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Abstract 

The immune checkpoint molecule CD70 and its receptor CD27 are aberrantly expressed in many hematological and 
solid malignancies. Dysregulation of the CD70-CD27 axis within the tumor and its microenvironment is associated 
with tumor progression and immunosuppression. This is in contrast to physiological conditions, where tightly con-
trolled expression of CD70 and CD27 plays a role in co-stimulation in immune responses. In hematological malignan-
cies, cancer cells co-express CD70 and CD27 promoting stemness, proliferation and survival of malignancy. In solid 
tumors, only expression of CD70 is present on the tumor cells which can facilitate immune evasion through CD27 
expression in the tumor microenvironment. The discovery of these tumor promoting and immunosuppressive effects 
of the CD70-CD27 axis has unfolded a novel target in the field of oncology, CD70.

In this review, we thoroughly discuss current insights into expression patterns and the role of the CD70-CD27 axis 
in hematological and solid malignancies, its effect on the tumor microenvironment and (pre)clinical therapeutic 
strategies.
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Background
In the last decade, the emergence of immunotherapy has 
revolutionized the treatment of hematological and solid 
cancers by relying on cancer destruction through activa-
tion of the host’s immune system [1, 2]. In solid tumors, 
immune checkpoint inhibitors, such as anti-CTLA-4, 
anti-PD-1 and anti-PDL1 have demonstrated the thera-
peutic potential of immunotherapy, resulting in Food 
and Drug Administration (FDA)/European Medicines 
Agency (EMA) approvals, and have become the standard 
of care in over 50 types of cancer as single agents or in 
combination strategies [3]. While clinical effectiveness of 

immune checkpoint inhibition is quite limited in hema-
tological tumors (except Hodgkin lymphoma), chimeric 
antigen-receptor (CAR) Tcells are reshaping the field of 
hematological malignancies and have led to FDA/EMA 
approvals since 2017, especially against the B cell antigen 
CD19 [4]. However, the sobering reality is that generally 
speaking only a minority of patients benefit from long-
term remission [5, 6].

New immunotherapeutic targets could lead to more 
effective treatment alternatives as single agents or in 
rationally designed combination strategies. In this regard, 
the CD70-CD27 axis, belonging to the tumor necrosis 
factor (TNF) superfamily, has become an attractive tar-
get to exploit in oncology [7]. In physiology, the receptor, 
CD27, is generally found on naive T and memory B and 
T cell populations and subsets of natural killer (NK) cells. 
On the other hand, CD70 is only transiently expressed 
on antigen-activated B and T cells, NK cells and mature 
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dendritic cells. Upon activation of CD27 by CD70, the 
extracellular domain of CD27 is cleaved off and found 
as a soluble fragment (called sCD27) in body fluids [8]. 
In oncology, CD70 is aberrantly expressed on malignant 
cells without (solid tumors) or with CD27 co-expres-
sion (hematological malignancies), facilitating immune 
evasion through the tumor microenvironment (TME) 
and tumor progression [7, 8]. In addition, high levels of 
sCD27 have been found in serum samples of patients 
with hematological and solid malignancies, suggesting 
the involvement of the CD70-CD27 axis [9–14]. This 
review discusses the role of the CD70-CD27 axis during 
normal hematopoiesis, the biological effect of its dysreg-
ulation in hematological and solid malignancies and the 
promising role of CD70 as target in the clinic.

The CD70‑CD27 axis in hematopoiesis
In hematopoiesis, the hematopoietic stem cells (HSCs) 
balance self-renewal capacity with multilineage potential. 
In this way, durable cell levels can be maintained while 
giving rise to progenitor, precursor and eventually fully 
differentiated blood cells of the myeloid and lymphoid 
lineage [15]. A role of the CD70-CD27 axis in the early 
development stages could only be demonstrated in mice. 
Multiple studies observed CD27 expression on murine 
HSCs and progenitor/precursor cells [16–19]. Moreo-
ver, Nolte et al. [20] showed that the interaction of CD27 
positive (CD27+) progenitor cells with CD70 inhibited 
leukocyte differentiation [20]. Therefore, it has been sug-
gested that the CD70-CD27 axis mediates a negative 
feedback system, enabling the activated immune system 
to modulate hematopoiesis [20]. With regard to human 
hematopoiesis, there is no hard evidence of CD27 and/
or CD70 expression on human HSCs and progenitor cells 
[12, 21], suggesting that the early development stages are 
independent of the CD70-CD27 axis. By way of contrast, 
expression of both CD70 and CD27 is found on their 
malignant counterparts (further discussed in the next 
section).

Knowledge on expression patterns of CD70 and/
or CD27 on more differentiated cells indicate a role for 
the CD70-CD27 axis during downstream hematopoie-
sis, however the underlying mechanisms are not yet 
uncovered. Some studies report the expression of CD27 
after commitment to the lymphoid lineage on human B 
cell progenitor/precursor populations [22–24]. While 
research on circulating immature and naive B cells 
showed no CD27 expression, CD70 was found to be 
transiently upregulated on activated B cells upon anti-
gen encounter. Interestingly, studies investigating B cell 
differentiation found that CD70-CD27 interactions are 
important in formation of memory and plasma B cells. 
Accordingly, within the germinal centers of secondary 

lymphoid tissue, expression of CD27 is moderate on 
B cells, upregulated on plasma cells and maintained on 
a large subset of memory B cells [25–28]. On the other 
hand, CD70 expression has only been reported on a small 
subset of germinal center B cells [27, 29].

In human thymocyte development, CD27 expres-
sion could only be detected on the latest stage [30, 31]. 
Moreover, a few studies showed that human thymic stro-
mal cells that provide essential signals for T cell devel-
opment and clonal selection express low levels of CD70 
[29, 32]. The function of the CD70-CD27 axis in human 
thymic development still needs to be uncovered. In mice 
it is shown that this interaction is not essential for the 
generation of conventional CD4+ and CD8+ αß T cell 
populations [33], while it is important in the functional 
differentiation of the low abundant γδ T cell subsets [34]. 
Opposite to naive B cells, multiple studies reported CD27 
expression on almost all naive T cells and subsequent 
activation resulted in CD70 upregulation which dimin-
ished again after gaining full effector functions [35, 36]. 
As seen for B cells, CD27 expression is present on regula-
tory T cells (Tregs) [37] and on memory T cells [33, 38].

Besides B and T cells, CD70 and CD27 expression is 
also found to be strictly regulated on human NK cells. 
Here, it could be demonstrated that CD27 is upregulated 
during the latest stage of development and is downregu-
lated on the majority after gaining effector functions. 
Similarly to previous results on B and T cells, CD70 is 
only transiently upregulated upon NK cell activation [39, 
40].

Although more research is necessary to unravel the 
molecular mechanisms during early cell development, 
CD70 and CD27 on mature immune cells operate as 
costimulatory molecules and their interaction contrib-
utes to immune regulation via different signaling path-
ways. It is seen that CD27 signaling activates the NF-κB 
and c-Jun kinase pathways via bound T RAF2/5, leading 
to cell proliferation, survival and differentiation. Addi-
tionally, triggering of CD27 can result in apoptosis as 
well via the receptor-associated death domain-containing 
adaptor protein Siva [8]. Finally, it was shown by differ-
ent studies that CD70 can exert reverse signaling through 
induction of PI3K/Akt and MEK signaling pathways reg-
ulating cell expansion, differentiation and effector func-
tions [41–44].

Altogether these data show that the CD70-CD27 axis 
is tightly regulated during hematopoietic cell develop-
ment showing either CD70 or CD27 expression but gen-
erally never co-expression of both markers. In addition, 
interaction of these costimulatory molecules orchestrates 
important signaling pathways on mature B/T cells and 
NK cells shaping immune responses. Given the biologi-
cal functions of the CD70-CD27 axis, it is not surprising 
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that acquisition or overactivation of the axis by abnor-
mal expression patterns can contribute to malignancy. In 
the next paragraph, the aberrant expression patterns and 
associated signaling that has been found for a consider-
able number of hematologic and solid tumors will be dis-
cussed. An overview of expression patterns and signaling 
in physiology and oncology is depicted in Fig. 1.

The CD70‑CD27 axis in oncology
Expression on hematologic malignancies

Leukemia  Leukemic stem cells (LSCs) can be seen 
as the malignant counterparts of HSCs as they account 
for initiation and maintenance of the disease, and share 

self-renewal capacity and multipotency to give rise to 
more differentiated malignant cells [15]. Although absent 
from normal HSCs, constitutive expression of CD27 is 
detected on LSCs of acute myeloid leukemia (AML) and 
chronic myeloid leukemia (CML) patients [12, 21, 45]. 
In addition, CD70 is co-expressed on LSCs from AML 
patients [12]. Co-expression of CD70 and CD27 is also 
present on AML [12] and B cell acute lymphoblastic 
leukemia (B-ALL) blasts [10, 22, 46, 47], on malignant B 
cells of chronic lymphocytic leukemia (B-CLL) and sub-
types including hairy cell leukemia and its prolympho-
cytic variant [10, 48–51]. Finally, high levels of sCD27 
were detected in serum samples from AML patients and 
were associated with inferior prognosis [12].

Fig. 1  The CD70-CD27 axis in hematopoiesis and oncology. During normal hematopoietic development, expression of CD70 is tightly regulated 
and plays a role in priming, survival and differentiation for a subset of immune cells through NF-κB and c-Jun pathway activation via TRAF 2/5 
leading. Alternatively, apoptosis can be induced by activating the caspase pathway via Siva. Reverse CD70 signaling can activate PI3K/Akt and 
MEK signaling pathways leading to regulation of cell expansion, differentiation and effector functions. In oncology CD70 and CD27 are frequently 
co-expressed on malignant cells which can deliver proliferation signals and a growth advantage to the malignant cells. Apart from improved 
growth, dysregulation of the axis can provide other tumor promoting effects via different signaling pathways. Figure created with BioRe​nder.​com. 
Abbreviations; CSC, cancer stem cell; HSC, hematopoietic stem cell; MEK, mitogen-activated protein kinase kinase; NFκB, nuclear factor kappa B; NK 
cell, natural killer cell; PI3K, phosphoinositide 3-kinase; sCD27, soluble CD27; TRAF 2/5, TNF receptor associated factor 2/5

http://biorender.com
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B cell lymphoma and multiple myeloma  The presence 
and relevance of LSCs in CML and AML is generally 
accepted, but whether other hematologic malignancies 
arise from similar populations is still unclear [52]. None-
theless, CD27 is identified on a rare B cell population that 
may be responsible for the generation and maintenance 
of the characteristic Reed-Sternberg cells of Hodgkin 
lymphoma and on a population suggested to be multiple 
myeloma stem cells [53–55].

Co-expression of CD70 and CD27 can be found on the 
surface of malignant B cells in non-Hodgkin lymphomas 
(NHL) such as diffuse large B cell lymphoma (DLBCL) 
[7, 51, 56], follicular lymphoma [56, 57], follicle center 
lymphoma [51], mantle cell lymphoma [7, 50, 51, 58, 59], 
Burkitt lymphoma [51], and Waldenström macroglobu-
linemia [60]. Of interest, high levels of CD70 were related 
to an unfavorable outcome with a shorter overall survival 
in different types of DLBCL [61]. In addition, as seen for 
AML, sCD27 has been identified as a prognostic factor 
for different NHL subtypes [11, 14]. In Hodgkin lym-
phoma, a different expression pattern was observed 
whereby Reed-Sternberg cells show high CD70 levels but 
lack the expression of CD27 [54, 62, 63].

Expression of CD70 and CD27 is also detected on malig-
nant plasma cells in multiple myeloma, where CD27 
decreases with increasing progression of the disease and 
its absence might even be a prognostic factor for high-
risk disease [64, 65]. The related plasma cell leukemia by 
way of contrast shows robust CD27 expression [66].

T cell lymphoma  Constitutive CD27 and CD70 expres-
sion has also been detected on T cell neoplasia such as 
anaplastic large cell lymphoma [7, 67], peripheral T cell 
lymphoma [7], cutaneous T cell lymphoma [68–72], 
adult T cell leukemia/lymphoma [73–75] and extranodal 
NK/T cell lymphoma [7, 76, 77]. On the contrary, only 
CD70 expression is observed on chronic active Epstein-
Barr virus associated T cell lymphoma (a rare complica-
tion of latent Epstein-Barr virus infection) [78] and T cell 
acute lymphoblastic leukemia [79].

Signaling in hematologic malignancies
The strict expression patterns of CD70 and CD27 dur-
ing normal physiology allow for regulation of immune 
responses via immune cell proliferation, differentiation, 
survival and death depending on the situation and tim-
ing. Hematological malignancies show aberrant expres-
sion of both molecules leading to dysregulated signaling 
of the axis, thereby providing the malignant cells with 
tumor-promoting capacities.

In leukemia, it is seen that the CD27 signaling on AML 
and CML LSCs leads to induction of the Wnt pathway, an 
important pathway for self-renewal [12, 21, 45]. Schürch 
et al. [21] revealed that the aberrant activation of the Wnt 
pathway occurs through ß-catenin activation, a central 
component of the pathway in the cytoplasm [21]. This 
impaired Wnt activation resulted in increased prolifera-
tion of LSCs [12, 21] and drug resistance [45], both pro-
moting leukemic progression.

Furthermore, the study of Riether et  al. [12] observed 
that CD70/CD27 signaling on immature AML blasts 
induced stem cell gene signatures through the canonical 
Wnt pathway (as discussed above), JAK/STAT pathway, 
Hedgehog pathway and transforming growth factor beta 
(TGF-ß) signaling. Functional analysis showed that the 
CD70/CD27 interaction was also responsible for sym-
metric cell divisions, promoting the immature blast state 
and preventing myeloid differentiation [12]. The involve-
ment of the CD70-CD27 axis in blastoid formation was 
also seen in a rare case of low-grade B cell lymphoma, 
where upregulation of CD70 and CD27 coincided with 
a highly increased gene expression of galactin 1 and 
TGF-ß receptor III, suggesting this could be implicated 
in the MEK and TGF-ß signaling pathway, respectively 
[80]. Related to this case, CD70 was higher expressed on 
the blastoid variant of mantle cell lymphoma, a clinically 
more aggressive form defined by a higher mitotic rate 
compared to the common mantle cell lymphoma [59].

Additionally, there is increasing evidence that the 
CD70-CD27 signaling promotes tumor cell proliferation. 
In leukemia, blocking of the CD70-CD27 interaction 
in CML [21], AML [12], B-ALL [22] and some cases of 
B-CLL [51] reduced proliferation of the malignant cells. 
This effect on proliferation was also seen in B  cell lym-
phoma where CD27 crosslinking increased proliferation 
of cell lines through augmented protein kinase C acti-
vation [81]. Apart from CD27 signaling, CD70 reverse 
signaling was also reported to increase proliferation in 
a low-grade B cell lymphoma. Here, CD70 was hinted 
to have a responsive state (signaling) during remission 
phases and a non-responsive state during attack [80]. 
Interestingly, binding of sCD27 to CD70 was shown to 
induce proliferation on extranodal NK/T cell lymphomas 
[76].

Finally, the CD70-CD27 axis can affect malignant 
cell survival. As discussed above, ligation of CD70 
with CD27 on CML LSCs mediated drug resistance 
by compensatory Wnt pathway activation [45]. This 
increased survival was also observed in plasma cell 
leukemia where triggering of CD27 with CD70 res-
cued plasma cells from drug-induced apoptosis via 
regulation of p38 and ERK 1/2 MAP kinases of the 
MEK pathway and the downstream transcription 
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factor AP-1 [66]. In addition, modulation of both 
anti- and pro-apoptotic proteins, including the 
Bcl-2 family, has been described to be dependent 
of the presence of CD70/CD27 on malignant lym-
phoma cells. However, the exact role of CD70/CD27 
in the regulation of survival needs further elucida-
tion [59, 65, 80].

Hence, these different studies report the CD70-
CD27 signaling axis as a driver of malignancy in 
hematologic malignancies supporting stemness, pro-
liferation and survival. An overview of the signaling 
pathways involved in both hematologic and solid can-
cers is depicted in Fig. 2.

Expression on solid tumors
Over the past decades, the importance of CD70 on solid 
tumors has become clear whereby aberrant expression 
of CD70 on tumor cells has been reported on numerous 
types of solid tumors with varying expression levels [8]. 
As such, CD70 expression has been reported on both 
primary and metastatic tumor resections in renal cell 
carcinoma, nasopharyngeal carcinoma, glioblastoma, 
melanoma, lung carcinoma, cervix carcinoma, breast 
carcinoma, ovarian carcinoma and mesothelioma and 
was associated with decreased survival [9, 82–86]. Inter-
estingly, CD70 expression was found to be even higher 
in metastatic specimens of lung carcinoma, pancreatic 

Fig. 2  Signaling pathways of the CD70-CD27 axis in hematologic and solid cancers. In hematological malignancies, CD70-CD27 signaling 
activates the canonical Wnt, JAK/STAT, Hedgehog and TGF-ß pathways which can induce stemness/immature state. In addition, crosslinking of 
CD27 in a protein kinase C or ß-catenin-dependent manner and reverse signaling of CD70 were shown to induce proliferation of the malignant 
cells. CD70-CD27 signaling can promote survival by regulating kinases of the MEK pathway and transcription factor AP-1 and by the Wnt pathway 
through activation of ß-catenin. In solid tumors, CD70 signaling is associated with cancer stem cells and EMT transition via the induction of 
EMT-related gene expression (SOX2, CD44, Vimentin, Snail, Slug and ß-catenin) and via MAPK activation and RhoE overexpression. Furthermore, 
hypoxia is identified as a regulator of CD70 expression and is an important factor to promote stemness, migration and invasion of the tumor. Figure 
created with BioRe​nder.​com. Abbreviations; AP-1, activator protein 1; ß-cat, ß-catenin; EMT, epithelial to mesenchymal transition; JAK/STAT, Janus 
kinase-signal transducer and activator of transcription; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase kinase; PKC, 
protein kinase C; RhoE, ras homologous E; sCD27, soluble CD27; SOX2, sex determining region Y-box2; TGF-ß, transforming growth factor beta; Vim, 
Vimentin

http://biorender.com
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carcinoma and osteosarcoma, suggesting the importance 
of CD70 in progression of the disease [7]. Consequently, 
therapies targeting CD70 hold great potential to combat 
both early and advanced stages of cancer. On the con-
trary, CD70 seems (almost) absent on the tumor cells 
in Kaposi sarcoma, prostate carcinoma, Langerhans cell 
histiocytosis and colorectal carcinoma [8, 87]. Although 
CD70 is prevalent in numerous cancers, CD70 expres-
sion patterns may vary among these different tumor 
types in spatial distribution, intensity of expression and 
percentage of positive cells.

In contrast to hematological malignancies, expression 
of CD27 on the tumor cells has never been reported in 
solid tumors. Nonetheless, CD70-CD27 signaling can 
occur through the presence of CD27 in the TME facili-
tating immune evasion and tumor progression by distinct 
mechanisms [88–91].

Signaling in solid tumors
The role of CD70 reverse signaling in tumor progres-
sion has already been described in hematological malig-
nancies but is rather undefined in solid tumors. It was 
reported in melanoma that CD70 expression regulates 
invasion and metastasis intrinsically, rather than through 
the TME. Here the study of Pich et al. [91] showed that 
signaling of CD70 was dependent on its oligomeriza-
tion. While the monomeric form of CD70 limited the 
metastatic and migratory ability of melanoma cells, the 
trimeric form of CD70 enhanced cell migration and inva-
siveness [91].

Apart from hematological tumors, cancer stem cells 
(CSCs) have also been identified in solid tumor types 
where they are recognized as important players in metas-
tasis, recurrence, heterogeneity and drug resistance [92]. 
Although for many cancers the presence of CSCs is cur-
rently under debate, its existence in glioblastoma, breast 
cancer and colon cancer is now generally accepted [93]. 
The involvement of CD70 in the generation and/or 
maintenance of a CSC phenotype has been described in 
breast cancer, glioblastoma, melanoma, pancreatic car-
cinoma and non-small cell lung cancer (NSCLC) and 
thus could serve as a potential marker of stem cells [12, 
94]. In breast cancer, these CD70 expressing CSCs dis-
played a mesenchymal phenotype, self-renewal poten-
tial and enhanced metastasis to the lung compared to 
the CD70− CSCs population that exhibited an epithe-
lial phenotype [94]. CD70 has also been associated with 
tumor epithelial to mesenchymal transition (EMT), a 
process by which epithelial cells gain migratory and 
invasive characteristics in glioblastoma, melanoma, pan-
creatic carcinoma and NSCLC [91, 95, 96]. Upon silenc-
ing of CD70 in glioblastoma cell lines, expression levels 
of EMT-associated genes, SOX2 and CD44, decreased, 

resulting in inhibition of tumor growth and migration 
[95]. In addition, it was shown that β-catenin was sig-
nificantly reduced after siRNA-mediated knock-down of 
CD70 expression in human pancreatic cell lines, as well 
as other EMT-related genes, such as Vimentin, Snail and 
Slug [97]. In melanoma, CD70 expression led to MAPK 
activation and RhoE overexpression, thereby promoting 
tumor migration [91].

Hypoxia is an important factor of EMT, stem-cell 
maintenance, invasion, metastasis, angiogenesis and 
resistance to therapy in solid tumors [98]. In renal cell 
carcinoma, CD70 induction was reported under hypoxic 
conditions [99, 100]. In support of this notion, a strong 
constitutive CD70 expression has been described within 
hypoxic regions of a murine model for NSCLC [101]. 
Furthermore, it has been reported that hypoxia can 
increase the number of small protein-carrying packets 
called vesicles, which regulate inter-cellular communica-
tion, leading to changes in the biological activity. Inter-
estingly, a recent study has shown that in the context of 
lung cancer, hypoxic conditions stimulated the synthesis 
of tumor vesicle proteins such as CD70, thereby possibly 
supporting immune suppression [98].

Altogether, these findings underline an important role 
of CD70 signaling in acquiring aggressive traits in solid 
tumor types (an overview is shown in Fig. 2).

The CD70‑CD27 axis and the tumor microenvironment
Along with a pivotal role of the CD70-CD27 axis on 
malignant cells, dysregulation of these costimulatory 
molecules can also cooperate to escape anti-tumor 
immune surveillance in hematological and solid tumor 
types by distinct mechanisms in the TME.

In glioma and renal cell carcinoma, the CD70-CD27 
axis has shown to mediate apoptosis of lymphocytes [89, 
102, 103]. Siva is thought to induce apoptosis of T cells 
by initiating caspase activation after binding of CD70 to 
CD27 [104, 105]. Next to apoptosis mediated through 
CD27 signaling, TGF-β is also known to induce apoptosis 
in a variety of cell types [90]. The study of Yang et al. [90] 
showed that treatment with TGF-β induced apoptosis 
of exhausted CD70 positive (CD70+) T cells at a signifi-
cantly higher rate than CD70− T cells in NHL by acquir-
ing more pro-apoptotic markers, such as caspase-3 [90].

T cell exhaustion is another mechanism by which 
CD70-CD27 signaling can reduce immune surveillance. 
In renal cell carcinoma, tumor infiltrating lymphocytes 
were found to have an exhausted phenotype, which was 
driven by CD70 expression [106]. Furthermore, TGF-β 
induced upregulation of CD70 expression via Smad3 and 
IL-2/STAT5 signaling, resulting in exhaustion of effec-
tor memory T cells in B cell NHL. Both TGF-β-induced, 
as well as pre-existing intratumoral CD70+ T cells, were 
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found to be functionally exhausted with lower prolif-
eration, signaling transduction, cytokine production 
and higher expression levels of PD-1 and TIM-3 after 
treatment with TGF-β compared to CD70− T cells [90]. 
Whether the interaction between CD70 and CD27 plays 
a role in TGF-β-induced T cell exhaustion is still not 
clear. Yet, Yang et al. [90] found TGF-β mediated down-
regulation of CD27 on CD70+ T cells due to shedding of 
CD27. This loss of CD27 on the cell surface was reversed 
after blocking of CD70 and led to restored cell function 
and viability, indicating a potential role of the CD70/
CD27 interaction in TGF-β-mediated T cell exhaustion 
[90].

Thirdly, the CD70-CD27 pathway can mediate immune 
escape through its effects on Tregs. CD27 signaling 
resulted in a direct decrease of Treg apoptosis in murine 
solid tumor models and an indirect increase of Tregs 
in vitro, mediated via increased secretion of IL-2 by non-
Treg CD4+ T cells [88]. Our study showed increased 
FoxP3 expression and higher CD4+/CD8+ ratios in 
CD27+ tumor infiltrating lymphocytes surrounding 
CD70+ tumor cells in NSCLC patients. As such, CD70+ 
NSCLC cells could exhibit immune suppression through 
binding of CD27+ Tregs in the TME [9]. In addition to 
increased numbers, CD70-CD27 interaction also medi-
ated enhanced survival of Tregs of CLL patients due to 
a decrease of pro-apoptotic Noxa and increase in anti-
apoptotic Bcl-2, which resulted in a decreased sensitivity 
to drug-induced apoptosis [107]. In addition, the study 
of Yang et al. [108] reported an effect of CD70-CD27 on 
intratumoral Tregs. The authors found that expression of 
FoxP3 on intratumoral Tregs was (partially) induced by 
CD70+ lymphoma B cells and that these cells reduced the 
proliferation of infiltrating CD8+ T cells, revealing a role 
for CD70 expressing malignant cells in the development 
of intratumoral Tregs and immune suppression [108].

A recent study demonstrated that CD27 expression on 
human Tregs was closely correlated with suppression of 
CD4+ and CD8+ T cell proliferation, although the under-
lying mechanisms are still unclear [37]. Even though 
CD27 signaling has been shown to increase cell survival 
of both effector T cells and Tregs, their contribution 
has been shown to depend on the context and the pre-
dominance of each of these two cell types [109]. While 
in a pro-inflammatory environment, such as secondary 
lymph nodes, survival of effector T cells was enhanced 
upon CD27 signaling, increased survival of intratumoral 
Tregs was observed upon CD27 signaling in the context 
of a chronically inflamed and well-established tumor 
[109].

The CD70-CD27 interaction may also favor immune 
escape through the depletion of NK cells. The study of 
De Colvenaer et al. [110] used a CD70 transgenic mouse 

model in which all B cells constitutively express CD70 
in order to study continuous triggering of CD27 on NK 
cells. Here, the authors showed that CD27 stimulation by 
CD70 resulted in reduced CD27 expression on NK cells 
as well as depletion of predominantly mature NK cells 
in  vivo, which was partially due to increased apoptosis 
[110].

Another mechanism by which CD70 expressing tumor 
cells can exert immune suppression is by regulating 
immunosuppressive myeloid cells, such as macrophages. 
A recent study reported an association between CD70 
expression and infiltration of CD163+ (a marker of M2 
macrophages) tumor-associated macrophages (TAMs) 
in glioblastoma, suggesting a (in)direct role for CD70 in 
recruitment and/or activation of tumor promoting TAMs 
[84, 95, 111]. Here, they also showed that the presence 
of CD70 on tumor cells and CD163 on TAMs correlated 
with poor prognosis for glioblastoma patients [95].

Even when expression of CD70 is limited on tumor 
cells, it can find its way to sustain a tumor enhanc-
ing environment by hijacking other important players 
within the TME that contribute to the proliferative and 
invasive behavior of cancer, such as the cancer-associ-
ated fibroblasts (CAFs). These CAFs, present within the 
tumor margins and/or tumor mass, exist of a heteroge-
neous population that forms one of the most dominant 
components in the TME. In particular cancer types, 
such as colorectal carcinoma and pancreatic cell car-
cinoma, these CAFs contribute to oncogenesis and 
therapy resistance [112, 113]. We recently discovered a 
subset of CD70 expressing CAFs in specimens of colorec-
tal carcinoma patients [114]. These CD70high CAFs were 
shown to mediate immune suppression in vitro through 
increased numbers of CD4+ FoxP3+ CD25+ Tregs and 
IL-2 levels as opposed to the CD70low CAF population, 
likely mitigated through CD27. In addition, while colo-
rectal carcinoma cells alone showed no migratory abil-
ity, the co-culture with CD70high CAFs exhibited a strong 
increase in migration. In line with the former, the study of 
Inoue et al. [115] observed an inferior prognosis in colo-
rectal carcinoma patients with CD70high CAFs [115]. The 
presence of CD70+ CAFs was also described in head and 
neck squamous cell carcinoma and since a role of CD70 
on CAFs is still a very recent finding, it is very likely that 
other tumor types will follow [116].

These findings underline the role of the CD70-CD27 
axis in facilitating immune evasion through different cells 
of the TME. An overview of the CD70-CD27 axis and the 
TME in solid cancers is depicted in Fig. 3.

Regulation of CD70 expression
So far, the exact underlying mechanisms of CD70+ tumor 
cells remains largely unknown, although several studies 
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suggest that epigenetic alterations regulate CD70 expres-
sion. DNA demethylation of the Tnfsf7 promotor gene 
has previously been suggested to upregulate CD70 on T 
cells in the context of autoimmune diseases [117]. Along 
these lines, in the context of cancer, hypermethylation of 
the promotor region downregulated Tnfsf7 gene expres-
sion in an in  vitro breast cancer MCF10 model [118]. 
The promotor site of the CD70 gene contains binding 
sites for transcription factors, such as AP-1, Sp1, NF-κB 
and AP-2. While Sp1 has been linked to CD70 upregula-
tion, the other transcription factors might be implicated 
as well [45]. Apart from epigenetics, other factors have 
been reported to drive CD70 expression in response to 
changes in the TME, such as production of TGF-β and 
proinflammatory cytokines TNF-α and IFN-γ [49], 

stimulation of the CD40L-CD40 axis [47, 119, 120] and 
higher expression of hypoxia-related transcription fac-
tors HIF-α/β under hypoxia [90, 99, 100, 121]. Induction 
of CD70 expression has also been linked to cancer types 
caused by viral infections, such as Epstein-Barr virus and 
Human T-lymphotropic virus type 1 [73, 74, 78, 122, 
123]. Finally, neutralization of endogenous IL-18 was 
reported to upregulate CD70 in stomach cancer [124].

Targeting CD70
New insights into the tumor progressive role of CD70 
further strengthen the rationale of exploiting CD70 in 
cancer patients, having the potential to (1) specifically 
eliminate the CD70 expressing cancer cell populations 
and (2) abrogate the tumor promoting mechanisms by 

Fig. 3  The CD70-CD27 axis and the tumor microenvironement. The CD70-CD27 axis facilitates immune evasion and suppression through different 
cell populations in the TME. The CD70-CD27 axis is reported to increase Treg survival and proliferation and T cell exhaustion and apoptosis. In 
addition, the axis has been linked to depletion of NK cells and migration/activation of TAMs. Moreover, expression of CD70 on CAFs can promote 
immune evasion through Treg accumulation and tumor migration and invasion. Figure created with BioRe​nder.​com. Abbreviations; Bcl2, B cell 
lymphoma 2; CAF, cancer-associated fibroblast; FoxP3, forkhead box P3; IL-2, interleukin 2; NK cell, natural killer cell; PD1, programmed cell death 
protein 1; sCD27, soluble CD27; Smad3, suppressor of mothers against decapentaplegic homolog 3; STAT5, signal transducer and activator of 
transcription 5; TAM, tumor-associated macrophage; TGF-β, transforming growth factor beta; TIL, tumor infiltrating lymphocyte; TIM-3, T cell 
immunoglobulin mucin-3; TME, tumor microenvironment; Treg, regulatory T cell

http://biorender.com
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the CD70-CD27 signaling axis, both in early stage and 
advanced disease. Since CD70 expression is absent dur-
ing homeostasis, as opposed to CD27, it has great poten-
tial to exploit as a cancer-specific target. It should be 
noted that activated T/B cells can transiently express 
CD70 and thus, caution should be taken when evaluat-
ing anti-CD70 approaches given that off-target effects 
remain a challenge.

As such, numerous promising therapeutic approaches 
targeting CD70 have been under investigation, both in 
preclinical and clinical settings with the aim of improv-
ing treatment outcomes of cancer patients. An overview 
of all strategies completed or currently undergoing clini-
cal evaluation is shown in Fig. 4 (extensively reviewed in 
[125]).

Antibodies
Antibody-drug conjugates (ADCs) are monoclonal 
antibodies (mAbs) coupled to a cytotoxic agent, which 
enable specific binding of the target protein and inter-
nalization of the cytotoxic agent resulting in tumor cell 
killing. Several ADC compounds targeting CD70 have 
been developed and are undergoing clinical evaluation 
in hematological and solid cancers [56, 126–129]. Four 

different ADCs entered the clinic and all have completed 
phase I, of which development of two compounds, AMG 
172 (Amgen) and MDX-1203 (Bristol-Myers Squibb), 
has stopped [127]. While both ADC compounds of Seat-
tle Genetics (SGN-75 and SGN-CD70A) discontinued 
clinical testing due to toxicity reasons, the company’s 
non-fucosylated monoclonal antibody SEA-CD70 is cur-
rently undergoing clinical evaluation in a phase I study in 
patients with myeloid malignancies (NCT04227847).

Although ADCs targeting CD70 are a promising 
approach to mediate selective killing of the tumor cells, 
these agents rely on the extent of internalization, which 
can differ greatly among tumor types [130, 131].

Another form of antibody-mediated therapy is based 
on antibody-dependent cellular cytotoxicity (ADCC) 
relying on activating effector cells that carry the Fc 
receptor CD16 (FcγRIII) combined with blocking of 
the target protein. The most typical Fc-bearing receptor 
effector cells that are activated upon binding are the mac-
rophages, although other effector cells, such as NK cells, 
γδ T cells and dendritic cells also mediate ADCC [132]. 
Cusatuzumab (ARGX-110) has next to complement-
dependent cytotoxicity, enhanced ADCC properties due 
to increased binding to FcγRIIIa (as a consequence of 

Fig. 4  Overview of ongoing and completed clinical trials with CD70-targeting agents. Completed trials (solid line) and ongoing trials (dashed line) 
were sorted based on study start date. Antibody-drug conjugates (ADC, blue); Antibody (Ab, Red); Chimeric antigen receptor (CAR, Green). Efficacy 
data are depicted when available. Abbreviations: ADC, antibody drug conjugate: Ab, antibody; CAR, chimeric antigen receptor; CR, complete 
remission; PR, partial remission; SD, stable disease; CRi, CR with incomplete hematological recovery; NHL, non-Hodgkin lymphoma; CTCL, cutaneous 
T cell lymphoma; RCC, renal cell carcinoma; NPC, nasopharynx carcinoma; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; BCL, B 
cell lymphoma; MM, multiple myeloma; TCL, T cell lymphoma; Pt, patients; Exp, expected
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afucosylation) [72, 133, 134]. Its safety profile has dem-
onstrated to be favorable with no dose limiting toxici-
ties in patients with advanced solid and hematological 
malignancies [133]. In AML, cusatuzumab efficiently 
eliminated LSCs in patients treated with hypomethylat-
ing agents whereas blocking the CD70-CD27 pathway 
induced differentiation in AML blasts and stem/progeni-
tor cells [135]. One of the challenges that antibodies rely-
ing on ADCC are facing, is the inadequate activation and 
function of the immune effector cells, such as NK cells, 
since a great number of cancer patients have an impaired 
immune system [136].

CAR‑therapy
Chimeric Antigen Receptor (CAR)-T cell therapy har-
nesses the patient’s own T cells to better recognize and 
eliminate the patient’s cancer cells by modifying these T 
cells to recognize tumor antigens in an HLA independ-
ent manner. CAR-T cell therapy has already achieved 
tremendous success in the treatment of hematologi-
cal malignancies resulting in FDA/EMA approvals for 
CD19-targeting CAR-T cell compounds: Kymriah 
(DLBCL, ALL), Yescarta (DLBCL, follicular lymphoma), 
Breyanzi (DLBCL, follicular lymphoma), Tecartus (CML) 
and Abecma (MM) [137]. In addition to different CAR-
therapies in preclinical development, currently, five 
anti-CD70 CAR-T based approaches, i.e., anti-hCD70 
CAR (NCT02830724), 4SCAR70 (NCT03125577), CAR 
CD70 (NCT04662294), CTX130 (NCT04438083) and 
ALLO316 (NCT04696731), are being evaluated in phase 
I/II clinical trials in patients with hematological and solid 
malignancies, awaiting results regarding the safety profile 
and efficacy in these different cancer types. Despite its 
success in hematological malignancies, it remains chal-
lenging to treat solid tumors with this treatment modal-
ity due to multiple obstacles, such as trafficking of the 
transferred cells to the tumor site, penetration into the 
tumor and maintaining viability [138].

Combination regimens evaluated in clinical setting
Combination regimens with CD70 targeting agents have 
already been explored in clinical setting for certain can-
cer types. Preclinical research showed that azacitidine, 
a hypomethylating agent (HMA), upregulated CD70 on 
AML LSCs, making these malignant cells more suscep-
tible to CD70 targeting [135]. Based on these preclini-
cal findings, a phase I/II study was initiated, combining 
cusatuzumab with azacitidine, in previously untreated 
older patients with AML or high risk myelodysplas-
tic (NCT03030612). Initial results from the phase I/II 
dose escalation demonstrate hematological responses 
in all patients with a complete remission in 67% (8/12) 
and complete remission with incomplete blood count 

recovery in 17% (2/12) of patients [139]. Additionally, no 
dose-limiting toxicities were reported and the maximum 
tolerated dose of cusatuzumab was not reached. These 
promising results have led to a randomized phase II trial 
in newly diagnosed patients with AML, unfit for inten-
sive chemotherapy, combining azacitidine with 10 mg/kg 
or 20 mg/kg of cusatuzumab (NCT04023526) [140].

Another promising regimen that recently entered the 
clinic is a combination of cusatuzumab and venetoclax 
(+/− azacitidine) (NCT04150887) [141]. BCL-2 plays 
an important role in the survival and persistence of 
AML blasts by sequestering pro-apoptotic BAX. Vene-
toclax is a selective inhibitor of BCL-2 which results in 
the release of BAX leading to mitochondrial outer mem-
brane permeabilization and thus apoptosis of LSCs. 
Although venetoclax demonstrates promising activity in 
elderly or chemotherapy-ineligible AML patients, suc-
cessfully eliminating all LSCs remains a major challenge 
in the effective treatment of AML [142]. Similar to vene-
toclax, anti-CD70 therapy targets AML LSCs, though 
by a different mechanism i.e., inhibition of LSC prolif-
eration, stimulation of their differentiation into myeloid 
cells and effector function-mediated cell killing [135]. 
Hence, combining two complementary agents that both 
target AML LSCs could create additive/synergistic anti-
tumor effects and thus minimize drug resistance. Pre-
clinical data could already demonstrate such synergism 
between cusatuzumab and venetoclax (+/−HMA) on 
LSCs [143]. Finally, a combination of cusatuzumab with 
radiotherapy and/or chemotherapy was evaluated in a 
phase I study in patients with nasopharyngeal carcinoma 
(NCT02759250). Patients that received prior radiother-
apy and/or chemotherapy had longer progression-free 
survival compared to the cohort of patients that received 
monotherapy, although it should be noted that the size 
was too limited for any conclusive statements [144]. Cur-
rently there are no new clinical trials evaluating combi-
natorial approaches of anti-CD70 therapy with either 
chemotherapy or radiotherapy in solid cancers.

The combination therapy of CAR targeting CD19 and 
CD70 has already entered the clinic in patients who have 
relapsed/refractory B cell malignancies after chemother-
apy (NCT03125577, NCT04429438). While the clinical 
study is currently still ongoing, preliminary results from 
a patient with refractory and relapsed primary central 
nervous system lymphoma demonstrated long-term 
disease free survival without inducing severe cytokine 
release syndrome and CART cell-related encephalopathy 
syndrome [145].

Combination regimens evaluated in pre‑clinical setting
Next to the combinatorial regimens with CD70-targeting 
therapy that have entered the clinic, other innovative 
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regimens are being explored in a preclinical setting. One 
of these studies explored the combination of anti-CD70 
therapy and a tyrosine kinase inhibitor directed against 
BCR-ABL1 in CML. Here, BCR-ABL1 kinase is constitu-
tively active in the majority of CML patients and tyrosine 
kinase inhibitors, targeting the oncogenic product BCR-
ABL, are an effective treatment strategy in CML patients 
[146]. However, similar to AML, disease-initiating LSCs 
form a major challenge in the treatment of CML due to 
persistence of drug-resistant LSCs. The tyrosine kinase 
inhibitor, imatinib, was found to mediate gene expression 
changes of SP1 (upregulation) and DNMT1 (downregu-
lation) resulting in demethylation of the CD70 promotor 
in CML cells and thus upregulated CD70 expression and 
compensatory Wnt signaling in CML cells [45]. In this 
study, the authors showed that dual targeting of BCR-
ABL1 and CD70, synergistically eradicated CML LSCs 
due to more effective prevention of the Wnt pathway 
activation and rendering CML LSCs more susceptible to 
cell killing with anti-CD70 immunotherapy [45]. Thus, 
dual targeting of BCR-ABL1 and CD70 eliminates LSCs 
and may overcome therapy resistance.

Different studies report an interesting regimen of 
CD70-targeting therapy combined with chemotherapy. 
In NSCLC, it was shown that treatment with cisplatin 
increased CD70 expression, both on mRNA and protein 
level. Interestingly, the combination of cisplatin and the 
anti-CD70 agent cusatuzumab led to synergistic killing 
of NSCLC cell lines in vitro [101]. In ovarian carcinoma, 
CD70 expression on tumor cells was associated with 
clinical resistance to cisplatin [85]. Here, authors showed 
that CD70 targeting antibodies could inhibit prolifera-
tion of chemo-resistant tumor cells. As such, combining 
chemo and treatment with anti-CD70 antibodies could 
be used to overcome resistance to chemotherapy. Finally, 
it was demonstrated that radiotherapy, similar to what 
was seen with chemotherapy, could increase membrane 
CD70 expression in glioma, leukemia and lymphoma [35, 
147, 148]. As such, combination strategies of anti-CD70 
antibodies and chemotherapy/radiotherapy could ren-
der malignant cells more susceptible to CD70 targeted 
therapy.

The different side of the coin
In this review on the CD70-CD27 axis, we focus on 
immunotherapeutic strategies aiming at eradicating 
the tumor cells by specifically targeting tumor-asso-
ciated CD70 overexpression, thereby abrogating the 
immune suppressive effects driven by chronic stimula-
tion of the CD70-CD27 axis. However, it is notewor-
thy to mention that other therapeutic strategies are 
under investigation with the focus on stimulating the 
CD27 signaling pathway to enhance CTL responses, 

including the agonistic IgG1 anti-CD27 antibody, 
CDX-1127/varlilumab and TriMix, a monocyte-
derived DC vaccine is activated through electropora-
tion with mRNA encoding CD40L, CD70 and active 
TLR4 [149, 150]. The identification of biomarkers 
and stratification concepts are important to select the 
appropriate therapeutic strategy of either inhibiting 
CD70 and/or CD27 activity, based on the underlying 
dominant functions, that ensures the best fit for the 
patient. Thus, targeting strategies of both sides of the 
CD70-CD27 axis may be exploited depending on the 
cancer type and its TME.

Conclusions
Combinatorial approaches with anti-CD70 targeting 
therapies have proven their potential in both preclinical 
and clinical settings. Until now, mono- and combinato-
rial therapies have mainly been explored in AML, yet 
other tumor types might benefit from this approach as 
well. Research in the field has led to more insights into 
the underlying molecular mechanisms of the tumor pro-
moting and immune evasive role of the CD70-CD27 axis 
in oncology. Therefore, in addition to existing approaches 
focused on targeting CD70, strategies that inhibit the 
signaling pathways involved in the CD70-CD27 axis 
might become promising novel therapeutic alternatives 
in the future. Further preclinical research and clinical 
evaluation of CD70 targeting strategies will provide new 
insights into the mechanisms and effects of CD70 and 
might pave the way towards novel treatment options in 
the field of oncology.
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