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Abstract 

Cholangiocarcinoma (CCA) is the second most common primary liver cancer and associated with a dismal prognosis 
due to the lack of an efficient systemic therapy. In contrast to other cancers, new immunotherapies have demon-
strated unsatisfactory results in clinical trials, underlining the importance of a deeper understanding of the special 
tumor microenvironment of CCA and the role of immune cells interacting with the tumor. Tumor-infiltrating lympho-
cytes (TILs) are an important component of the adaptive immune system and the foundation of current immuno-
therapy. Therefore, the aim of this systemic review is to summarize the current literature focusing on the proportions 
and distribution, molecular pathogenesis, prognostic significance of TILs and their role in immunotherapy for CCA 
patients.

In CCA, CD8+ and CD4+ T lymphocytes represent the majority of TILs and are mostly sequestered around the cancer 
cells. CD20+ B lymphocytes and Natural Killer (NK) cells are less frequent. In contrast, Foxp3+ cells (regulatory T cells, 
Tregs) are observed to infiltrate into the tumor. In the immune microenvironment of CCA, cancer cells and  stro-
mal cells such as TAMs, TANs, MSDCs and CAFs inhibit the immune protection function of TILs by secreting factors 
like IL-10 and TGF-β. With respect to molecular pathogenesis, the Wnt/-catenin, TGF-signaling routes, aPKC-i/P-Sp1/
Snail Signaling, B7-H1/PD-1Pathway and Fas/FasL signaling pathways are connected to the malignant potential and 
contributed to tumor immune evasion by increasing TIL apoptosis. Distinct subtypes of TILs show different prognostic 
implications for the long-term outcome in CCA. Although there are occasionally conflicting results, CD8+ and CD4+ 
T cells, and CD20+ B cells are positively correlated with the oncological prognosis of CCA, while a high number of 
Tregs is very likely associated with worse overall survival. TILs also play a major role in immunotherapy for CCA.

In summary, the presence of TILs may represent an important marker for the prognosis and a potential target for 
novel therapy, but more clinical and translational

data is needed to fully unravel the importance of TILs in the treatment of CCA.
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Background
Cholangiocarcinoma (CCA) is a heterogeneous group of 
cancer originating from the intra- and extrahepatic bile 
ducts and is considered to be the second most common 
liver cancer accounting for 10 –15 % of all primary hepa-
tobiliary malignancies [1]. Radical surgical resection or 
liver transplantation remain the only curative treatments, 
however, even with a highly radical surgical approach, 
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recurrence rates are reported to be up to 50% [2, 3]. A 
growing body of research implies that the CCA pheno-
type is determined not just by genetic and epigenetic 
alterations in the cancer cells, but also by an extensive 
molecular crosstalk between those malignant cells and 
the surrounding tissue microenvironment [4].

Based on the specific immune microenvironment, 
CCA can be categorized depending on the presence or 
lack of immune cell infiltration into two groups: cancers 
that have been infiltrated by lymphocytes and tumors 
that have not been infiltrated [5]. Immune cell infil-
trated tumors are considered immunologically respon-
sive as tumor cells are surrounded by various infiltrating 
inflammatory cells (e.g. T cells, B cells, myeloid lineage 
leukocytes, natural killer (NK) cells, macrophages and/
or dendritic cells) that contribute to either pro- or anti-
tumor activities [6]. Among the invading inflammatory 
cells, tumor infiltrating lymphocytes (TILs) (e.g. T cells, 
B cells and NK cells) are the most important determi-
nants of the host immune response against tumor cells. 
TILs are responsible for the development of anti-tumor 
immune responses, and may detect tumor antigens and 
kill tumor cells [7]. Many studies report a survival ben-
efit associated with the presence of TILs in various tumor 
entities [8]. Tumor cells, on the other hand, may regularly 
control immunological checkpoints like programmed 
death-1 (PD-1) and cytotoxic T-lymphocyte antigen-4 
(CTLA-4), which are overexpressed on T cells. This cre-
ates an immunosuppressive tumor microenvironment 
and enables an escape to the immune responses. As a 
result, the restoration of anti-tumor immune response 
to attack tumoral cells by modern immunotherapy, such 
as adoptive cell therapy (ACT) and immune checkpoint 
therapy is becoming increasingly popular [9, 10]. It 
should be noted that preliminary results of the TOPAZ-1 
trial evaluating durvalumab in combination with in 
advanced CCA displayed encouraging results, reveal-
ing that the checkpoint inhibitor durvalumab + gemcit-
abine & cisplatin (GemCis) significantly improved overall 
(OS) and progression-free survival (PFS) in patients with 
advanced CCA compared to placebo + GemCis with 
acceptable safety margins. This implies that durvalumab 
+ GemCis could be a new first-line standard of care regi-
men in the near future [11].

In contrast to other cancers as melanoma, renal cell 
carcinoma, non-small cell lung cancer and adeno-
carcinoma of the colon, the majority of clinical trials 
investigating immunotherapy for advanced CCA have 
demonstrated unsatisfactory outcomes [12, 13]. Com-
pared to other malignancies, the role of TILs, which are 
the most important actor in the adaptive immunore-
sponse, therefore, remains to be elucidated in CCA [14]. 
Based on these, the purpose of this systematic review is 

to comprehensively summarize the proportions and dis-
tribution, molecular pathogenesis, prognostic signifi-
cance and potential for immunotherapy related to TILs 
in CCA.

Methods
Search strategy
The PRISMA (Preferred Reporting Items for System-
atic Reviews and Meta-analyses) criteria were used to 
conduct this review [15] and this systematic review 
was registered in the International Prospective Reg-
ister of Systematic Reviews (PROSPERO) with the ID 
CRD42021271435. PubMed, Medline, Google Scholar 
and Web of the Science were searched with the follow-
ing full-text terms: “T lymphocytes” OR “B lymphocytes” 
OR “Natural killer (NK) cells” OR “Tumor-infiltrating 
lymphocytes (TILs)”AND “Cholangiocarcinoma (CCA)” 
OR “Biliary tree cancers (BTC)” OR “Intrahepatic CCA 
(iCCA)” OR “Perihilar CCA (pCCA)” OR “Distal CCA 
(dCCA)”. Boolean operators ‘OR’ was used to combine 
all expressions of cases including abbreviation while 
‘AND’ was used to include lymphocytes in conjunction 
with CCA in the search. During the literature search, no 
proximity operators were used. Two authors conducted 
two independent literature searches both using the same 
strategy. No additional papers were chosen after the 
reference list and citation search were completed. No 
screening for unpublished literature was conducted.

Include and exclusion criteria
Two authors (DL and JB) screened titles and abstracts for 
the following criteria: (i) all studies reported on lympho-
cytes in CCA tissue; (ii) studies were published between 
2000 and 2021 and written in English; (iii) publications 
with available full-text (all identified publications were 
available to the authors to be included in this review); 
and (iv) based upon original research. The exclusion cri-
teria were review papers, letters, comments or abstracts;

Data extraction
The titles and abstracts of all discovered records were 
independently assessed by two authors after removing the 
duplicates. Consensus and consultation with a third senior 
author was used to resolve all differences (UPN). The fol-
lowing data were extracted from included studies: the first 
author, publication year, country of study, patients’ num-
ber, sample size, study type and characteristics, cut-off val-
ues of the high/positive rates for TIL expression, length of 
follow-up, genes analyzed for mutation, anatomic location 
of tumors, stage at diagnosis, clinical outcomes, and end-
points. Data were organized in standardized tables.
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Risk of bias
The Newcastle-Ottawa scale was used to assess the risk 
of bias in translational studies reporting oncological 
outcome [16]. The scale’s score range is determined by 
the study’s design. A quality score was derived for case-
control studies based on three categories: group selec-
tion (four items), comparability across groups (one item), 
and outcome and exposure evaluation (three items). Each 
item in the group selection and outcome and exposure 
evaluation categories received a maximum of one point. 
Comparability received a maximum of two points. The 
same three criteria were used in cross-sectional studies 
to assess the quality. As a result, the maximum score of 
the scale is nine points with studies being categorized as 
low (0-3 points), moderate (4-6 points) and high quality 
(7-9 points), respectively.

Results
A total of 610 records were found in the electronic data-
bases at initial assessment of which 281 titles/abstracts 
were examined after 329 duplicates have been removed. 
A total of 178 articles were not associated with the topic 
and therefore excluded as well as 20 reviews, comments 
and editorials and 16 case reports. In summary, 67 full 
text articles were retrieved and reviewed entirely with 

only 33 of them having met all eligibility requirements. 
No further studies were found in the reference lists of the 
included publications and the grey literature (Fig. 1). The 
quality of studies reporting oncological outcome accord-
ing to the Newcastle-Ottawa scale is presented in Table 1.

Investigative methods
To investigate TILs and other cells of the microenviron-
ment in CCA, previous studies have used immunohis-
tochemistry (IHC) including conventional H&E staining 
and multiplexed immunohistochemistry to explore the 
distribution and characterisation of TILs (Tables 2 and 4). 
Pathological and immunohistochemical examinations were 
usually performed by two or more observers who were 
blinded on the clinical data. It should be noted that there is 
a large heterogeneity in terms of the defined cut-offs used 
by previous studies. Some studies use percentiles, tertials 
or the median, whereas others use absence vs presence, or 
do not report a cutoff at all. Molecular studies in reference 
to TILs in CCA frequently utilized flow cytometry-based 
techniques (Table 3).

Proportions and distribution of TILs in CCA 
In comparison to hepatocellular carcinoma (HCC), 
CCA has a lower number of CD8+ T cells in total, but 

Fig. 1 PRISMA flowchart of study selection for this systematic review
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concentrated regulatory T cells (Tregs) and a higher level 
of immunoinhibitory checkpoints [32]. When compared 
to the healthy liver, tumors displaye lower proportions of 
cytotoxic T cells and NK cells, but higher proportions of 
Tregs [31]. The most common type of inflammatory cells 
were T lymphocytes. CD8+ T lymphocytes made up 
most of the T lymphocytes, whereas CD4+ T lympho-
cytes were also common. B lymphocytes were only seen 
occasionally. The total number of NK cells was also mod-
est, though higher than of B cells [18].

In 11 of the 33 studies, the distribution of TILs between 
peritumoral and intratumoral areas in CCA was studied 
[17, 18, 20, 23, 26, 27, 29–33] (Table 2). For iCCA, 5 stud-
ies show that CD8+, CD4+ and CD3+ T cells mainly 
distributed around the cancer itself [17, 18, 26, 29, 30]. 
One study observed Foxp3+ T cells directly infiltrating 
into the tumor [18], while another study could not sup-
port these results [17]. Interestingly, CD8+ T cells com-
bining special molecular factors like PD1 (+) or CD103 
mainly distributed in the cancer core in iCCA [23, 33]. 
For eCCA, one study showed that CD8+ and CD4+T 
cells are mainly located in peritumoral and Foxp3+ T 
cells in the intratumoral areas [18] and another publi-
cation found no difference between intratumoral and 
peritumoral areas for CD8+, CD4+T and Foxp3+ T 
cells [27]. For CCA (including both iCCA and eCCA), 
three studies revealed that CD8+, CD4+ and CD3+ T 
cells mainly infiltrated outside of the tumor [26, 31, 32]. 
Foxp3+ T cells were also found located in peritumoral 
areas mostly [20]. However, another study by Zhou et al. 
did not observe any significant difference for the location 
of Foxp3+ T cells [31]. In contrast to T cells, B cells have 

been poorly examined in CCA and less evidence is avail-
able. In one particular study, Kasper et  al. showed that 
CD20+ cells infiltrate more in the peritumoral than in 
the intratumoral area [32].

As suggested by the current literature, it is assum-
able that CD8+, CD4+ and CD3+ T cells were mainly 
located in the peritumorual area irrespective of the 
CCA subtype while especially for Foxp3+ T cell and 
B cells, further targeted studies are needed to explore 
their specific location under different situations. An 
overview of the different cell subsets and their spatial 
distribution is presented in Fig. 2 and Table 2.

Molecular Pathogenesis of CCA related to TILs
TILs are a highly heterogeneous group of lymphocytes 
and act as key players in important pathways (Fig.  3). 
RNA sequencing, Western blot, PCR, IHC and other 
methods were used to investigate the link between vari-
ous signal pathways and TILs [33, 40, 42–44] (Table  3). 
Kim et  al. found that signature genes of the wingless 
and Int-1(Wnt)/-catenin and transforming growth fac-
tor (TGF)-signaling pathways to be elevated in tumors 
with low numbers of CD69+CD103+ tissue-resident 
memory-like CD8+ TIL, which represent prominent 
tumor-specific immune response and hold promise as a 
potential therapeutic target in iCCA patients [33]. The 
atypical protein kinase C-iota (aPKC-i) / Ser59-phos-
phorylated specificity protein 1 (P-Sp1) / Snail signaling 
induced immunosuppression by producing immunosup-
pressive natural T regulatory–like CD4+CD25- cells 
in 64 CCA patients [40]. Furthermore, Carnevale et  al. 
showed that iCCA cells have the immune-modulatory 

Table 1 Quality assessment of included clinical studies

All included translational studies reporting oncological outcome were evaluated in accordance with the Newcastle-Ottawa scale [16]. The maximum score of the scale 
is nine points with studies being categorized as low (0-3 points), moderate (4-6 points) and high quality (7-9 points), respectively

Ref Author Selection Comparability Outcomes Quality score

[17] Asahi Y ★★★★ ★ ★ 6/9

[18] Goeppert B ★★★★ ★ ★★ 7/9

[19] Hasita H ★★★★ ★★ ★★ 8/9

[20] Kim HD ★★★ ★★ ★ 6/9

[21] Kim R ★★★ ★★ ★★ 7/9

[22] Kitano Y ★★★★ ★★ ★★ 8/9

[23] Lu JC ★★★★ ★★ ★ 7/9

[24] Miura T ★★★★ ★★ ★★ 9/9

[25] Oshikiri T ★★★★ ★★ ★ 7/9

[26] Tian L ★★★★ ★★ ★★★ 9/9

[27] Ueno T ★★★★ ★★ ★★★ 9/9

[28] Vigano L ★★★ ★★ ★★ 7/9

[29] Wu H ★★★★ ★★ ★★ 8/9

[30] Xu YP ★★★★ ★★ ★★ 8/9
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capability of inducing apoptosis of T and NK cells via the 
Fas/FasL pathway and avoid inflammatory responses by 
up-regulating the cellular FADD-like IL-1β-converting 
enzyme-inhibitory protein (c-FLIP) system [42]. A Chi-
nese group conducted an experiment in which cells were 
examined after being treated with laminin or transfected 
with plasmids containing siRNA targeted to the 67-kDa 
laminin receptor, and observed the induction of FasL 
expression and cytotoxicity in CCA cells via the mitogen-
activated protein kinases - extracellular signal-regulated 
kinases (MAKP-ERK) pathway against Fas-sensitive Jur-
kat T cells [43]. Another Chinese study discovered that 
the B7-H1/PD-1 pathway is linked to the malignant 
potential of iCCA and contributes to tumor immune eva-
sion by boosting CD8+ TIL apoptosis [44].

The effects of gene mutations on TILs has also been 
investigated previously [34, 37] (Table  3). In a multidi-
mensional analysis of DNA from 112 blood samples of 
European patients with CCA, Cornillet et al. found mul-
tiple alterations at the killer cell immunoglobulin-like 

receptor (KIR) and human leucocyte antigen (HLA) 
gene loci and speculated that these alterations might 
affect NK cell tumor surveillance [37]. By molecular 
characterization analysis of 121 CCA patients, a Korean 
study demonstrated that KRAS mutations with low TIL 
density in tumors were linked to low immunogenicity in 
the tumors [34].

Another area of research has been the influence of 
cytokines, proteins, and nucleic acids in TILs [39, 36, 
38, 41, 35] (Table 3). Fukuda et al. investigated that high 
C-X-C motif ligand 9 (CXCL9) expression was closely 
correlated with prolonged postoperative survival and 
an increased number of tumor-infiltrating NK cells. 
Mice experiment showed that CXCL9 could enhance 
NK cell recruitment into tumors to conduct anti–tumor 
immunity [35]. Panya el at. found that the killing abil-
ity of effector T cells was associated with intracellular 
protein kinase CAMP-dependent type I regulatory sub-
unit alpha (PRKAR1A) levels [39]. By conducting cell 
experiments, Junking et  al. revealed that RNA-pulsed 

Table 2 Characteristic distribution of TILs in CCA 

Various studies investigated the spatial distribution of tumor-infiltrating lymphocytes in cholangiocarcinoma

CD, cluster of differentiation, CCA  cholangiocarcinoma, eCCA  extrahepatic cholangiocarcinoma, FOXP3 forkhead box P3, GBAC gallbladder cancer, iCCA  intrahepatic 
cholangiocarcinoma, IHC Immunohistochemistry, IT intratumoral, mIHC multiplexed immunohistochemistry, PD programmed cell death protein, PT peritumoral, Ref 
reference, Th helper T cell, TIL tumor-infiltrating lymphocytes

Ref Author Year Country Sample(n) Location
of TILs

Subtypes of TILs Assessment 
of TILs

Distribution (number or density 
of TILs)

[31] Zhou G 2019 China CCA (26) IT vs. PT CD8+ / FoxP3+ / CD4+ /  CD56+ IHC CD8+, CD4+: PT > IT; Foxp3+, 
CD56: no difference

[17] Asahi Y 2020 Japan iCCA (78) IT vs. PT CD8+ / FoxP3+ IHC CD8+: PT > IT (91.0±89.9 vs. 
41.1±54.1)
Foxp3+: PT > IT (18.9±21.5 vs. 
11.5±15.7)

[23] Lu JC 2019 China iCCA (320) IT vs. PT PD1(+)T IHC PT < IT (40±5 VS 60.1±6.5; p< 0.01)

[32] Kasper HU 2009 China CCA (27) IT vs. PT CD3+ / CD4+ / CD8+/CD20 IHC PT > IT
CD3: 52.6±28.5 vs 310.4± 202.0, 
p=0.008
CD4: 18.0±22.3 vs 223.1±43.2, 
p=0.043
CD8: 40.7± 30.5 vs 118.7± 35.5, p≤ 
0.001
CD20: 11.1 (± 11.8) vs 0.1 (± 0.3), P 
= 0.035

[27] Ueno T 2018 Japan eCCA (117) IT vs. PT CD4+ / CD8+ / FoxP3+ IHC No difference
CD4+(median 77 vs 59, p=0.16)
CD8+(median 52 vs 55, p=0.94)
Foxp3+(median 9 vs 9, p=0.62)

[18] Goeppert B 2013 Germany eCCA (149) iCCA 
(157) GBAC (69)

IT vs. PT CD4+ / CD8+ / FoxP3+/CD20 IHC CD4+: PT > IT
CD8+: PT > IT
CD20: No foud
Foxp3+: PT < IT

[30] Xu YP 2021 China iCCA (140) IT vs. PT CD8+ IHC PT > IT

[26] Tian L 2020 China iCCA (322) IT vs. PT CD8+ mIHC PT > IT (p<0.001)

[29] Wu H 2021 China iCCA (50) IT vs. PT CD8+ / CD3+ IHC PT > IT (p=0.009, p=0.047)

[20] Kim HD 2021 Korea CCA (52) IT vs. PT CD8+ / CD4+ / FoxP3+ mIHC PT > IT (p<0.001, p<0.001, p<0.001)

[33] Kim HD 2021 Korea iCCA (33) IT vs. PT CD103+CD8+ mIHC PT < IT (mean 1.4/mm2 vs 1.8/mm2)
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dendritic cells could promote the activation anti-tumor 
effector T-cells against CCA cells. In addition, puls-
ing dendritic cells with pooled messenger RNA from 
multiple cell lines enhanced the efficacy of a cellular 
immune response against CCA cells [39]. DNA mis-
match repair deficiency is a major molecular pathway of 
genetic instability in cancer. Goeppert el at. investigated 
a cohort comprising 308 CCAs discovering that patients 
affected by high-level microsatellite instability (MSI-
H) had mostly an atypical histomorphology, showed a 
longer overall survival and higher numbers of CD8 + 
T cells, FOXP3 + regulatory T cells, CD20 + B cells 
[36]. Another group discovered that by inhibiting the 
IL-10 and TGF-b receptors on DCs, the level of IFN-γ 
and the cytolytic activity of effector T cells on CCA cell 
lines can significantly be increased. Thus, inhibition of 
the IL-10 and TGF-b receptors on DCs is crucial in the 
preparation of DC-activated effector T cells for adoptive 
T-cell therapy [38].

Prognostic significance of TILs in CCA 
Fourteen of the 33 publications investigated the prog-
nostic significance of TILs in patients with CCA 
(Tables  1 and 4). For iCCA, 7 studies showed that 

patients with a high number or density of CD8+ T cells 
displayed longer OS or DFS [17, 18, 23, 26, 28–30]. 
Among them, 5 studies investigated the effect of CD8+ 
T cells with respect to spatial distribution (intratumoral 
(IT), peritumoral (PT) or tumor margin (TM)) on the 
prognosis of iCCA and all revealed that a higher num-
ber of CD8+ T cells in the tumor margin is associated 
with prolonged OS. Similarly, a high density of CD4+ 
T cells in the tumor margin was independently associ-
ated with favourable OS or DFS [18, 20]. Four groups 
investigated the relationship between Foxp3+T cells 
and prognosis. While Foxp3+T infiltration was associ-
ated with shorter OS in two reports [17, 28], one study 
found a positive prognostic impact [18] and another no 
significant relationship [19]. Of note, only one study 
investigated the expression of B cells and observed that 
the presence of CD20+ cells was associated with an 
improved prognosis [18].

For eCCA, Goeppert et  al., Oshikiri et  al. and Kitano 
et  al. concluded that a high number of CD8+ T cells 
translates to better OS or DFS [18, 22, 25] and CD4+ 
T cells were also found to have a favourable impact by 
Goeppert et  al. and Ueno et  al. [18, 27], while Kitano 
et al. observed that Foxp3+T cells were associated with a 
dismal prognosis [22].

Fig. 2 Spatial distribution of tumor-infiltrating lymphocytes in CCA. In CCA, CD8+ T lymphocytes represent the majority of T lymphocytes, 
whereas CD4+ T lymphocytes were also common. B lymphocytes are only seen occasionally. The total number of NK cells is also modest, 
though higher than B cells. While CD8+ and CD4+ cells are mainly distributed around the cancer, while Foxp3 cells infiltrate into the tumor. CCA, 
cholangiocarcinoma; CD; cluster of differentiation; Foxp3, forkhead box p3; NK, natural killer; TGF, transforming growth factor
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In summary, CD8+ and CD4+ T cells were mainly 
positively correlated with the overall prognosis in CCA 
irrespective of their respective spatial distribution. How-
ever, the relationship between Foxp3+T cells and long-
term results of CCA remains ill-defined and requires 
further research. Due to the limited number of studies, 
the overall prognostic role of B cells is not conclusive and 
more related research is needed to unravel their defined 
impact on long-term outcome.

Potential TILs‑related immunotherapy for CCA 
A total of 6 of the 33 papers investigated possible TIL-
related immunotherapy studies [35–49] (Table  5). CCA 
cell [46–48] or rodent models [35, 45, 49] were used to 
investigate cell proliferation, tumor growth and progno-
sis. Diggs et  al. treated iCCA mice with a combination 
of anti-CD40 and anti-PD-1, resulting in a much lower 

tumor burden as well as enhanced numbers and activa-
tion of CD4+ and CD8+ T cells, NK cells, and myeloid 
cells in the tumor [45]. Pan et al. discovered that CTLA4–
PD-L1 DNA immunization induced the development of 
specific antibodies and inhibited tumor growth in iCCA 
rats [49]. In an in-vitro investigation using gemcitabine 
paired with cytotoxic T-lymphocytes (CTLs) to treat 
gemcitabine-resistant CCA cells, Sawasdee et al. discov-
ered that gemcitabine increases the cytotoxic activity of 
effector T cells against chemo-resistant CCA cells [46]. 
T cells stimulated with Dendritic cells (DC) pulsed with 
cell lysates of honokiol-treated cancer cells boosted spe-
cific killing of human CCA cells substantially more than 
those stimulated with DCs pulsed with cell lysates of 
untreated CCA cells [47]. When Morisaki et al. cultured 
cytokine-activated killing (CAK) cells with cetuximab, an 
epidermal growth factor receptor antagonist, they found 

Fig. 3 Overview of different types of tumor-infiltrating lymphocytes in CCA. TILs are a highly heterogeneous group of lymphocytes. Distinct 
cell subsets play different roles in the tumor microenvironment. CD4+ cells are activated by reaction with peptide antigens delivered by major 
histocompatibility complex II (MHC II) and secrete cytokines such as IFN-γ, TNF-α and IL-2, which mediate cellular immunity and enhance the killing 
ability of NK cells and cytotoxic T cells. CD8+ cytotoxic T cells destroy tumor cells directly by releasing chemicals like perforin and granzyme and 
indirectly by inducing apoptosis by expressing FasL or secreting TNF-α attaching to target cell surface receptors. NK cells kill tumor cells by the same 
mechanisms as CD8+ cytotoxic T cells. Tregs suppress CD8+ cytotoxic T cells and NK cells by secreting soluble anti-inflammatory chemicals such 
as IL-10 and TGF-β. CD, cluster of differenciation; FasL, Fas ligand; IFN; interferon; IL, interleukin; MHC; major histocompatibility complex; NK, natural 
killer; TGF, transforming growth factor; TILs, tumor-infiltrating lymphocytes; TNF, tumor necrosis factor; Tregs; regulatory T cells
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enhanced CAK cells cytotoxicity. Cetuximab may there-
fore potentially be used to enhance CAK cell therapeu-
tic activity in patients with CCA [48]. CXCL9, an IFN-γ 
inducible chemokine, has been reported to play versatile 
roles in the tumor-host relationship. Fukuda et al. found 
that CXCL9 was released in response to inflammatory 
stimuli in cholangiocarcinoma cell lines and that CXCL9 
did not promote cell growth or cell invasion in CXCL9-
expressing cholangiocarcinoma cell lines. In addition, 
mice treated by silencing CXCL9 with short hairpin RNA 
got greater tumor burden by disrupting natural killer cell 
recruitment into tumors. However, Fukuda et  al. also 
revealed that high endogenous CXCL9 expression was 
correlated with favorable postoperative survival [35].

Discussion
TILs are present in many solid tumors and form a 
highly heterogeneous population [50], which mostly 
include B lymphocytes, CD8+ cytotoxic T lympho-
cytes, CD4+ T lymphocytes, and FoxP3+ Tregs. Spa-
tial heterogeneity is one of the key features of the 
tumor microenvironment [51] and the composition and 
localization of immune infiltrate substantially varies 
depending on their dynamic interactions with tumor 
and/or stromal cells [52, 53]. According to our litera-
ture review, the peritumoral area but not the tumor 
core itself is the main site for the active infiltration of 

T cell subsets as CD8+T cells and FoxP3-CD4+ T cells 
while Tregs infiltrate into the tumors. Therefore, CCA 
must be considered to be immune-excluded tumors 
in which most effector T cells are sequestered at the 
tumor margin [54]. The density of CD8+ T cells in the 
invasive tumor margin rather than the tumor center 
demonstrated the best predictive capacity in predict-
ing anti–programmed death (PD)-1 responses in mela-
noma patients [55]. On the other hand, a higher level of 
IT but not PT CD8+ T cells in conjunction with certain 
proteins e.g. PD-1 [23] or CD103 [33] was reported to 
be associated with outcomes in CCA patients. There 
are, of course, a few studies [27] with contradicting 
results, which may be related to different methods, 
counting standards or sample sizes (Table 2).

Despite the fact that CD20+ B cells make up a small 
proportion of the total TILs and there is still scarce date 
on their function, elevated population of B cells have been 
observed in the lymphoepithelioma-like CCA, a rare sub-
type of iCCA associated with Epstein-Barr virus (EBV) 
infection [56]. Huang et al. observed that this lymphoep-
ithelioma-like EBV-associated intrahepatic cholangiocar-
cinoma (LEL-EBVaICC) subtype had significantly higher 
densities of CD20+ cells compared with conventional 
EBVaICC and non-EBVaICC. Additionally, increased 
density of CD20+ B cells was significantly related to 
longer OS and RFS in ICC [57]. Thus, one might argue 

Table 5 Potential TILs-related immunotherapy for CCA 

Various studies investigated potential immunotherapy based on tumor infiltrating lymphocytes in animal models or cell experiments

CAK Cytokine-activated killer, CCA  cholangiocarcinoma, CTLs cytotoxic T-lymphocytes, CTLA4 cytotoxic T-Lymphocyte associated protein 4, DCs dendritic cells, iCCA  
intrahepatic cholangiocarcinoma, PD1 programmed cell death protein 1, PD-L1 programmed cell death 1 ligand 1, RFS relapse-free survival

Ref Author Year Country Experimental methods Tumor type Treatment Outcomes

[45] Diggs L 2020 USA Animal model iCCA Combined anti-CD40/PD-1 Impaired iCCA cell growth, pro-
longed mice survival.

[46] Sawasdee N 2020 Thailand Cell culture experiment CCA Gemcitabine combined with 
cytotoxic T-lymphocytes (CTLs)

Gemcitabine in combination with 
CTLs promotes cancer cell death.

[47] Jiraviriyakul A 2019 Thailand Cell culture experiment CCA Honokiol plus dendritic cells 
(DC)-based vaccine

T lymphocytes stimulated with DCs 
pulsed with cell lysates of honok-
iol-treated CCA cells significantly 
increased specific killing of human 
CCA cells compared to DCs pulsed 
with cell lysates of untreated CCA 
cells.

[48] Morisaki T 2012 Japan Cell culture experiment CCA Cytokine-activated killer (CAK) 
cells with cetuximab

Combining CAK cells with 
cetuximab significantly enhanced 
cytotoxicity.

[49] Pan YR 2020 China Animal model iCCA DNA vaccination targeting 
CTLA4–PD-L1

DNA vaccination targeting CTLA4–
PD-L1 triggered the production of 
specific antibodies and suppressed 
tumor growth in an iCCA rodent 
model.

[35] Fukuda Y 2020 Japan Animal model iCCA CXCL9 CXCL9 knockout leads to greater 
tumor burden by disrupting natu-
ral killer cell recruitment into the 
tumor in mice
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that the LEL subtype of EBVaICC is linked to better prog-
nosis, which might be attributed to local immunological 
activation by the higher number of tumor-infiltrating B 
cells and CD8+ T cells. In general, B cells play a variety 
of roles in the immune system. Tumor-infiltrating B lym-
phocytes (TIBs) can be observed in various solid tumors. 
Here, according to existing data, TIBs limit tumor growth 
by secreting immunoglobulins, boosting T cell response, 
and directly destroying cancer cells [58]. By support-
ing the formation and maintenance of tertiary lymphoid 
structures that promote CTL infiltration into the tumor, 
TIBs and B cell-related pathways contribute to a power-
ful anti-tumor response and therefore might improve 
patient outcomes [59, 60]. Regulatory B cells (Bregs), 
on the other hand, are thought to facilitate tumor activ-
ity by secreting immunosuppressive substances includ-
ing IL10 and/or TGF-β [61]. Further, it has been shown 
that B cells can influence tumor growth by interacting 
with helper T cells [62]. In ovarian cancer, some data sug-
gests that tumors showing both CTLs and B cells have a 
greater survival probability than tumors containing only 
CTLs [63]. Two clinical trials in patients with pancre-
atic ductal adenocarcinoma (PDAC) (NCT02436668) 
and head and neck cancer (NCT02454179) are currently 
recruiting to determine the feasibility of utilizing B cells 
as a potential immunotherapeutic target. However, given 
the limited amount of quality data on B cells in the gen-
eral CCA population, further research is warranted to 
draw valid evidence-based conclusions.

Previous research has shown that distinct CCA sub-
types present different risk factors, oncogenic processes 
and prognoses. Nevertheless, we found no significant 
changes in TILs between the different CCA subtypes in 
our present review. CD8+, CD4+, and CD3+ T lympho-
cytes were mostly peritumoral in both iCCA and eCCA 
and were found to be favourably linked with overall 
prognosis. However, the association between Foxp3+ T 
cells and CCA long-term outcomes is still up for debate. 
Unfortunately, the prognostic significance of B cells can-
not be clearly established due to a lack of studies and 
additional research in this area is needed in the future.

In the last decade, the molecular pathogenesis (genetic 
mutations, inflammatory mediators, single pathways, etc) 
of CCA has been enlightened, and as a result, a num-
ber of molecularly targeted therapies (lapatinib, erlo-
tinib, vandetanib, sunitinib, cediranib, ponatinib, etc) 
have emerged [64]. Nearly 40% of CCA were discovered 
to have potentially targetable genetic changes such as 
FGFR2, PRKACA, and ERBB2, implying that targeted 
molecular therapies could play a role in the clinical man-
agement of these patients [65]. Furthermore, tumors with 
a high mutational burden and a matching upregulation 
of immune checkpoint markers had the worst prognosis 

[65]. Therefore, a subset of CCA with specific genetic 
alterations may provide an opportunity for the combi-
nation of small molecule inhibition in combination with 
immunotherapy [66].

In this systematic review, we found that Wnt/-catenin, 
TGF-signaling routes, aPKC-i/P-Sp1/Snail Signaling, 
B7-H1/PD-1Pathway and Fas/FasL signaling pathways 
were connected to the malignant potential and contrib-
uted to tumor immune evasion by increasing TILs apop-
tosis. In addition, some genes such as KRAS and the KIR 
and HLA loci can also interfere with the immune func-
tion of TILs. Complementary, CXCL9, PRKAR1A, IL-10 
and TGF-b were associated with the activation of TILs 
(Table  3). Individualizing treatment choices for patients 
with advanced CCA may therefore be aided by compre-
hensive genetic analysis, which holds considerable poten-
tial for precision-oncology therapy. The rising problem 
with immunotherapy appears that only a subgroup of 
patients benefits from a monotherapy, thus investigat-
ing techniques to overcome resistance to immunother-
apy should subsequently be a main research area for 
the future. A significant number of clinical trials will be 
required to test the combination of molecular targeted 
treatment and immunotherapy as well as to explore the 
underlying mechanisms in combined treatments.

CCA is a desmoplastic cancer with a rich TME where 
CCA cells exchange autocrine/paracrine signals with 
each other and other cell types, e.g. cancer-associated 
fibroblasts (CAFs) and immunosuppressive innate 
immune cells like tumor-associated macrophages 
(TAMs) and myeloid-derived suppressor cells (MDSCs). 
The role of TILs in CCA is therefore strongly affected 
by the surrounding immune environment as illustrated 
in Fig.  4. Immune tolerance mechanisms in the tumor 
microenvironment limit or reduce T-cell responsiveness. 
Tumor-infiltrating dendritic cells (DCs) with a deficiency 
in maturation or antigen-presenting cell function have an 
immunosuppressive or tolerogenic character, inhibiting 
CD8+ and CD4+ T-cell priming [67, 68]. Furthermore, 
these DCs commonly contain inhibitory molecules, such 
as PD-L1 restricting T-cell activation [68]. The failure 
of the adaptive antitumor immunity is also linked to the 
polarization of naive CD4+T cells in the tumor micro-
environment. Indeed, MDSCs and TAMs emit IL10 
and TGF-β [68, 69], while tumor-associated neutrophils 
(TANs), TAMs, and CAFs secrete CCL2 attracting and 
expanding the population of Tregs inside the tumor [70–
72]. DCs also help to attract Tregs to the tumor and Tregs 
subsequently support this regulatory phenotype of DCs 
by expressing the inhibitory immunological checkpoint 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 
on a constant basis [67, 68]. Moreover, IL10 released by 
MSDCs and TAMs favors a CD4+ Th2 response with 
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B-cell engagement over CD4+Th1 and cytotoxic CD8+T 
(Tc1) responses, which are both effective cancer immu-
nosurveillance mechanisms [69, 73]. These interactions 
create a vicious cycle in which a large number of Tregs 
generate IL10 and TGF-β attracting more immunosup-
pressive innate immune cells, which convert dendritic 
cells into indoleamine 2,3-dioxygenase (IDO)-producing 
regulatory dendritic cells blocking the immune system 
from rejecting the cancerous tissue [68, 69].

The capacity of malignant cells to evade immunosur-
veillance is one of the hallmark features of cancer [74]. 
Tumor cells, including CCA, recruit protumorigenic 
immune cells by secreting a variety of immunosup-
pressive substances such as TGF-β and IL10, which can 
attract Tregs [70]. By physically blocking T cells, CAFs 
concentration within CCA malignancies suppresses 
adaptive antitumor immunity. Production of CXCL12 by 
CAFs disrupt T-cell migration into tumors [75]. Cancer 
cells can further directly decrease T-cell-mediated anti-
tumor immunity by overexpressing immune checkpoint 
ligands like PD-L1, the human endogenous retrovirus-H 
long terminal repeat-associating protein 2 (also known 

as B7-H7) [73] or by lowering MHC-I surface expression 
[76]. CCA cells are also thought to generate prostaglan-
din E2 and adenosine, both of which can impair T cell 
function and activity directly [24].

Despite these direct interactions with their microenvi-
ronment, TILs might also be involved in lymphovascular 
invasion, a major feature in cancer progression resulting 
in lymph node metastases and subsequently reduced sur-
vival [77, 78]. Interestingly, a correlation between lymph 
node metastasis and TILs has been observed in gastric 
cancer, breast cancer and melanoma [79–81]. In these 
entities, individuals with high number of TILs were less 
frequently observed to have nodal metastases. Unfortu-
nately, the underlining mechanisms of these “protective” 
abilities remain to be elucidated further. Nonetheless, the 
observation underlines the potential utilization of TILs 
and TIL-related biomarkers as a prognostic factors in the 
future [77].

Upcoming research regarding the interaction of TILs 
with other cells of the TME as well as their sub-char-
acterisation will be highly influenced by the method of 
single-cell RNA sequencing analysis to elucidate this 

Fig. 4 Overview of the crosstalk between TILs and immune/cancer cells in the tumor microenvironment Cancer cells, TAMs and MDSCs emit IL-10 
and TGF-β, while TAMs, TANs and CAFs secrete CCL2 which attracts and expands Tregs inside the tumor bed and inhibits the activity of CD8+T 
cells. Cancer cells can also directly impair the immunoresponse by overexpressing prostaglandin E2, adenosine, PD-L1 or B7-H7 or by lowering 
MHC-I surface expression. IL10 released by MSDCs and TAMs favors a CD4+ Th2 response with B-cell engagement which are both effective cancer 
immunosurveillance mechanisms. Mature DCs promote CD4+ T cell activity by increasing MHC 1 expression while immature DCs inhibit CD4+ T 
activity by secreting IL-10. B7-H7, B7 homolog 7; CAFs, Cancer-associated fibroblasts; CCL,C–C motif chemokine ligand; CD, cluster of differentiation; 
DCs, Dendritic cells; IL, interleukin; MDSCs, Myeloid-derived suppressor cells; MHC; major histocompatibility complex; PD-L1, Programmed 
death-ligand 1; TANs, tumor associated neutrophils; TAMs, tumor-accociated macrophages; TGF, transforming growth factor; Tregs, Regulatory T cells
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comprehensive transcriptomic landscape and intercel-
lular communication network. In this context, Zhang 
et  al. recently identified 8 different subtypes of T and 
NK cells in the TME of iCCA showing different expres-
sion of cytotoxic and exhaustion markers [82]. This study 
particularly underlines the heterogeneity in the fibroblast 
population (6 distinct subtypes), suggests a high immu-
nosuppressive profile of Tregs and speculates regarding 
the potential manipulation of Tregs to treat iCCA [82]. 
One might therefore assume that further reports of sin-
gle cell approaches in CCA will play an important role in 
shaping our view on subpopulations and their respective 
interactions.

Notably, the spatial distribution of immune infiltrates 
in the tumor microenvironment has been reported to be 
associated with different clinical implications in patients 
who received systemic therapy in other cancers [83, 84]. 
However, little is known about the spatial heterogene-
ity of immune infiltrates and their clinical implications 
in CCA. In the analysed literature within this systematic 
review, different immune cells and their subtypes had dif-
ferent prognostic implications for the long-term outcome 
in CCA. CD8+T cells show a significant association with 
prolonged OS irrespective of being detected inside [17, 
29] or outside [18] of the tumor. A high density of CD4+ 
T cells in the tumor margin appeared also to be inde-
pendently associated with favorable DFS and OS [29]. 
Additionally, significant numbers of CD20+ cells have 
been found in low-grade tumors and were linked to a bet-
ter overall survival [18]. In summary, although there are 
occasionally conflicting results, CD8+, CD4+, CD3+, 
CD20+ T and B cells were almost positively correlated 
with the prognosis of CCA. In contrast, a high number 
of Tregs is very likely associated with worse OS [28, 38]. 
Future studies are certainly needed to clarify the prog-
nostic relevance of TIL in long-term outcome in CCA.

Radical and complete surgical resection remains the 
treatment of choice in all subtypes of CCA in the set-
ting of localized disease. Unfortunately, due to delayed 
diagnosis and locally advanced situation with the infil-
tration of adjacent organs or large vessels, most patients 
do not qualify for curative-intent surgery. Combination 
chemotherapy with gemcitabine and cisplatin is the cur-
rent gold standard of care for patients with unresect-
able or metastatic CCA while several targeted therapy 
have also been investigated in multiple phase I and II 
clinical trials [85, 86]. However, the desmoplastic nature 
of CCA, as well as its broad support from a rich tumor 
microenvironment and significant genetic variability, 
contribute largely to resistance to chemotherapy and 
targeted therapy, resulting in a low overall response rate 
(ORR) and OS in the palliative setting [87]. TILs play a 
major role in any immunotherapy approach to CCA, 

with T cells certainly being the most import part e.g. 
cytotoxic T lymphocytes recognizing and removing 
tumor cells, and Tregs having an inhibitory effect. Sub-
sequently, current immunotherapies focus mainly on T 
cells, such as immune checkpoint (CTLA-4 and PD-1/
PD-L) therapies and chimeric antigen receptor (CAR) T 
cell therapies. However, resistance to immune therapy 
is still commonly observed in most cancer patients [88]. 
As a result, finding strategies to aid and boost immu-
notherapy is critical. For instance, Interleukin 2 (IL-2) 
plays an important role in the immune system and par-
ticipates in the signal transduction of T cells which has 
now been widely investigated [89]. While improved IL-2 
formulations may be used as monotherapies, their com-
bination with other anticancer immunotherapies, such 
as adoptive cell transfer regimens, antigen-specific vac-
cination, and blockade of immune checkpoint inhibitory 
molecules, e.g. cytotoxic T lymphocyte-associated anti-
gen 4 (CTLA-4) and programmed death 1 (PD-1) mono-
antibodies, have the potential to treat metastatic cancer 
[90]. Research has shown that anticancer drugs that are 
rationally selected for triggering tumor immunogenicity 
can be used to make resistant tumors sensitive to check-
point blockade therapy [91, 92]. Anticancer drugs pro-
moting apoptosis are thought to be the most effective 
at boosting the immune system. Antigens generated by 
dying tumor cells have been demonstrated to be potent 
immune stimulators when delivered through antigen-
presenting dendritic cells. However, chemotherapy is of 
course historically known to be itself also immunosup-
pressive. Spreafico et al. demonstrated that daunorubicin 
had rather good anticancer cytotoxic action but was also 
immunosuppressive. On the other hand, the hydroxy-
lated congener of doxorubicin demonstrated potent 
anticancer efficacy while causing minimal immunosup-
pression. When daunorubicin was used against a tumor 
that was highly susceptible to its cytotoxic effects, mice 
were cured regardless of immunosuppression, but when 
the tumor was reasonably resistant, the immunosuppres-
sive effects were significantly more visible and predomi-
nant [93]. We reviewed the possible methods of assisting 
TIL immunity in the past 20 years, such as anti-CD40, 
CXCL9, cytokine-activated killer (CAK), and gemcit-
abine (Table  5). These substances directly or indirectly 
affected the immune function of TIL, thereby promoting 
the immunotherapy of CCA. Although these novel ways 
are primarily based on in vitro studies and animal mod-
els, they provide the theoretical foundation for future 
clinical translation.

Clinical evidence on immune-directed treatments in 
CCA is still limited. Immunotherapy methods such as 
immune checkpoint inhibitors have been investigated 
in CCA but did not display a very convincing effect 



Page 15 of 18Liu et al. J Exp Clin Cancer Res          (2022) 41:127  

[94]. While these studies mostly investigated the pallia-
tive setting, it might be possible that particular in the 
neoadjuvant setting, more pronounced effects might be 
observed as the initial tumor has a greater endogenous 
tumor antigen load which might improve T-cell prim-
ing by immunotherapy and facilitate the eradication 
of micrometastases leading to disease recurrence after 
surgery [94, 95]. Therefore, numerous ongoing trials in 
CCA are evaluating the safety and effectiveness of ICI 
in the neoadjuvant (NCT03768531) or adjuvant setting 
(NCT03820310) in the surgical scenario. These results 
are eagerly expected. PD-L1 and CD3 expression [96] in 
tumor tissue, inflammatory signatures such as INF-γ-
related mRNA proflie [96], and T cell exhaustion signa-
ture [97] have all been found to be linked to increased 
survival and therapy response in patients with advanced 
HCC treated with single-agent anti-PD-1 treatment. 
However, more studies on TILs in CCA are required to 
unravel the potential of TIL-related biomarkers to pre-
dict immunotherapy response in this scenario.

This review has certainly one major limitation which 
have to be discussed critically. Due to the low number 
of studies including oncological outcome and the het-
erogeneous reporting standards, we were not able to 
conduct a reasonable meta-analysis of the prognostic 
effects of TILs in CCA. Further studies contributing 
to the understanding oncological role of TILs should 
therefore be a main focus of research in CCA.

Conclusion
The aim of this systematic review was to examine the 
current literature available on the proportions and 
distribution, molecular pathogenesis, prognostic sig-
nificance and potential immunotherapy TILs in CCA 
patients. The hereby summarized literature suggest 
that TILs may represent an important marker for the 
prognosis of the CCA. Further, TILs play a major role 
in immunotherapy for CCA, but more clinical data is 
needed to fully explore the importance of TIL in the 
context of novel clinical treatments.
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