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Abstract 

Cetuximab and panitumumab are monoclonal antibodies (mAbs) against epidermal growth factor receptor (EGFR) 
that are effective agents for metastatic colorectal cancer (mCRC). Cetuximab can prolong survival by 8.2 months in 
RAS wild-type (WT) mCRC patients. Unfortunately, resistance to targeted therapy impairs clinical use and efficiency. 
The mechanisms of resistance refer to intrinsic and extrinsic alterations of tumours. Multiple therapeutic strategies 
have been investigated extensively to overcome resistance to anti-EGFR mAbs. The intrinsic mechanisms include 
EGFR ligand overexpression, EGFR alteration, RAS/RAF/PI3K gene mutations, ERBB2/MET/IGF-1R activation, metabolic 
remodelling, microsatellite instability and autophagy. For intrinsic mechanisms, therapies mainly cover the following: 
new EGFR-targeted inhibitors, a combination of multitargeted inhibitors, and metabolic regulators. In addition, new 
cytotoxic drugs and small molecule compounds increase the efficiency of cetuximab. Extrinsic alterations mainly dis-
rupt the tumour microenvironment, specifically immune cells, cancer-associated fibroblasts (CAFs) and angiogenesis. 
The directions include the modification or activation of immune cells and suppression of CAFs and anti-VEGFR agents. 
In this review, we focus on the mechanisms of resistance to anti-EGFR monoclonal antibodies (anti-EGFR mAbs) 
and discuss diverse approaches to reverse resistance to this therapy in hopes of identifying more mCRC treatment 
possibilities.
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Background
Metastatic colorectal cancer (mCRC) accounts for almost 
half of the newly diagnosed colorectal cancer cases and 
is associated with poor prognosis [1]. Epidermal growth 
factor receptor (EGFR) is a key factor in cellular prolif-
eration, differentiation and survival [2], which drives the 
use of EGFR-targeted therapy in malignancy treatment 

[3]. The advent of cetuximab and panitumumab, two 
monoclonal antibodies (mAbs) directly targeting EGFR, 
can prolong survival for 10–20% of mCRC patients 
[4]. According to the CRYSTAL trial, the application 
of cetuximab and FOLFIRI in first-line treatment can 
reduce the risk of progression by 15% and increase over-
all survival (OS) by 8.2 months in patients who have 
KRAS WT mCRC compared with patients taking FOL-
FIRI alone [5].

Although treatment with anti-EGFR monoclonal anti-
bodies (anti-EGFR mAbs) and chemotherapy has a large 
effect on mCRC, its clinical application is limited because 
of drug resistance. The clinical benefit in responders 
treated with anti-EGFR mAbs has been shown to only 
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last 8–10 months [6, 7]. As treatment progresses, approx-
imately 80% of responders develop drug resistance [8]. 
The mechanisms of resistance to anti-EGFR mAbs have 
been elucidated previously. Gene mutations downstream 
of the EGFR signalling pathway, including RAS/RAF/
MEK and PI3K/AKT/mTOR, significantly contribute 
to drug resistance [9–11]. The activation of compensa-
tory feedback loops of EGFR, such as erb-b2 receptor 
tyrosine kinase 2 (ERBB2), MET and insulin-like growth 
factor 1 receptor (IGF-1R), has been shown to interfere 
with EGFR inhibitor treatment [12–14]. In recent years, 
the intrinsic mechanisms of metabolism, autophagy [15], 
cancer stem cells (CSCs) [16] and epithelial-to-mesen-
chymal transition (EMT )[17] have also been confirmed 
to be correlated with poor progression despite anti-
EGFR mAb treatment. Extrinsic alterations of tumours 
may appear during treatment with cetuximab and pani-
tumumab [18]. Currently, it is believed that microen-
vironment remodelling can reduce the cytotoxicity of 
anti-EGFR mAbs by impairing antibody-dependent cel-
lular cytotoxicity (ADCC) and secreting growth factors 
[19, 20].

Consequently, strategies to reverse resistance to anti-
EGFR mAbs have been explored in experimental stud-
ies and clinical trials. These strategies include different 
aspects, such as new EGFR-targeted inhibitors, combi-
nations of multitargeted inhibitors, metabolic regula-
tors, immune therapy and new cytotoxic drugs. Here, 
we review the mechanisms underlying resistance to anti-
EGFR mAbs and discuss the current studies on improv-
ing the efficiency of targeted therapy, increasing the 
number of available mCRC therapies.

Intrinsic mechanisms of resistance to targeted 
therapy and related strategies
Intrinsic alterations of tumours greatly contribute to 
resistance to anti-EGFR targeted therapy. Known intrin-
sic mechanisms are genetic mutations inducing EGFR 
and compensatory feedback loop signalling activation. 
Recently, metabolic remodelling, CSCs and EMT have 
also been confirmed to promote resistance to targeted 
therapy (Fig.  1). Accordingly, different strategies have 
been used to reverse the resistance: (i) development of 
new EGFR targeted inhibitors, (ii) combination of anti-
EGFR mAbs with multitargeted inhibitors, (iii) metabolic 
regulators and (iv) new cytotoxic drugs (Tables 1 and 2).

EGFR ligands and EGFR
EGFR is part of the EGFR tyrosine kinase family [61] and 
is activated by multiple ligands, such as EGF, TGF-α, HB-
EGF, epiregulin (EREG) and amphiregulin (AREG) [62–
64]. The expression of EGFR ligands in primary tumours 
is potentially related to anti-EGFR therapy efficiency [65, 

66]. KRAS WT mCRC patients with higher expression of 
AREG and EREG seemed to obtain less survival benefit 
from cetuximab [64]. EGFR somatic sequence changes, 
including G465R, G465E, S468R and S492R, located 
at the extracellular domains (ECDs) of the EGFR-mAb 
interaction interface, confer resistance to cetuximab and 
panitumumab by preventing mAb binding [10, 67, 68]. 
In addition, R198/R200 methylation and mutation in the 
kinase domain of EGFR (V843I) correlated with disease 
progression in the presence of cetuximab [69].

Thus, the development of new mAbs that can bind to 
different or mutated EGFR ECDs is expected to improve 
the efficiency of anti-EGFR mAbs. MM-151, an oligo-
clonal antibody that binds multiple regions of the EGFR 
ECD, was confirmed to inhibit EGFR signalling and cell 
growth in a preclinical study and decrease mutations 
in circulating cell-free tumour DNA (ctDNA) of CRC 
patients [41]. Another FDA-approved EGFR antibody, 
necitumumab, can bind to S468R, the most common 
cetuximab-resistant variant of EGFR domain III [70]. 
Progression-free survival (PFS) and OS of patients tak-
ing necitumumab plus mFOLFOX6 were comparable to 
those of the cetuximab and FOLFOX regimens [21].

Considering the limitations of cetuximab and pani-
tumumab in clinical use, it is necessary to generate 
more effective anti-EGFR antibodies. Sym004, a novel 
1:1 mixture of two nonoverlapping anti-EGFR mAbs, 
showed significant advantages of abrogating EGFR 
ligand-induced phosphorylation and suppressing down-
stream signalling of all individual EGFR mutants both 
in cetuximab-resistant cell lines and in a tumour xeno-
graft model [23, 71]. A multicentre, phase 2 clinical trial 
further confirmed that Sym004 improved the OS of 
anti-EGFR-refractory mCRC by 5.5 months [22]. In addi-
tion, GC1118 is a novel, fully humanized anti-EGFR IgG1 
antibody that displays inhibitory effects against patient-
derived xenografts from CRC tumours with a KRAS 
mutation [40], especially in those with elevated expres-
sion of high-affinity ligands [72].

Compensatory feedback loop signalling
The RAS/RAF/MEK/ERK and PI3K/PTEN/AKT axes 
are the main downstream signalling pathways of EGFR. 
Upregulated receptor tyrosine kinases (RTKs), includ-
ing ERBB2, MET and IGF-1R, activate the PI3K/AKT 
axis or reactivate the ERK pathway independently of 
EGFR [73–76]. Alterations in these pathways, such as 
gene mutation, gene amplification, gene loss and abnor-
mal phosphorylation, are of great significance in primary 
and secondary resistance to anti-EGFR mAbs [11, 77]. 
Combining EGFR-targeted inhibitors with these targeted 
agents shows potential to reverse resistance to anti-EGFR 
mAbs.
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RAS mutations and RAS regulators
RAS is a master element at the centre of EGFR signal-
ling pathways [78]. Mutations within RAS put the RAS 
protein in a constitutively active state independent of 
upstream signals driven by growth factor receptor [79], 
leading to the failure of EGFR-targeted therapies. Muta-
tions in RAS usually occur in KRAS, NRAS and HRAS, 
and the KRAS mutation is the most common of these 
genomic alterations, occurring in 40% of mCRC [9, 80]. 
Mutations in exons 2, 3 and 4 of KRAS and exons 2, 3, 
and 4 of NRAS are powerful predictors for cetuximab 
and panitumumab response in mCRC [81, 82]. However, 
codon 13 mutations (G13D) in KRAS do not predict non-
response with complete accuracy [82]. Some missense 
and nonsense mutations at codons 20, 27, 30, or 31 have 

also been reported, whereas the function of these muta-
tions on GTPase activity and the outcome of CRC still 
needs further exploration [83–85].

RAS was the first driver gene found, and effective 
RAS inhibitors have been investigated for over 30 years 
[86]. For example, sotorasib is a small molecule that 
selectively and irreversibly targets KRAS (G12C). 
Nevertheless, drugs again other KRAS mutations in 
codons 12, 13 and 61 still remain to be developed [87]. 
Therefore, it is important to find other therapies to 
improve the therapeutic outcome of these patients. In 
2011, Wheeler and colleagues first reported that the 
addition of dasatinib to cetuximab showed a power-
ful antiproliferative effect on KRAS mutant cell lines 
compared to either agent alone in  vitro and in  vivo 

Fig. 1  Intrinsic mechanisms of resistance to anti-EGFR mAbs in metastatic colorectal cancer. The intrinsic mechanisms include abnormal activation 
of oncogenic signalling pathways, aberrant gene expression, metabolic disorders, increased autophagy function and cancer stem cells. For 
example, genomic alterations and proteic phosphorylation induce activation of the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR cascades. ERBB2/
MET amplification and abnormal IGF-1R activation stimulate compensatory feedback loop signalling of EGFR. The phenotype shift of cancer stem 
cells (CSCs) into epithelial-to-mesenchymal transition (EMT) contributes to therapy resistance. Glycolysis, lipid synthesis, fatty acid oxidation and 
vitamin deficiency in cancer cells also reduced the efficiency of EGFR-targeted therapy. The agents for specific points are also shown in the figure. 
Abbreviations: CSC, cancer stem cell; EMT, epithelial-to-mesenchymal transition; PI3K, phosphoinositide 3-kinase; IGF-1R, insulin-like growth Factor 
1 receptor
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[88]. However, the other clinical study did not achieve 
the expected results. A phase IB/II study of 77 refrac-
tory CRC patients treated with dasatinib plus FOL-
FOX and cetuximab did not demonstrate meaningful 
clinical activity because the treatment did not fully 
inhibit the intracellular tyrosine kinase Src [24]. Nota-
bly, some untargeted agents displayed positive results 
in KRAS-mutated CRC cells. The combination of 

simvastatin and cetuximab suppressed BRAF activity 
and reduced the proliferation of KRAS-mutant cells 
[49]. Furthermore, Metformin reversed KRAS-induced 
resistance to the anti-EGFR antibody by activating 
AMP-activated protein kinase (AMPK) and inhibiting 
mTOR [47]. Jung revealed that resistance to cetuximab 
in CRC cells with KRAS mutations can be bypassed 
by L-ascorbic acid relying on a sodium-dependent 

Table 1  Strategies to reverse resistance to anti-EGFR mAbs in clinical trials

Therapy Target Agents Setting Species Subpopulation Treatment 
regimen

Efficiency Reference

New anti-EGFR 
mAbs

EGFR S468R necitumumab Phase II mCRC​ Unselected Necitumumab plus 
mFOLFOX6

mPFS:10.0m; 
mOS:22.5m

[21]

EGFR ECD Sym004 Phase I mCRC​ KRAS WT Sym004 or investi-
gator’s choice

mOS: 12.8m VS 
7.3m

[22]

EGFR-TK Erlotinib Phase II mCRC​ KRAS WT Erlotinib+ cetuxi-
mab

ORR:42%; 
mPFS:5.6m

[23]

RAS inhibitors RAS Dasatinib Phase IB/II mCRC​ KRAS mutation Dasatinib + FOL-
FOX +cetuximab

Not reached [24]

BRAF Vemurafenib Phase IB mCRC​ BRAF V600E muta-
tion

Vemurafenib 
+ Irinotecan + 
cetuximab

ORR:35%; 
mPFS:7.7m

[25]

RAF inhibitors Phase II mCRC​ Unselected Vemurafenib+ 
cetuximab VS 
cetuximab

ORR:0 VS 4%; 
mPFS3.7 VS 4.5m; 
mOS:7.1m VS 9.3m

[26]

Encorafenib Phase III mCRC​ BRAF V600E muta-
tion

Encorafenib + bini-
metinib + cetuxi-
mab VS cetuximab 
chemotherapy

ORR: 26% VS 2%, 
mOS: 9.0m VS 5.4m

[27, 28]

MEK inhibitors MEK Binimetinib Phase III mCRC​ BRAF V600E muta-
tion

Encorafenib + bini-
metinib + cetuxi-
mab VS cetuximab 
chemotherapy

ORR: 26% VS 2%, 
mOS: 9.0m VS 5.4m

[28]

Selumetinib Phase I mCRC​ KRAS mutation Selumetinib + 
cetuximab

Not reached [29, 30]

ERBB2 inhibitors ERBB2 Neratinib Phase II mCRC​ KRAS, NRAS, BRAF, 
PIK3CA WT

Neratinib + cetuxi-
mab

Not reached [31]

PI3K inhibitors PI3K PX-866 Phase II mCRC​ KRAS WT PX-866 + cetuxi-
mab VS cetuximab

mPFS:59d VS 104d;
mOS:266d VS 333d

[32]

MET inhibitors MET Tivantinib Phase II mCRC​ KRAS mutation Tivantinib + 
cetuximab

ORR: 9.8%, mPFS: 
2.6m,mOS:9.2m

[33]

Capmatinib Phase II mCRC​ MET amplification Capmatinib + 
gefitinib

ORR: 47% [34]

IGF-1R inhibitors IGF-1R Dalotuzumab Phase II/III mCRC​ KRAS WT Dalotuzumab 
+ Irinotecan + 
cetuximab VS pla-
cebo + Irinotecan 
+ cetuximab

mPFS: 5.4m VS 
5.6m;mOS:11.6 VS 
14.0m

[35]

IMC-A12 Phase II mCRC​ Unselected IMC-A12 + cetuxi-
mab VS IMC-A12

Non response [36]

Metabolic regula-
tors

SGLT2 Dapagliflozin Case report mCRC​ SGLT2+ Dapagliflozin + 
cetuximab

CEA dropped and 
tumor regression

[37]

Immune check-
point inhibitors

PD-L1 Avelumab Phase II mCRC​ RAS WT Avelumab + 
cetuximab

mPFS:3.6m; 
mOS:11.6m

[38]

Antiangiogenic 
agents

VEGFR Regorafenib Phase I mCRC​ At least 4-line treat-
ment

Regorafenib + 
cetuximab

PR:1/17; SD: 7/17 [39]
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vitamin C transporter 2 [51]. In addition, small chemi-
cal compounds such as KY7749 and methylglyoxal 
scavengers resensitize KRAS-mutated CRC cells to 
cetuximab in  vivo [48, 89]. Despite not specifically 
targeting the RAS protein, these drugs add alternative 
methods to reverse resistance induced by RAS.

RAF mutations and RAF inhibitors
BRAF is a serine-threonine kinase just downstream of 
EGFR/KRAS that activates the MEK/extracellular sig-
nal-regulated kinase (ERK) signalling cascade through 
its phosphorylation and then promotes cancer cell pro-
liferation [90]. BRAF mutation is a powerful biomarker 

Table 2  Strategies to reverse resistance to anti-EGFR mAbs in preclinical studies

Therapy Target Agents Species Subpopulation Treatment 
regimen

Efficiency Reference

New anti-EGFR 
mAbs

EGFR ECD GC1118 PDXs KRAS mutation GC1118 VS cetuxi-
mab

Sensitive VS insen-
sitive

[40]

MM-151 PDXs EGFR G465E MM-151 VS cetuxi-
mab/panitumumab

Sensitive VS insen-
sitive

[41]

MEK inhibitor MEK Pimasertib Cell / Pimasertib + 
cetuximab

Sensitive VS insen-
sitive

[42]

ERBB2 mABs ERBB2 4D5 Cell / 4D5+ cetuximab 
VS cetuximab

Sensitive VS insen-
sitive

[43]

Trastuzumab Cell / Trastuzumab + 
cetuximab VS 
cetuximab

Sensitive VS insen-
sitive

[44]

PI3K inhibitor PI3K BKM120 Cell/nude mice KRAS mutation Cetuximab + 
BKM120 VS cetuxi-
mab VS BKM120

More effective [45]

MET inhibitor MET Crizotinib Cell KRAS mutation Crizotinib VS 
cetuximab

Sensitive VS insen-
sitive

[46]

Metabolic regula-
tors

AMPK Metformin Cell/ mice KRAS mutation Metformin+ cetuxi-
mab VS cetuximab

Sensitive VS insen-
sitive

[47]

Metabolic regula-
tors

Methylglyoxal Carnosine Cell/mice KRAS mutation Carnosine + cetuxi-
mab VS cetuximab

Sensitive VS insen-
sitive

[48]

Metabolic regula-
tors

BRAF Simvastatin Cell/mice KRAS mutation Simvastatin + 
cetuximab VS 
cetuximab

mean tumor 
volume: 20.2vs 
49.4cm3

[49]

Metabolic regula-
tors

Glutaminase 1 CB-839 Cell/mice KRAS WT CB-839 + cetuxi-
mab VS cetuximab

Sensitive VS insen-
sitive

[50]

Metabolic regula-
tors

RAF L-ascorbic acid Cell/mice KRAS mutation L-ascorbic acid 
+ cetuximab VS 
cetuximab

Sensitive VS insen-
sitive

[51]

Immunity therapy NK cells anti-CD137 mAb Mice KRAS WT/mutaion anti-CD137 mAb + 
cetuximab

Tumor regression 
and prolonged 
survival

[52]

UCB-NK Cell EGFR (+) RAS muta-
tion

UCB-NK + cetuxi-
mab

Sensitive VS insen-
sitive

[53]

Immunity therapy T cells BiTE Cell RAS and RAF muta-
tion

BiTE+ cetuximab vs 
cetuximab

Sensitive VS insen-
sitive

[54]

Immunity therapy TLR9 IMO Cell KRAS mutation IMO + cetuximab 
VS cetuximab

Sensitive VS insen-
sitive

[55, 56]

Immunity therapy CAFs Regorafenib Cell/ nude mice Unselected Regorafenib + 
cetuximab

Sensitive VS insen-
sitive

[57]

BLU9931 Cell Unselected BLU9931 + cetuxi-
mab VS cetuximab

Sensitive VS insen-
sitive

[58]

Cytotoxic drugs / TAS-102 PDXs / TAS-
102+Panitumumab

Response [59]

Natural bioactive 
monomer

/ β-elemene Cell / mice KRAS mutation β-elemene + 
cetuximab VS 
cetuximab

Tumor growth 
inhibition and 
less lymph node 
metastasis

[60]
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of poor prognosis for mCRC patients receiving anti-
EGFR mAbs [80, 91, 92]. The hotspot BRAF V600E 
mutation at codon 600 of exon 15 increases the activ-
ity of BRAF kinase by 130- to 700-fold [26, 93–95]. 
The prevalence of BRAF V600E mutations in mCRC is 
8–10%, and they occur mutually exclusively with KRAS 
mutations [25, 96]. Some BRAF non V600E muta-
tions were also reported, including D594G, G469A, 
L485F, L525R, Q524L and V600R located in the kinase 
domain. Non V600E mutations, other than Q524L, may 
also contribute to primary resistance to anti-EGFR 
mAbs [25, 96].

BRAF V600E mutations occur in various cancers, 
such as melanoma, non-small-cell lung cancer, breast 
cancer and CRC, and inhibitors targeting BRAF have 
demonstrated clinical benefit for these patients. Vemu-
rafenib, a selective oral inhibitor of the BRAF V600 
kinase, achieved an approximately 50% response 
and improved survival among metastatic melanoma 
patients with the BRAF V600E mutation [97]. Recently, 
many clinical trials have been conducted to evalu-
ate EGFR therapeutic resistance with vemurafenib. In 
2015, a pilot trial of combined vemurafenib and panitu-
mumab in BRAF-mutant mCRC patients post chemo-
therapy reported that the treatment limited tumour 
progression and resulted in modest clinical activity 
[98]. However, a multicentric clinical study contain-
ing 27 CRC patients showed that vemurafenib alone or 
with cetuximab did not benefit CRC patients [99]. The 
next year, a phase IB study affirmed the value of vemu-
rafenib again. This study demonstrated that triplets of 
vemurafenib, irinotecan, and cetuximab were well tol-
erated and exceeded tumour regression in refractory 
BRAF-mutated mCRC [100]. Of course, more clini-
cal studies are needed to ensure that vemurafenib is 
efficacious.

Despite the confusing results of the vemurafenib 
studies, another BRAF inhibitor, encorafenib, has con-
firmed the feasibility of dual-targeted EGFR and BRAF 
treatment to increase the efficiency of anti-EGFR 
mAbs. The BEACON trial showed promising efficacy 
results with an objective response rate (ORR) of 48% 
(95% CI, 29.4–67.5%) among 29 patients in the study 
[27]. Within the randomized portion of the BEACON 
trial, the confirmed ORR for the triplet treatment was 
much better than that for the control (26% vs. 2%). The 
median OS was 9 months on the triplet regimen com-
pared to 5.4 months in the control group (P < 0.0001, 
75]. Based on the randomized, phase III BEACON trial, 
a combination of encorafenib and binimetinib (a MEK 
inhibitor) with cetuximab has been recommended as 
a second-line systemic therapy for BRAF V600E muta-
tion CRC.

MEK activation and MEK inhibitors
MEK/ERK is the most important downstream cascade 
of the signalling pathways related to anti-EGFR mAbs. 
However, mutations of RAS/RAF induce constitutive acti-
vation of MEK to promote cell proliferation and survival. 
Encouragingly, combination treatment with MEK and 
EGFR inhibitors seems to be a possible strategy to over-
come the multifaceted clonal heterogeneity in tumours 
[29, 101]. Additionally, there are already some small mol-
ecule MEK inhibitors under research. AS703026 (also 
known as pimasertib), AZD6244 (also known as selu-
metinib) and BAY86–9766 have a great ability to hinder 
the growth of mutant KRAS cells in vitro and in vivo by 
specifically suppressing the key target kinase ERK, which 
is downstream of MEK [30, 42]. MEK inhibitors were 
also confirmed to increase the tumour-suppressive effect 
of cetuximab. Selumetinib or pimasertib plus cetuxi-
mab enhanced antiproliferative and proapoptotic effects 
in cells resistant to cetuximab in vitro and in vivo [102, 
103]. However, Misale found that in  vitro and in  vivo, 
the growth of resistant cells could not be hampered by 
MEK1/2 inhibitors alone; instead, the synergistic phar-
macological blockade of EGFR and MEK induced drawn-
out ERK inhibition and serious growth impairment of 
resistant tumour cells [43]. More importantly, the com-
bination of selumetinib and cetuximab failed to achieve 
positive results in a clinical trial in refractory metastatic 
CRC patients with KRAS mutations [30, 101] To date, 
binimetinib is the only MEK inhibitor permitted by the 
Food and Drug Association for clinical use in mCRC. 
Clinical verification of the feasibility of MEK inhibitors to 
reverse EGFR therapeutic resistance is urgently required.

PI3K/AKT activation and PI3K/AKT inhibitors
Phosphor-EGFR is capable of initiating the PI3K/AKT/
mTOR pathway, and PI3K mutation and aberrant AKT/
mTOR activation promote resistance to anti-EGFR mAbs 
[104]. The most common mutations in PIK3CA are in 
exons 9 (68.5%) and 20 (20.4%), and they are detected 
in 10–18% of mCRC [11, 105]. Mutations in PIK3CA 
exon 20 were significantly associated with a worse out-
come in KRAS WT mCRC patients treated with cetuxi-
mab, whereas PIK3CA exon 9 mutations had no effect 
on outcome in KRAS WT mCRC patients [11]. PTEN is 
a negative regulator in the PI3K/AKT pathway and was 
found in 20–40% of mCRC [106, 107]. Loss of PTEN pro-
tein results in long-term tumour growth by activating 
PI3K/AKT. Patients with PTEN-negative status showed 
a worse response rate and shorter progression-free sur-
vival (PFS) than those with PTEN-positive status [106, 
108, 109]. PI3K gene mutation and PTEN protein loss are 
confirmed as novel biomarkers in mCRC patients treated 
with anti-EGFR mAbs [110].
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Combinations of cetuximab and PI3K, AKT or mTOR 
inhibitors can profoundly control tumour growth in 
mCRC regardless of driver genotypes [32]. Specifically, 
PI3K inhibitors have been shown to greatly inhibit the 
growth of cancer in preclinical and clinical experiments. 
For example, the PI3K inhibitor XL147 was reported 
to inhibit the PI3K pathway with a 40–80% reduction 
in the phosphorylation of AKT and 4EBP1 in tumours 
and unexpectedly inhibited the MEK/ERK pathway in a 
phase I trial [111]. Then, in an investigation of the effects 
of XL147 on proliferation in a panel of tumour cell lines, 
Shapiro et  al. revealed that XL147 was useful for PI3K 
mutation/amplification cell lines without KRAS/BRAF/
PTEN mutation [112]. Another PI3K inhibitor, BKM120, 
was found to impede KRAS mutation-induced colorec-
tal cancer growth both in  vitro and in  vivo, regardless 
of PI3K genotype [45]. Despite the ideal results of pre-
clinical studies, clinical trials on the combination of PI3K 
inhibitors and EGFR-targeted agents are frustrating. 
PX-866 is a panisoform inhibitor of PI3K; however, the 
addition of PX-866 to cetuximab did not improve the PFS 
and OS of KRAS WT mCRC and caused greater toxicity 
in a phase II study [32]. Considering the lack of clinical 
trials on the combination of PI3K inhibitors with cetuxi-
mab or panitumumab, the application of PI3K inhibitors 
in enhancing the response to anti-EGFR mAbs remains 
unascertainable thus far.

ERBB2 amplification/mutations and ERBB2 inhibitors
A total of 2–7% of unselected CRCs were found to have 
ERBB2/mutations, and this number was much higher 
in KRAS wild-type cases (13.6%) and in KRAS/NRAS/
BRAF/PIK3CA quadruple wild-type cases (36% )[13, 113, 
114]. Bertotti et  al. identified ERBB2 as a biomarker of 
resistance to anti-EGFR mAbs [113]. Importantly, ampli-
fication of ERBB2 was also enriched in nonresponsive 
KRAS WT mCRC [73]. ERBB2 activating mutations of 
S310F, L755S, V777L, V842I, and L866 increase MAPK 
phosphorylation and produce resistance to cetuximab 
and panitumumab [13].

The clinical use of ERBB2-targeted drugs, such as 
trastuzumab, pertuzumab and lapatinib, improved out-
comes for breast cancer and colorectal cancer patients 
with ERBB2 amplification [115, 116]. Dual-targeted 
therapy with EGFR and ERBB2 inhibition were found 
to restore sensitivity to cetuximab in  vitro and in  vivo. 
The monoclonal antibody 4D5 is an ERBB2 inhibitory 
antibody that shows antitumour function in an EGFR-
dependent manner. The combination of the mAb 4D5 
with cetuximab induced a significant decrease in prolif-
eration in the EGFR-dependent colon cancer cell line and 
an actual regression of the tumours in xenografted mice 
[43]. Similarly, trastuzumab, the most common antibody 

for ERBB2, inhibits the growth of CRC cells when com-
bined with cetuximab [44]. However, the pan ERBB 
kinase inhibitor neratinib plus cetuximab did not reach 
an objective response in anti-EGFR treatment refrac-
tory mCRC with quadruple-wild-type (KRAS, NRAS, 
BRAF, PIK3CA) in a phase II clinical trial [31]. In general, 
it will be important to investigate the efficiency of mAb 
4D5 and trastuzumab in the clinic to confirm the value of 
anti-ERBB2 agents.

IGF‑1R activation and anti‑IGF‑1R mAbs
The IGF-1/IGF-1R pathway plays a crucial role in CRC 
proliferation, differentiation, apoptosis, migration and 
angiogenesis. Hyperactivation of IGF-1R results in pri-
mary and secondary resistance to EGFR inhibition in 
RAS wild-type mCRC by upregulating the PI3K/AKT 
pathway [117, 118]. Analyses from two clinical trials con-
firmed that the coexpression of pIGF-1R and MMP-7 in 
RAS wild-type mCRC predicts worse OS after treatment 
with cetuximab [119].

Therefore, targeting both EGFR and IGF-1R may be 
a potential therapy for mCRC. Disappointingly, a trial 
showed that the combination of cetuximab and dalo-
tuzumab or IMC-A12 did not improve the survival of 
mCRC resistant to cetuximab [35, 36].

MET amplification/activation and MET inhibitors
The MET signalling pathway is another compensatory 
feedback loop that mostly arises during the treatment 
of anti-EGFR mAbs. Phosphorylation of MET induces 
the activation of PI3K/AKT and RAS/RAF/MAPK cas-
cades to rescue tumour cells from EGFR inhibitors [120]. 
Bardelli et al. highlight that MET amplification is related 
to acquired resistance to anti-EGFR therapy in tumours 
without KRAS mutations [12]. Moreover, the EGF ligands 
HGF and TGF-α can bind to MET and then increase the 
phosphorylation of MET and its downstream MAPK and 
AKT [121, 122]. Accordingly, the resistance function of 
MET was demonstrated by combining MET inhibitors 
and cetuxima b [123].

Therefore, the application of MET inhibitors has strong 
therapeutic potential in human cancers. The combina-
tion of MET inhibitors with anti-EGFR agents presents 
encouraging results in both preclinical and clinical stud-
ies. Tivantinib (ARQ 197), a selective, non-ATP-com-
petitive inhibitor of c-MET, displayed tolerated toxicity 
and suggested some activity in previously treated mCRC 
when combined with cetuximab and chemotherapy 
[124]. Another phase II clinical study reported a posi-
tive outcome in mCRC patients who received tivantinib 
plus cetuximab. Forty-one patients with tumour pro-
gression on cetuximab or panitumumab treatment were 
enrolled in the study; the ORR was 9.8% (4/41), the 
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median progression-free survival (mPFS) was 2.6 months 
(95% CI, 1.9–4.2 months), and the mOS was 9.2 months 
(95% CI, 7.1–15.1 months) [33]. Another small molecule 
c-MET inhibitor, crizotinib, has been shown to improve 
the efficiency of radiotherapy in cetuximab-resistant 
KRAS mutant CRC cell lines [46]. At the American 
Society of Clinical Oncology (ASCO) 2019, the phase 
II multicentre, multicohort GEOMETRY mono-1 clini-
cal study showed that the combination of capmatinib (a 
c-MET inhibitor) with gefitinib (EGFR-TKI) had a good 
overall response rate in EGFR-TKI-resistant patients, 
particularly those with MET-amplified disease [34]. Fur-
thermore, capmatinib plus cetuximab suggested that 
there were preliminary signs of activity in MET-positive 
mCRC patients who had progressive disease following 
anti-EGFR mAbs [125]. Suppression of MET will be an 
important target in overcoming resistance to anti-EGFR 
therapy.

Microsatellite instability and immune checkpoint 
inhibitors
Microsatellite instability (MSI) caused by dysfunctional 
mismatch repair (dMMR) is detected in approximately 
15% of all CRC and in nearly all cases with Lynch syn-
drome [126]. Microsatellite status and cetuximab effi-
ciency is another area of interest. In the CALGB/SWOG 
80405 study, patients with microsatellite instability-high 
(MSI-H) tumours showed worse OS in the cetuximab 
arm than in the bevacizumab arm [127]. MSI may inter-
act with oncogenic drivers such as BRAF and ERBB2 to 
promote cetuximab resistance. BRAF V600E occurs in 
40% of sporadic MSI-H CRCs and is typically genetically 
seen subsequent to hMLH1 hypermethylation [128]. In 
addition, other hotspot mutations in KRAS, PIK3CA and 
ERBB2 were identified in BRAF WT MSI CRC patients 
[129]. It has been proven that hMLH1 deficiency plays a 
role in cetuximab resistance by increasing the expression 
level of ERBB2 and downstream PI3K/AKT signalling 
[130]. Although we believe that mismatch repair genes 
may partly modulate the expression of oncogenic drivers, 
the mechanism remains largely unclear and a worthwhile 
focus for further research.

EGFR-targeted treatment increased the infiltration 
of cytotoxic immune cells and the expression of the 
PD-L1 immune checkpoint, which may be a potential 
method to treat cetuximab-resistant CRCs with immu-
notherapy [19]. In addition, NK cell-mediated ADCC 
activated by cetuximab triggers immunogenic death of 
tumour cells, thereby increasing the antitumour activ-
ity of immunotherapy [131]. The phase II CAVE mCRC 
trial demonstrated that rechallenge avelumab (anti-PD-
L1) plus cetuximab resulted in a mPFS of 3.6 months 
and a median OS (mOS) of 11.6 months in a RAS WT 

mCRC population who developed acquired resistance 
to anti-EGFR drugs [38]. The ongoing AVETUXIRI 
trial investigates the efficiency of avelumab combined 
with cetuximab and irinotecan for refractory mCRC 
patients with microsatellite stability. The current study 
data has shown that encouraging results of DCR, PFS 
and OS were observed in both the RAS MT and RAS 
WT cohorts [132]. The combination of immune check-
point inhibitors with anti-EGFR mAbs may bring great 
breakthroughs to overcome resistance to anti-EGFR 
drugs and improve the outcome of mCRC regardless of 
the status of RAS.

Metabolic remodelling and regulators
Alterations in cellular metabolism are essential for 
rapid tumour proliferation and affect the sensitivity of 
cancer cells to various drugs [133]. Anti-EGFR treat-
ment causes metabolic rewiring in CRC patients, which 
makes it possible to increase anti-EGFR mAb efficiency 
by adding metabolism regulators.

Abnormal glycometabolism reduces the efficiency of 
anti-EGFR therapy. High glycolytic metabolism regu-
lated by TRAP1 was involved in resistance to EGFR 
mAbs [15]. Sirt5-positive CRCs develop cetuximab 
resistance due to an elevated succinate-to-ketoglutarate 
(αKG) ratio, which inhibits αKG-dependent dioxyge-
nases [134]. Sodium glucose transporter 2 (SGLT2) can 
ensure glucose entry into cells and is highly expressed 
in the majority of cancer cells. The SGLT2 inhibitor 
dapagliflozin combined with cetuximab dramatically 
reduced carcinoembryonic antigen (CEA) and sub-
stantial shrinkage of metastatic tumour lesions [37]. 
The methylglyoxal scavenger carnosine was confirmed 
to resensitize KRAS-mutated colorectal tumours to 
cetuximab in  vivo [48]. AMPK activity was consistent 
with the sensitivity of anti-EGFR mAbs, and metformin 
overcame KRAS-induced resistance to anti-EGFR anti-
bodies by regulating AMPK/mTOR/Mcl-1 (myeloid 
cell leukaemia 1) in  vivo and in  vitro [47]. Fatty acid 
metabolism displayed strong antiapoptotic effects in 
cetuximab-nonresponders [135]. Inhibition of lipid 
synthesis or decomposition with simvastatin or glutam-
inase 1 inhibitor CB-839 significantly reduced tumour 
growth of CRC under cetuximab treatment [49, 50]. In 
addition, vitamin D deficiency has a negative impact 
on cetuximab-induced ADCC. Supplementation with 
vitamin D in vitamin-deficient/insufficient CRC cells 
has been suggested to improve cetuximab-induced 
ADCC in CRC cell lines [136]. Resistance to cetuxi-
mab in mutant KRAS CRC patients can be reversed by 
L-ascorbic acid by reducing RAF/ERK activity in an 
SVCT-2-dependent manner [51].
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Others
Autophagy and cancer stem cells (CSCs) also contribute 
to resistance to EGFR target therapy [18, 137]. Treat-
ment with anti-EGFR agents results in dysregulation of 
autophagy [138]. Increased levels of autophagy-related 
proteins such as Beclin-1 and LC3 were observed in 
cetuximab-treated patients [139, 140]. Inhibition of 
autophagy by chloroquine and 3-methyladenine sen-
sitizes cancer cells to cetuximab [138, 139]. However, 
blocking general autophagy might greatly affect normal 
cell growth. Therefore, developing specific autophagy 
inhibitors that target tumour cells is crucial.

CSCs possess genetic determinants for the EGFR 
therapeutic response and are primarily supported by a 
network of pluripotency transcription factors (PTFs). 
Single-nucleotide polymorphisms of PTFs were signifi-
cantly associated with PFS of the cetuximab cohort in 
the FIRE-3 trial [141]. The property of CSCs to EMT is 
a core transcriptional network to predict the efficacy of 
EGFR-targeted therapy in KRAS WT CRC [142]. Inhi-
bition of EMT is of great interest for reversing EGFR 
therapeutic resistance. β-Elemene, a bioactive monomer 
isolated from the Chinese herb curcumae rhizoma, has 

been shown to induce ferroptosis and reduce EMT to 
increase cetuximab activity in RAS-mutated CRC cells 
[60]. Furthermore, cytotoxic drugs and natural bioactive 
monomers were confirmed to overcome resistance to 
EGFR-targeted drugs. TAS-102 is a novel chemothera-
peutic agent that contains a thymidine phosphorylase 
inhibitor, tipiracil hydrochloride, and a cytotoxic thy-
midine analogue, trifluridine, which has been approved 
for the treatment of mCRC. Panitumumab/TAS-102 
cotreatment showed additive antiproliferative effects in 
LIM1215 CRC cells in vitro and in vivo [59].

Extrinsic mechanisms of resistance to targeted 
therapy and related strategies
Microenvironmental plasticity dramatically affected by 
EGFR inhibition is as powerful of a driver of drug resist-
ance as genetic alterations [18] (Fig.  2). Dysfunction of 
immune cells, abnormal infiltration of cancer-associ-
ated fibroblasts (CAFs) and angiogenesis impair EGFR 
therapeutic efficiency. Strategies to remodel the tumour 
microenvironment are part of a larger goal to increase the 
efficiency of anti-EGFR mAbs. These strategies include 
(i) modification or activation of NK cells and T cells, (ii) 

Fig. 2  Extrinsic mechanisms of resistance to anti-EGFR mAbs in metastatic colorectal cancer. Tumour microenvironment plasticity confers 
resistance to EGFR-targeted therapy. Cetuximab and panitumumab suppress tumours through ADCC mediated by NK cells and macrophages. 
Dysfunction of NK cells and macrophages with lower ADCC impairs the suppression of EGFR-targeted therapy in cancer. Reduced density of 
effector T cells and increased PD-L1 expression in cancer cells also promote survival from cancer. CAFs promote resistance to targeted therapy 
by secreting growth factors that activate the RAS or MET pathway. Abnormal angiogenesis always predicts poor response to anti-EGFR mAbs. 
Therapies focused on the microenvironment are also shown in the figure. Abbreviations: CAFs, cancer-associated fibroblasts; NK cells, natural killer 
cells; ADCC, antibody-dependent cellular cytotoxicity; PD-1, programmed death 1; PD-L1, programmed death ligand 1. VEGF, vascular endothelial 
growth factor; VEGFR, vascular endothelial growth factor receptor
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suppression of CAFs, and (iii) inhibition of angiogenesis 
(Tables 1 and 2).

Immune cells and agents
Antibody-dependent cellular cytotoxicity (ADCC) medi-
ated through Fc receptors (FcγRs) on immune cells is one 
of the proposed antitumour mechanisms of anti-EGFR 
mAbs [20]. Cetuximab-treated patients with FcγRIIa-
131R and/or FcγIIIa-158F genotypes had shorter PFS 
than 131H/H and/or 158 V/V carriers [143]. When 
exposed to cetuximab in CRC cell lines, human NK cells 
substantially increase the expression of the costimula-
tory molecule CD137 (4-1BB )[144]. The combination 
of cetuximab with anti-CD137 mAb administration was 
synergistic and resulted in complete tumour resolution 
and prolonged survival, which were dependent on the 
participation of NK cells [52]. IL-2 and IL-15 cooperate 
with cetuximab to stimulate NK cells and improve cyto-
toxic functionality [145]. Another preclinical study using 
a mouse model reported that umbilical cord blood stem 
cell-derived NK (UCB-NK) cells increased antitumour 
cytotoxicity against CRC regardless of the status of EGFR 
and RAS [53]. Neither cetuximab nor panitumumab can 
engage T cells when T cells lack Fcγ receptors, which 
serve as targets for modifying T cells to enhance the 
ADCC activity of anti-EGFR agents [54]. T cell-engaging 
BiTE antibodies targeting the binding domains of cetuxi-
mab and panitumumab transiently connect T cells with 
cancer cells to initiate redirected target cell lysis. Then, 
they showed that cetuximab-based BiTE antibody medi-
ated potent redirected lysis of KRAS- and BRAF-mutated 
CRC lines in vitro and prevented the growth of tumours 
from xenografts [54]. Toll-like receptor 9 (TLR9) is 
expressed in various immune cells, such as macrophages, 
NK cells, B lymphocytes and plasmacytoid dendritic cells 
[146, 147]. Toll-like receptor 9 (TLR9) activation causes 
antitumour activity by interfering with cancer prolifera-
tion and angiogenesis [148]. IMO is a novel second-gen-
eration, modified, immunomodulatory TLR9 agonist and 
was proven to synergistically inhibit tumour growth by 
improving the ADCC activity of cetuximab in a cetuxi-
mab-resistant colorectal cancer line and a mouse model 
regardless of KRAS genotype [55, 56].

CAFs and inhibitors
Cancer-associated fibroblasts (CAFs) are believed to play 
a vital role in promoting tumour metastasis and drug 
resistance by secreting mitogenic growth factors, includ-
ing FGF1, FGF2, HGF, TGF-β1 and TGF-β 2 [19]. Luraghi 
et al. reported that HGF can bind to MET receptors and 
activate MAPK and AKT to induce cetuximab resistance 
in vitro [75]. The dual inhibition of FGFR and EGFR may 
be a practical strategy to reverse resistance to anti-EGFR 

mAbs. The combination of BLU9931,an FGFR4 inhibitor, 
with cetuximab presented profound antitumour activity 
compared to cetuximab alone [57]. Regorafenib, a mul-
tikinase inhibitor targeting FGFR, VEGF and PDGFR-β, 
was found to overcome cetuximab resistance in GEO-CR 
and SW48-CR cells in vitro and in vivo [58].

Angiogenesis and inhibitors
Inhibition of angiogenesis is also one of the mecha-
nisms of cetuximab action. Treatment with cetuximab 
reduced the expression of vascular endothelial growth 
factor (VEGF), and a high level of VEGF under cetuxi-
mab treatment was associated with a lower response 
rate and shorter PFS in mCRC [149, 150]. VEGF is one 
of the most significant angiogenetic factors, and it con-
tributes to cancer prognosis and metastasis. Therefore, it 
is worth exploring the feasibility of dual-targeted VEGF 
and EGFR in colorectal cancer. Combination treatment 
with anti-VEGF and anti-EGFR antibodies demonstrated 
synergistic activity in vitro, and tumour growth and angi-
ogenesis were strongly suppressed in an in vivo xenograft 
mouse model [151]. However, in another study, the use 
of bevacizumab and cetuximab together did not have 
a greater increase in apoptotic tumour cell death com-
pared to either drug alone [152]. Recently, small molecule 
inhibitors targeting VEGF have presented the potential to 
increase the efficiency of anti-EGFR therapy. Pazopanib, 
a multitargeted tyrosine kinase inhibitor, combined with 
irinotecan and cetuximab showed manageable safety 
and feasibility in refractory mCRC [153]. The combina-
tion of the anti-EGFR antibody cetuximab and the mul-
tikinase VEGF inhibitor regorafenib overcame intrinsic 
and acquired resistance in mCRC. Eight of 17 mCRC 
patients, who all were previously receiving anti-VEGF 
and anti-EGFR therapy, showed clinical benefit from 
cetuximab and regorafenib, including partial response in 
1 patient and stable disease in 7 patients [39]. Dual-tar-
geting of VEGF and EGFR seems to be an effective choice 
for mCRC patients receiving multiline treatment.

Conclusions and future directions
Heterogeneity and adaptive alterations promote resist-
ance to anti-EGFR targeted therapy and are strongly 
associated with the clinical outcome of colorectal cancer 
(Fig.  3). RAS/BRAF/MEK mutations downstream of the 
EGFR pathway and ERBB2/MET/IGFR/PI3K mutations 
or amplifications bypassing EGFR are strong biomark-
ers to predict the efficiency of anti-EGFR mAbs. It is of 
great importance to ascertain the molecular subtypes 
in mCRC before treatment. Advances in gene detection 
methods such as ctDNA, liquid biopsy and exosome 
DNA sequencing make molecular subtyping feasible. By 
identifying similarities and differences among tumour 
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subtypes, the use of precision medicine results in greater 
cancer eradication and better patient care. For subpopu-
lations with driver-gene mutations, combination thera-
pies of different targeted inhibitors make great strides in 
overcoming resistance to anti-EGFR mAbs. Combining 
EGFR targeted therapy with inhibitors of BRAF, MET 
and MEK produces expected results in clinical trials. It is 
recommended to use encorafenib, binimetinib and cetux-
imab in the second-line treatment of mCRC. More clini-
cal studies are needed to ensure the effectiveness of MEK 
inhibitors. In addition, the new generation of anti-EGFR 
monoclonal antibodies and cytotoxic agents is promis-
ing to achieve better outcomes, but further research is 
needed before clinical application.

In this review, we provide new insight into EGFR 
therapeutic resistance in the tumour microenvironment 
(TME) and summarize current agents for the TME. The 
TME, including the immune microenvironment and vas-
cular microenvironment, facilitates tumour growth and 
metastasis. The ADCC activity of anti-EGFR mAbs medi-
ated by NK cells, T cells and macrophages is one of the 
antitumour mechanisms targeted by cetuximab and pani-
tumumab. The strong effect of cetuximab on the immune 
landscape dramatically changes immune infiltrates. 
Thus, more effective immunotherapies are anticipated 
to regress the growth and metastasis of tumours. Some 
antibodies or inhibitors constructed to bind FcγR or 
TLR9 to stimulate ADCC mediated by NK cells, T cells 
and macrophages present significant antitumour activity 

Fig. 3  Strategies to increase anti-EGFR therapy efficiency in different subtypes of mCRC. Biomarker analysis should be conducted before treatment 
for mCRC. For patients with disease progression on anti-EGFR therapy, biomarker analysis is still recommended. For mCRC with driver gene 
alterations, there are some therapies to increase anti-EGFR efficiency. In RAS-mut mCRC, the selected therapies include a combination of RAS 
inhibitors and anti-EGFR agents, metabolic regulators, immune therapy, cytotoxic drugs and natural bioactive monomers. In RAF-mut mCRC, the 
main therapy is a BRAF inhibitor. In ERBB2-amp mCRC, ERBB2 inhibitors can be used to promote the antiproliferation of anti-EGFR. In MET-amp 
mCRC, combined therapy with MET inhibitors and anti-EGFR mAbs was confirmed to be effective. In mCRC with EGFR ECD-mut, new anti-EGFR 
agents are preferred. In mCRC with no driver gene alteration, multitargeted therapies, metabolic regulators, immune therapy, cytotoxic drugs and 
antiangiogenic agents can be used with anti-EGFR. Abbreviations: mCRC, metastatic colorectal cancer; EGFR, epidermal growth factor receptor; 
ERBB2, human epidermal growth factor receptor 2; MET, tyrosine-protein kinase Met; MSI-H, microsatellite instability; dMMR, dysfunctional 
mismatch repair; PD-1/PD-L1, programmed death-1/programmed death ligand 1; ECD, extracellular domain; WT, wild type; mut, mutation
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in cell lines and mouse models. Dual-targeted VEGF 
and EGFR treatments show exciting results in multiline-
treated mCRC patients, providing a chance for improved 
outcomes in refractory patients. Notably, anti-EGFR 
therapy especially enhances the expression of PD-L1 on 
tumours and the infiltration of CD8+ T cells. Therefore, 
this feature may expand indications of immune check-
point inhibitors in CRC. Treatment with immune check-
point inhibitors either along with anti-EGFR mAbs or 
later is a promising therapy for mCRC.

In summary, the recognition of resistance to EGFR-tar-
geted therapy has progressed from driver genes to non-
genetic alterations. Different therapies that reverse EGFR 
therapeutic resistance demonstrate potential in preclini-
cal and clinical trials. These treatments show promise in 
taking a giant step towards overcoming EGFR therapeu-
tic resistance.
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