occurrence of multiple
diseases [251, 252] and its role in the treatment of cancer
has attracted increasing attention [253—-258]. In essence,
ferroptosis is a process that occurs as a result of meta-
bolic dysregulation, and is characterized by iron over-
load, lipid reactive oxygen species (ROS) accumulation,
and lipid peroxidation [248]. Ferroptosis is inhibited by
sequestration of free iron, inhibition of polyunsaturated
fatty acid (PUFA) synthesis, or scavenging of ROS. Fer-
roptosis and lipid peroxidation are mainly controlled
by three parallel systems: the glutathione (GSH)/glu-
tathione peroxidase 4 (GPX4) axis, the ferroptosis sup-
pressor protein 1 (FSP1)/ubiquinone (CoQ10)/NAD(P)
H axis and the GTP cyclohydrolase 1 (GCH1)/tetrahy-
drobiopterin (BH4)/phospholipid axis [259-261]. The
induction of ferroptosis in tumor cells is a promising
anti-tumor strategy.
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Statins are associated with ferroptosis via the meva-
lonate pathway (Fig. 4), which is closely related to the
regulation of the GSH/GPX4 and FSP1/CoQ10/NAD(P)
H axes. The mevalonate pathway is crucial for the syn-
thesis of GPX4 itself and generation of the CoQ10 back-
bone. IPP produced by the mevalonate pathway is the
precursor of CoQ10.IPP positively regulates Sec-tRNA,
which functions as a key regulatory element during the
maturation of GPX4 [262, 263]. Blocking the rate-limit-
ing enzyme in the mevalonate pathway by using statins
compromises the efficient translation of GPX4 and con-
sequently sensitizes cells to ferroptosis [264, 265]. It was
recently revealed that the mechanism underlying the
protective effect of CoQ10 is based on the ability of FSP1
to use CoQ10 as a substrate to hinder lipid autoxidation
[259, 260]. A recent study showed that drug-resistant
cancer cells in a high-mesenchymal cell state were sen-
sitive to ferroptosis induced by GPX4 inhibition or sta-
tin treatment. Fluvastatin treatment decreased GPX4
expression in a time- and concentration-dependent man-
ner and its effects are enhanced by combination with
the direct GPX4 inhibitor RSL3 [264]. Therefore, in the
absence of bioavailable GPX4 inhibitors, statins stand out
as candidates for the therapeutic induction of ferroptosis
in highly mesenchymal and chemotherapy-resistant can-
cer cells.

Statins induce pyroptosis

Pyroptosis is an inflammatory form of PCD that is
distinct from autophagy and ferroptosis. It was first
described in myeloid cells infected by pathogens or bac-
teria in 1992 [266-268]. Pyroptosis is characterized by
cell swelling, rupture, lysis and release of pro-inflamma-
tory molecules, such as IL-1p and IL-18 [269, 270] and
is induced by members of the gasdermin superfamily,
including GSDMA, GSDMB, GSDMC, GSDMD, and
GSDME [271-276]. The inflammasome activates caspase
family proteins to cleave gasdermin. The resulting active
form of the protein translocates to the cell membrane,
forming pores that lead to cell swelling, cytoplasmic out-
flow, cell membrane rupture and eventually cell pyropto-
sis [273-275]. Generally, GSDMD, which is downstream
of inflammasome activation, is cleaved by inflammatory
caspases (caspasel/4/5/11) to induce pyroptosis, while
GSDME is cleaved by apoptotic caspases (caspase 3) to
induce pyroptosis [272]. There are two main pathways of
pyroptosis: the caspase-1-mediated canonical pathway
and the caspase-4/5/11-mediated non-canonical path-
way. In the canonical pathway, danger is sensed through
inflammasomes, leading to the recruitment and acti-
vation of caspase-1, which activates inflammatory fac-
tors such as IL-18 and IL-1P and cleaves the N-terminal
sequence of GSDMD. The activated form of GSDMD
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then bind to the cell membrane to generate pores and
induce pyroptosis [277]. In the non-canonical pathway,
human homologs caspase-4, 5 and murine caspase-11
recognize and bind to the bacterial lipopolysaccharide
(LPS) and then cleave GSDMD, leading indirectly to cas-
pase-1 activation and pyroptosis [271, 274].

Many studies have shown that pyroptosis is closely
related to the occurrence and development of various
diseases, such as cancer [267, 278, 279]. For example,
recent studies have shown that the low GSDMD expres-
sion significantly promotes the proliferation of gastric
cancer cell both in vivo and in vitro [280]. Zhou et al.
demonstrated that that iron supplementation at appro-
priate doses in iron-deficient patients is sufficient to
maximize the anti-tumor effects of clinical ROS-inducing
drugs, and inhibit the growth and metastasis of mela-
noma cells through GSDME-dependent pyroptosis [281].
A recent study showed that atorvastatin inhibits pyropto-
sis through the long non-coding RNA (IncRNA) NEXN-
AS1/NEXN pathway in human vascular endothelial
cells [282]. In a mouse model of cardiac injury induced
by coronary microembolization, rosuvastatin decreased
the expression of NLRP3, caspase-1, interleukin-1p and
GSDMD N-terminal domains, suggesting that this drug
can protect against this type of cardiac injury by inhib-
iting pyroptosis [283]. However, the potential role of
pyroptosis in the anti-tumor effects of statins remains to
be fully elucidated.

Statins target the TME

Tumor microenvironment (TME) denotes the non-can-
cerous cells and components presented in the tumor,
including molecules produced and released by them
(Fig. 5). Over time, cancer has been recognized as an evo-
lutionary and ecological process that involves constant,
dynamic, and reciprocal interactions between cancer
cells and TME [284]. The constant interaction between
tumor cells and the TME plays a decisive role in tumor
initiation, progression, metastasis, and response to ther-
apy. The acquisition and maintenance of the hallmarks of
cancer, such as maintained proliferation signaling, resist-
ance to cell death, angiogenesis, activation of invasion
and metastasis, and the induction of tumor-promoting
inflammation, as well as the evasion of immune destruc-
tion, depend to varying degrees on the contribution of
TME.

Given our increased understanding of the crucial
roles of the TME in tumor development and therapeu-
tic resistance, the focus of cancer research and treatment
has gradually switched from a cancer-centric model to
a TME-centric model. Efforts have been made to target
components of the TME to achieve therapeutic benefits
for cancer patients. We have introduced some specialized
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microenvironments in TME, focusing on hypoxic niche,
immune microenvironment, metabolism microenviron-
ment, acidic niche, innervated niche, and mechanical
microenvironment (Fig. 5) [285]. Compared with the
whole TME, a specialized microenvironment seems to
be a better target for cancer treatment. The anti-tumor
effects of some conventional drugs have been shown to
be mediated by targeting the TME. Statins have been
observed to exert anti-tumor effects by targeting these
specialized microenvironments.

In the metabolic microenvironment, simvastatin has
been shown to induce metabolic reprogramming in a
mouse model of head and neck squamous cell carcinoma
(HNSCC) by reducing the production of lactic acid and
cancer sensitivity to monocarboxylate transporter 1
(MCT1) inhibitor, thereby inhibiting HNSCC [125].

In the mechanical microenvironment, simvasta-
tin repolarizes tumor-associated macrophages (TAM)
and promotes M2-to-M1 phenotype switching of mac-
rophages via cholesterol-associated LXR/ABCA1

regulation, thereby remodeling the tumor microenviron-
ment and inhibiting EMT [286].

Statins are also reported to target the immune micro-
environment through cytokines or chemokines and
immune checkpoints. Statins inhibit the survival of lung
cancer cells by inhibiting the secretion of CCL3 by lung
cancer cells as well as IL-6 and CCL2 secretion by mesen-
chymal stromal cells, indicating the potential of statins as
repurposed drugs for targeting the immune TME [108].
In inflammatory breast cancer (IBC), simvastatin blocks
the activation of mesenchymal stem cells by decreasing
IL-6 production [287]. A recent study showed that sim-
vastatin can enhance the anti-tumor activity of CD8" T
cells by reducing cholesterol in the TME [116].

Hypoxia is induced in tumors by the outgrowth of
cancer cells and unmatched angiogenesis and oxygen
supply, accompanied by changes in the rate of cancer
cell metabolism. Hypoxia activates vascular endothe-
lial cells, upregulates vascular endothelial growth fac-
tor (VEGF) transcription, and stimulates excessive
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angiogenesis, thereby influencing the TME and thera-
peutic effects [288—291]. Statins have been shown to
inhibit GGPP biosynthesis, and signal transduction via
the Ras/ERK and Ras/Akt pathways, thereby suppressing
the expression of basic fibroblast growth factor (bFGF),
hepatocyte growth factor (HGF) and transforming
growth factor-p (TGF-f) in LMS8 cells. These results sug-
gest that statins are potentially useful as anti-angiogenic
agents for the treatment of osteosarcoma [121].

In the acidic niche, statins inhibited the proliferation of
the human synovial sarcoma cell line SW982 by reduc-
ing the production of GGPP [292]. Many studies have
shown that statins can influence and regulate the central
and the peripheral nervous systems [293-295]. However,
there is no conclusive evidence to show that statins exert
anti-cancer effects by targeting the innervated niche, and
further studies are required to clarify this issue.

Thus, a large amount of evidence shows that statins
can exert anti-tumor properties by targeting TME, and
repurposing statins to target the TME has shown con-
siderable advantages. These findings indicate that statins
can target multiple microenvironments and highlight
the great potential for their use in combination with
approaches such as immunotherapy, chemotherapy, and
targeted therapy.

Maximizing efficacy and addressing shortcomings
of conventional cancer therapy

In recent years, many clinical and preclinical studies
have shown the potential of statins to improve the effi-
cacy of various cancer treatments when delivered before
or in combination with other therapeutic interventions.
Consequently, statins are increasingly considered as
potential adjuvant agents in the treatment of cancer. In
this regard, statins have unique advantages in that they
are safe, well-tolerated and inexpensive, indicating that
repurposing these agents may yield a cost-effective, low-
toxicity adjuvant therapy for cancer patients. However,
in the era of precision medicine, further investigation
into drug combination strategies will remain an impor-
tant area of research [296]. Here, we discuss not only
the effects of various statins combination strategies for
cancer therapy, but also their unique benefits in terms
of addressing the shortcomings of conventional cancer
therapy.

In preclinical studies, statins have shown great prom-
ise in combined therapies and may act synergistically
with some types of widely used forms of chemother-
apy. For example, using in vitro and in vivo metabolism
tracking, McGregor et al. recently showed that pan-
creatic ductal adenocarcinoma (PDAC) tumors rely on
CoQ synthesized by the mevalonate pathway, and that
statins induce cellular oxidative stress via this pathway.
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Furthermore, simvastatin combined with mitogen-acti-
vated protein kinase (MEK) inhibitors was found to sig-
nificantly enhance pancreatic tumor apoptosis in mice
[297]. Taccioli et al. identified that dasatinib and statins
are an effective combined strategy for inhibiting YAP/
TAZ in cancer cells by interrogating the Mutations and
Drugs Portal (MDP) [298]. Iannelli et al. demonstrated
the ability of the valproic acid/simvastatin combination
to sensitize metastatic castration-resistant prostate can-
cer cells to docetaxel and to revert docetaxel-resistance
through mevalonate pathway/YAP axis modulation using
both in vitro and in vivo models [299]. Adriamycin-based
chemotherapy is the first-line treatment for osteosar-
coma, but most patients will experience tumor recur-
rence and metastasis. Adriamycin treatment has been
shown to induce a stem-like phenotype and promote
metastatic potential in osteosarcoma cells by upregulat-
ing the Yamanaka factor KLF4. In addition, statins sig-
nificantly reversed adriamycin-induced cancer stem cell
properties and metastasis by downregulating KLF4. Sim-
vastatin also significantly inhibited adriamycin-enhanced
tumorigenesis of KHOS/NP cells in vivo. These data indi-
cate that the combined use of statins should be consid-
ered for selective inhibition of KLF4 in the development
of osteosarcoma therapeutics [300]. Similarly, as the main
therapeutic strategy for colorectal cancer, 5-FU-based
treatment options have some shortcomings, including
the risk of chemotherapy resistance. Recent evidence
suggests that simvastatin may enhance the sensitivity of
C26 mouse colon cancer cells to 5-FU treatment [301].
Pereira et al. found that statins temporarily modulated
the epidermal growth factor receptor (EGFR) and pros-
tate specific membrane antigen (PSMA) on the surface of
tumor cells, which enhanced the tumor-binding avidity of
the monoclonal antibodies panitumumab, cetuximab and
huJ591, thereby synergizing with the antitumor effects of
these agents [302]. It has also been reported that lovasta-
tin enhanced the sensitivity of gallbladder cancer to cis-
platin [303].

Similarly, in clinical studies, statins have been shown to
be effective in adjuvant cancer treatment. Recent clinical
studies have shown that high-intensity statins are associ-
ated with improved clinical activity of PD-1 inhibitors,
and the combined application can improve the prog-
nosis of patients with malignant pleural mesothelioma
and advanced non-small cell lung cancer [69]. A recent
cohort study from Taiwan has shown that statins are
associated with increased survival in lung cancer patients
treated with epidermal growth factor receptor-tyrosine
kinase inhibitors (EGFR-TKIs) and exert synergistic
anti-cancer effects [304]. Similarly, another cohort study
of 1,835 patients with gastric cancer from Taiwan, sug-
gested that the statin use improves the overall survival
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of patients with gastric cancer after surgery and adju-
vant chemotherapy [60]. A recent multicenter observa-
tional retrospective study showed that the use of statins
was independently associated with an increased objec-
tive response rate (ORR) of cancer patients treated with
PD-1/PD-L1 inhibitors [305]. Interestingly, both met-
formin and statins significantly reduced prostate can-
cer tumor invasiveness, and this effect was enhanced
(in vitro and vivo) when used in combination [306].
Recently, Longo et al. also found that phosphodiesterase
(PDE) inhibitors can enhance statin-induced apopto-
sis, which may pave the way for the combination of PDE
inhibitors and statins in the treatment of hematological
malignancies [307].Therefore, a large body of preclinical
and clinical evidence shows that statins play a synergistic
anti-tumor role when administered in combination with
conventional cancer therapy. This evidence may provide
references for the inclusion of statins in the future cancer
therapy.

Interestingly, statins can not only maximize the effi-
cacy of conventional cancer therapy, but also address the
shortcomings of conventional cancer therapy. Although
great progress has been made in the field of cancer ther-
apy, chemotherapy and radiotherapy remain the main-
stay of cancer therapeutic modalities are extensively
used in combination with surgery. While radiotherapy
and chemotherapy can improve the survival of cancer
patients, these treatments are also associated with seri-
ous shortcomings that influence the quality of life of
cancer patients. Despite great efforts in the develop-
ment of new cancer treatment strategies, limited atten-
tion has been paid to addressing the shortcomings of
cancer treatment. Therefore, in addition to improving
survival rates, clinical interventions are urgently needed
to minimize the shortcomings and side-effects induced
by radiotherapy and chemotherapy and improve the
quality of life of cancer patients. In recent years, statins
have attracted widespread attention due not only to their
anti-tumor properties, but also their potential to address
the shortcomings and side-effects of radiotherapy and
chemotherapy.

Cisplatin is one of the most widely used anticancer
drugs in the treatment of a variety of malignant tumors.
It is also the most ototoxic drug in clinical use, causing
permanent hearing loss in approximately 50% of treated
patients [308-312]. A recent study showed that atorv-
astatin significantly reduced the incidence and severity
of cisplatin-induced hearing loss [313]. In a propensity
score-matched cohort study, statin-exposed women had
a lower risk of heart failure (HF)-related hospital presen-
tations after anthracycline chemotherapy for early breast
cancer, with non-significant trends toward lower risk
following treatment with trastuzumab. These findings

Page 24 of 33

support the ability of statins to prevent the cardiotoxicity
of chemotherapy [314]. In addition, a fraction of patients
undergoing androgen deprivation therapy for advanced
prostate cancer will develop recurrent castrate-resistant
prostate cancer in bone. But recently, Pan et al. found
that statins can reduce castration-induced bone marrow
adiposity and prostate cancer progression in bone [315].
The safety and toxicity profiles of statins also represent
advantages for their use as adjuvant therapy in addressing
the shortcomings and side-effects of cancer treatments.
Statins used alone and in combined regimens have
shown unparalleled advantages as anti-cancer agents and
addressing the shortcomings and side-effects of conven-
tional cancer treatments. However, the molecular mecha-
nisms by which statins address these shortcomings and
side-effects require clarification to provide a basis for the
rational combination of statins and anticancer drugs to
optimize cancer therapy.

Conclusions and future perspectives
Statins belong to a class of lipid-lowering drugs that were
originally developed to treat cardiovascular disease. In
recent decades, statins have been found to have non-
lipid-related effects and are widely recognized as pleio-
tropic drugs. The anti-tumor properties of statins have
received the most attention and have been confirmed in
numerous preclinical studies. Here, we have summarized
the latest information relating to the anti-tumor mecha-
nisms of statins. The mevalonate pathway was the first
anti-tumor mechanism of statins to be discovered and
is also the most comprehensively characterized. Statins
modulate cell proliferation, differentiation, and apoptosis
by depletion of mevalonate pathway intermediates, which
interferes with the post-translational modification and
activation of small GTPases and their downstream sign-
aling. In addition, the mevalonate pathway is required
for the de novo biosynthesis of cholesterol and several
studies have shown that cellular cholesterol levels are
significantly associated with cancer. Therefore, we have
described the role of the mevalonate pathway in anti-
tumor mechanism of statins from the perspectives of the
cholesterol-mediated pathway and the non-cholesterol-
mediated pathways. Moreover, we have summarized
the latest discoveries that further clarify the anti-tumor
mechanisms of statins, including autophagy, ferroptosis,
targeting the tumor microenvironment, and pyroptosis.
The improved understanding of these mechanisms will
help elucidate the anti-tumor properties of statins and
guide clinical trials of statins, thus facilitating the identifi-
cation of novel cancer therapies.

In recent years, a large number of clinical and epi-
demiological studies on statins have been conducted,
yielding both positive and negative results. Therefore,
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more well-designed clinical trials are required to vali-
date the anti-cancer effects of statins. However, the
value of statins as therapeutic agents against cancer in
humans remains an area of active research. Although
the clinical evidence that supports the use of statins as a
monotherapy for cancer is not convincing, several pre-
clinical and clinical studies indicate that statins potenti-
ate the effects of currently used cancer therapies when
administered in combination. Furthermore, statins
have been shown to address the shortcomings and side-
effects caused by anticancer agents. Nevertheless, dif-
ficulties in statin administration at high doses remain
unsolved, so satins are currently unlikely to be pre-
scribed as a monotherapy. Therefore, we advocate the
use of statins as an adjuvant therapy for cancer, which
may be a more promising strategy than statin mono-
therapy. In addition, the large number of preclinical
studies that have provided evidence of the anti-cancer
properties of statins, as well as their safety and lack of
toxicity, indicate that statins are ready to be investigated
in well-designed prospective clinical trials, with lipo-
philic statins likely leading the charge.

In conclusion, statins are a potential adjuvant to can-
cer therapy, and more well-designed clinical trials are
required to translate this potential to benefit patients.
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