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Distinct immune signature predicts 
progression of vestibular schwannoma 
and unveils a possible viral etiology
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Abstract 

Background:  The management of sub-totally resected sporadic vestibular schwannoma (VS) may include observa‑
tion, re-resection or irradiation. Identifying the optimal choice can be difficult due to the disease’s variable progression 
rate.

We aimed to define an immune signature and associated transcriptomic fingerprint characteristic of rapidly-progress‑
ing VS to elucidate the underpinnings of rapidly progressing VS and identify a prognostic model for determining rate 
of progression.

Methods:  We used multiplex immunofluorescence to characterize the immune microenvironment in 17 patients 
with sporadic VS treated with subtotal surgical resection alone. Transcriptomic analysis revealed differentially-
expressed genes and dysregulated pathways when comparing rapidly-progressing VS to slowly or non-progressing 
VS.

Results:  Rapidly progressing VS was distinctly enriched in CD4+, CD8+, CD20+, and CD68+ immune cells. RNA data 
indicated the upregulation of anti-viral innate immune response and T-cell senescence. K − Top Scoring Pair analysis 
identified 6 pairs of immunosenescence-related genes (CD38-KDR, CD22-STAT5A, APCS-CXCR6, MADCAM1-MPL, IL6-
NFATC3, and CXCL2-TLR6) that had high sensitivity (100%) and specificity (78%) for identifying rapid VS progression.

Conclusion:  Rapid progression of residual vestibular schwannoma following subtotal surgical resection has an 
underlying immune etiology that may be virally originating; and despite an abundant adaptive immune response, 
T-cell immunosenescence may be associated with rapid progression of VS. These findings provide a rationale for clini‑
cal trials evaluating immunotherapy in patients with rapidly progressing VS.
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Background
Vestibular schwannomas (VS) are benign tumors aris-
ing from the vestibular division of cranial nerve VIII. 
The incidence of VS is 1.1 per 100,000 person-years in 
the United States, showing no gender preponderance 
[1, 2]. Advances in neuroimaging, particularly magnetic 
resonance imaging (MRI), have led to increasingly fre-
quent diagnoses of smaller VS, thereby contributing to 
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the increased incidence of VS reported in recent years 
[2]. Treatment options for VS include watchful wait-
ing with serial MRI, surgical resection or radiotherapy. 
Given that VS tumors grow at a variable and unpredict-
able rate, choosing among treatment options remains 
difficult [3].

Surgical refinements and surgeon experience have 
minimized the morbidity and mortality associated with 
the surgical treatment of VS to 22% and 0.2%, respec-
tively [4]. Although the goal of surgical excision is total 
tumor removal, adherence to the facial nerve, the brain-
stem, or local vasculature precludes such an extent of 
resection to only 29% of patients [5]. When gross total 
resection is achieved, the recurrence-free survival rates 
are 96%, 82%, 73%, and 56% at five, 10, 15 and 20 years. 
With a subtotal resection these recurrence-free survival 
rates drop to 47%, 17%, and 8% at five, 10, and 15 years 
[3]. Progression following subtotal resection is three 
times more likely than with gross total or near total 
resection and approximates 40% [6–9]. In such cases 
of subtotal resection, the increased risk of progression 
often necessitates further intervention, including sub-
sequent surgical resections or radiosurgery. To date, 
there are no meaningful clinical or molecular markers 
that distinguish non-progressing or slowly progressing 
tumor remnants from those that will progress rapidly.

In the present study, we analyzed transcriptomes 
of tumors from patients with sporadic VS to identify 
molecular perturbations that might be used to discrim-
inate slow-growing VS remnants from more aggressive 
VS remnants. The ability to identify patients whose 
tumor remnants are likely to progress rapidly would 
select these patients for multimodal treatment.

Methods
Patients
Between July 2005 and April 2014 tissue samples 
were collected during the surgical excision of tumors 
from 17 patients with sporadic VS. Patients with neu-
rofibromatosis, history of radiation treatment to the 
head and neck region or lacking follow up data were 
excluded. All patients had less than total surgical exci-
sion, and all samples were collected before radiother-
apy or any other adjuvant treatment. Progression was 
defined as any radiographic evidence of lesion growth 
following surgery. Progression-free survival was 
defined as the time from the date of surgery to the date 
of radiographic evidence of progression. The study was 
approved by our Institutional Review Board (protocol 
PA13-0067), and clinical samples and data were col-
lected only after patients provided written informed 
consent.

Multiplex immunofluorescence staining and image 
analysis
Our study cohort consisted of 8 patients with early dis-
ease progression (< 5 years after surgery), and 9 patients 
with either no progression or late disease progression 
(≥ 5 years after surgery). The 5 µm slides of the Forma-
lin-sixed, paraffin-embedded (FFPE) tumor tissue were 
prepared and were stained for mIF. Multiplex immuno-
fluorescence staining on a single slide was performed 
with use of the Opal 7-Color Manual IHC Kit (AKOYA 
Biosciences, #NEL811001KT). The antibodies used 
included CD4, CD8, CD20, CD68, and CD1A. The slides 
were scanned (Vectra Polaris, Akoya Biosciences) and the 
scanned images were analyzed at The University of Texas 
MD Anderson Cancer Center using AI-based software 
(VIS Image Analysis, Visiopharm).

Sample preparation
Formalin-fixed, paraffin-embedded samples were sub-
mitted for analysis using HTG EdgeSeq panels. The area 
of each sample was measured, and HTG Lysis Buffer was 
added to obtain a per-well concentration of 6 mm2/35 µL. 
To improve sample lysis, we added proteinase K to the 
lysis buffer at a ratio of 1:20, and the samples were incu-
bated at 50°C for 180 min. We added 35 µL of each sam-
ple to a single well of a 96-well plate. We also added 25 ng 
of human universal RNA to 3 wells to serve as a process 
control.

Inform spectral unmixing
We used the Vectra Polaris 3.0.3 multispectral imaging 
system (Akoya Biosciences) through the full emission 
spectrum from 440 to 780  nm, to extract fluorescence 
intensity information from the images using positive 
tonsil controls from each run staining to calibrate the 
spectral image scanner protocol at 20 × magnification 
(0.5  µm/pixel). Each marker was quantified individually 
using a spectral signature for each fluorophore obtained 
by the “spectral unmixing library” using the same algo-
rithm from the InForm 2.4.8 image analysis software 
(Akoya Biosciences). The percentages representing each 
marker were calculated by dividing the absolute number 
of each marker by the absolute number of total nucleated 
cells (DAPI +) on each core at each time point. Follow-
ing whole-slide image acquisition, images are analyzed 
with inForm image analysis software to quantify the cell-
level biological features. The inForm software program 
was developed to integrate multispectral capabilities with 
image analysis to (1) spectrally unmix and isolate mul-
tiple Opal signals and background autofluorescence; (2) 
detect different tissue architecture (e.g., tumor, stroma, 
vessels, and necrosis) using a machine learning–based 
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neural network pattern recognition function; (3) segment 
individual cells starting with nuclei, based on DAPI, and 
using other markers to detect membranous and cytoplas-
mic regions of cells; and (4) identify cell types of inter-
est based on marker signal levels and cellular staining 
pattern using user-trained multinomial logistic regres-
sion algorithms. Once the slides were stained, they were 
scanned on a multispectral digital slide imaging system, 
the Vectra Polaris. The Vectra Polaris uses multispectral 
imaging technology to compensate for optical spectral 
bleed-through among channels and to isolate signal from 
background autofluorescence. Using inForm, designated 
library slides are used to isolate the exact spectral signa-
ture of each fluorophore to properly unmix each whole-
slide composite image, as well as isolate and remove 
tissue autofluorescence. With multispectral unmixing, 
residual bleed-through was reduced to < 1% in both cases.

HTG EdgeSeq assay
Samples were run on an HTG EdgeSeq processor using 
an HTG EdgeSeq Oncology Biomarker Panel that 
allows for the measurement of expression of 2,549 genes 
(Supplementary Table S1). The samples were then indi-
vidually barcoded using a 19-cycle PCR reaction to add 
adapters and molecular barcodes. Barcoded samples 
were individually purified using AMPure XP beads and 
quantitated using a KAPA Library Quantification kit. The 
library was sequenced on an Illumina MiSeq using a V3 
150-cycle kit with 2 index reads. PhiX was spiked into 
the library at 5%; this spike-in control is standard for Illu-
mina sequencing libraries.

Data were returned from the sequencer in the form 
of de-multiplexed FASTQ files, with one file per origi-
nal well of the assay. To collate the data, we used HTG 
EdgeSeq Reveal software to align the FASTQ files to 
the probe list. We applied Median Ratio Normalization 
(MRN) to the aligned raw data prior downstream analy-
sis. MRN data is available in the Supplementary Table S2.

Identification of differentially expressed genes
Gene expression analyses were performed using JMP 
PRO 15.2.1 software. To identify differentially expressed 
genes between patients with early (< 5  years) and late 
(≥ 5  years) progression, we performed unpaired two-
sample Wilcoxon test and the p-value correction for 
multiple testing was done by the Benjamini & Hoch-
berg FDR method. However, considering the small sam-
ple size (n = 17), we considered unadjusted p-values for 
downstream analyses. Gene expression patterns among 
samples were visualized by hierarchical clustering analy-
sis (HCA) using the Ward minimum variance method 
for defining distances between clusters, and by principal 
component analyses (PCA).

Canonical pathway integrative analysis
To determine the potential biological mechanisms asso-
ciated with the gene expression differences between the 
groups of schwannoma samples, we initially performed 
an overrepresentation analysis (ORA) using the KOBAS 
3.0 online tool (http://​kobas.​cbi.​pku.​edu.​cn) [10]. This 
software evaluates whether a list of genes is statistically 
enriched by pathways and terms from several databases 
such as KEGG, Reactome, and Gene Ontology (GO). The 
gene list used for this analysis was performed by differen-
tially expressed genes (p < 0.01) between early and late/no 
progression VS cases. ORA results were considered sig-
nificant at FDR < 0.05 (by Benjamani and Hochberg).

To further explore the biology behind the transcrip-
tional differences between the VS groups, we used the 
Ingenuity Pathway Analysis (IPA) software (Qiagen) 
that indicates whether differentially expressed genes are 
involved in the activation or inhibition of a curated set 
of canonical pathways and other biological mechanisms. 
IPA uses a priori knowledge of expected interactions 
between transcriptional regulators and their target genes 
stored in the Ingenuity Knowledge Base, a scientific lit-
erature–based database. Considering that the IPA analy-
sis is more complex and considers statistical parameters 
associated with the degree of transcriptional variation 
between the compared groups, all differentially expressed 
genes (p < 0.05) between VS groups were used as input. 
Pathways were considered significantly enriched when 
the z-score was < 1 or > 1 and p < 0.05. Positive z-scores 
are indicative of activation, while negative z-scores are 
suggestive of inhibition of a given pathway.

Additionally, we investigated the existence of protein–
protein interaction evidence among genes differentially 
expressed between VS groups (p < 0.05) using the online 
tool STRING. Gene interactions were considered only at 
the highest confidence score (> 0.9) [11]. After filtering 
out genes without significant interactions, an additional 
ORA was performed using the STRING database.

Prediction model development
To evaluate potential predictive markers to discriminate 
between patients with early progression and those with 
late or no progression, we employed the k − Top Scor-
ing Pair (KTSP) classifier [12]. Briefly, KTSP is based 
on the Top Scoring Pair approach proposed by Geman 
et  al. [13], in which gene expression data are con-
verted into binary classifiers based on the expression 
level difference between 2 genes (e.g., GeneA > GeneB 
and GeneA < GeneB). The best gene-pair classifiers are 
those whose expression levels switch more consistently 
between the 2 groups of interest (e.g., GeneA > GeneB in 
90% of group 1 samples, whereas GeneB > GeneA in 100% 
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of group 2 samples). The KTSP approach is based on the 
same concept but considers a “k” number of gene pairs 
in the final prediction algorithm. KTSP initially calcu-
lates the discriminatory power—called “votes”—for all 
possible gene pairs in a gene expression set. The prog-
nostic score is obtained by summing the votes among all 
“k” pairs. The best prognostic marker is that for which 
the “k” number of pairs provides the highest score [12]. 
KTSP calculations were performed with the switchBox 
package in R [14].

CD8+ T cell isolation, activation, and co‑culture 
with cancer cells (TR6Bc1), and single cell immune analysis
Mouse schwannoma cell line, TR6Bc1, is maintained 
in our lab with DMEM medium (with additional 2 mM 
Glutamine, 10% tryptose phosphate broth, and 10% fetal 
bovine serum) and was plated into a cell culture insert (24 
well format) 24  h before co-culture with T cells. CD8+ 
T cells were then isolated and activated as previously 
described [15]. Briefly, spleen was harvested from C3H 
mice and was pressed though cell strainer. Red blood cells 
(RBC) were lysed with lysis buffer (eBioscience 10X RBC 
Lysis Buffer (Multi-species), ThermoFisher). The CD8+ T 
cells were isolated with CD8+ T Cell Isolation Kit (Milte-
nyi Biotec B.V. & Co. KG) following the company’s pro-
tocol and activated for 18 h with CD3 antibody (coated, 
2 µL/mL) and CD28 antibody (5  µg/ml) (BioLegend) in 
RPMI-1640 medium. After activation, the T cells were 
plated in a 24 well-plate and cultured with or without 
TR6Bc1 cells, for 24 h. Next, the T cells were harvested 
and stained with Cell stain 405 and anti-CD8 antibody 
(Alexa Fluor 647 anti-mouse CD8a (AF647-CD8) (IsoC-
ode Kit, Isoplexis) following the manufacturer’s protocol. 
After staining, the T cells were re-suspended in RPMI-
1640 medium (1 × 106 cells/mL) and 30 µL of the T cells 
was transferred into the inlet port of the IsoCode chips 
(IsoCode Kit, Isoplexis). The chips were then loaded into 
the Isolight instrument. The data for single cell CD8+ 
immune function were analyzed with IsoSpeak Software 
(Isoplexis).

Results
Rapidly progressing and slowly/non‑progressing VS have 
distinct immune signatures
Our study cohort consisted of age- and sex-matched 
patients with VS treated with surgery alone at The Uni-
versity of Texas MD Anderson Cancer Center from 2005–
2014 stratified by those with early disease progression 
(< 5  years after surgery; n = 8) or either no progression 
or late disease progression (≥ 5 years after surgery; n = 9; 
Fig.  1A, B, Table 1). From patient tumors, we identified 
5 major intratumoral immune cell types: CD4+ T cells, 

CD8+ T cells, CD20+ B cells, CD68+ macrophages, and 
CD1A+ dendritic cells. Using inForm spectral unmix-
ing, we classified the phenotypes of 3.3 × 105 immune 
cells within neural cell adhesion molecule-positive 
tumor regions. Quantification of the innate immune cells 
revealed a significant enrichment of CD68+ macrophages 
and a significant depletion of dendritic cells (CD1a+) in 
rapidly progressing VS (P < 0.001; Fig. 1C, D). Regarding 
the adaptive immune cells, there was a significant enrich-
ment in CD4+ and CD8+ T cells in rapidly progressing 
VS (P < 0.001; Fig. 1C, D). Although the overall number of 
CD20+ B cells across the tissue samples was low, a spec-
tral isolation algorithm allowed us to confidently iden-
tify their phenotypes despite the low expression of CD20 
across the tissue samples; this analysis revealed that 
the distribution of CD20+ B cells differed significantly 
between rapidly progressing VS and slowly progressing 
VS (P = 0.008; Fig. 1C, D). These different cellular distri-
butions suggest that rapidly progressing VS and slowly 
progressing VS have distinct immune signatures in both 
the innate and adaptive immune compartments.

Innate immune response pathways are enriched in rapidly 
progressing VS
To interrogate the etiology of rapidly-progressing VS 
immune cell enrichment, we performed gene expres-
sion analyses using HTG EdgeSeq next-generation RNA 
sequencing. We analyzed the expression of 2,549 genes 
in 17 samples from the same patient cohort. Rapidly pro-
gressing VS samples exhibited 19 downregulated, and 24 
upregulated genes, when compared with slowly or non-
progressing VS cases (Fig. 2A, B) (Supplementary Table 
S3). To investigate the functional roles of these differen-
tially expressed genes, we performed overrepresentation 
analyses (ORA) against several molecular databases (Sup-
plementary Table S4). Considering the results obtained 
from the KEGG and Reactome databases (Fig.  1C), the 
differentially expressed genes were involved in immune 
activity and signal transduction, especially with Ras-ERK 
and PI3K-mTOR and their downstream signaling path-
ways. Similar findings were observed considering the 
enriched terms from the GO database (Fig.  2D). Genes 
such as NF1 (Neurofibromatosis type 1), RALA (RAS 
Like Proto-Oncogene A), PIK3C3, and RPS6KA5, 
upregulated in early VS progressors, were linked to the 
enrichment of most of the Ras-ERK and PI3K-mTOR cell 
signaling pathways and their downstream targets. On 
the other hand, the cytokines CSF2 and CXCL2 and the 
cytokine receptor IL2RA, were downregulated in early 
VS progressors, and, among other downregulated genes, 
were enriched among immune-related pathways and 
GO terms. The enrichment of pathways associated with 
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immunity corroborates with our microscopic findings. 
Additionally, it suggests that a gamut of cell signaling 
pathways are altered among VS cases, which could repre-
sent a potential mechanism for our findings.

To improve our perspective on the direction of molecular 
enrichment changes between the VS groups, we explored 

our findings using the IPA software that provides an esti-
mated activation or inhibition score (z-score) for signifi-
cantly enriched pathways. Cellular senescence, cancer, 
epithelial-mesenchymal transition, and Ras-ERK & PI3K-
mTOR-related signaling, were the top enriched pathways 
displaying a positive z-score (Fig. 3A), suggesting that these 
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Fig. 1  Increase immune cell infiltration is associated with rapid progression of vestibular schwannoma (VS). A Kaplan–Meier analysis showed that 
the time to recurrence for VS patients with early recurrence (n = 8; red line) was significantly shorter than that for patients with late recurrence 
(n = 9; blue line; P < 0.0001, log-rank test). B Axial T1-weighted, postcontrast magnetic resonance imaging at the level of the cerebellopontine angle 
demonstrates the pre-, early post-, and late postoperative statuses of a patient with stable VS (top row) and a patient with rapidly progressing VS 
(bottom row). C Representative multiplex immunofluorescence imaging of immune markers (CD1A, CD4, CD8, CD20, and CD68) and tumor markers 
(neural cell adhesion molecule/CD56) in VS samples from patients with early recurrence (top row) and late recurrence (bottom row). D Distributions 
of cells positive for CD4 (green), CD8 (blue), CD20 (red), CD68 (orange), and CD1A (yellow) among patients with early (E) and late (L) progression. 
Cell density was calculated as the number of cells per square millimeter and was log2-transformed for representation. Compared with samples 
from patients with late recurrence, those from patients with early recurrence had significantly higher densities of cells positive for CD4 (67.1 ± 571 
vs. 32.9 ± 395.8 cells/mm2), CD8 (50.9 ± 148.1 vs. 9.54 ± 31.7 cells/mm2), CD20 (8.16 ± 112.1 vs. 0.81 ± 4.64 cells/mm2), and CD68 (384.8 ± 563.0 vs. 
90.8 ± 206.8 cells/mm2) but a significantly lower density of cells positive for CD1A (60.7 ± 99.5 vs. 186.9 ± 526 cells/mm.2; P < 0.001 for all, Wilcoxon 
test)
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pathways are activated among fast-progressing VS. On the 
other hand, immune, stress response, and tumor suppres-
sor signaling pathways were found significantly inhibited 
among fast VS progressors. These results corroborate with 
our other findings, suggesting that early VS progressors 
have a decreased local immunity associated with immune 
signaling inhibition. Additionally, this phenotype is accom-
panied by an increase of signaling pathways associated with 
malignant neoplasms, especially those pathways directly 
or indirectly related to Ras-ERK & PI3K-mTOR signaling, 
which are major modulators of survival and proliferation 
mechanisms.

Altered adaptive immune response is associated 
with a possible viral etiology in rapidly progressing VS
The lack of enrichment in adaptive immune 
response − related pathways in the presence of increased 
B- and T-cell populations suggests adaptive immune 
exhaustion or dysfunction in rapidly progressing VS. 
When taken in the context of well-preserved, upregu-
lated innate immunity − related pathways in the pres-
ence of severely altered adaptive immune response, we 
hypothesized that adaptive immunosenescence under-
lies rapidly progressing VS. This hypothesis is supported 
by the identification of neuroinflammatory and cellular 

Table 1  Patients’ demographic and disease characteristics by recurrence time

All data are no. of patients unless otherwise indicated

SD Standard deviation, CN Cranial nerve
a Calculated using Fisher exact test
b Calculated using t-test
c Calculated using chi-square test

Characteristic Early recurrence, n = 8 Late recurrence, n = 9 P-value

Sex  > 0.99a

  Male 3 3

  Female 5 6

Age, years 0.58b

  Mean ± SD 52.8 ± 12.6 49.8 ± 9.8

  Median 54.9 52.2

Tumor location 0.56c

  Cerebellopontine angle 3 3

  Extension into the auditory canal 4 5

  Intracanalicular extension 1 0

  Extension compressing the pons & midbrain 0 1

CN involvement 0.20a

  CN V 6 2

  CN VII 5 7

Mean tumor size at presentation ± SD, mm 26.9 ± 6.3 20.4 ± 11.0 0.17b

Presenting symptom 0.41c

  Facial numbness 6 2

  Hearing loss 4 9

  Tinnitus 2 4

  Aural fullness 2 2

  Vertigo 2 1

  Imbalance 1 2

  Headache 1 2

  Taste changes 2 0

  Cheek numbness 1 0

  Trigeminal neuralgia 1 0

  Ataxia 0 1

  Facial weakness 0 1

  Hyperacusis 0 1

Mean follow-up duration ± SD, years 7.8 ± 2.6 8.6 ± 2.2 0.51
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senescence pathways enriched in rapidly progressing VS 
(Fig. 3A, B and Supplementary Tables S5 and S6).

Although immunosenescence is most often associ-
ated with aging, it can also result from continuous expo-
sure to external perturbations. In fact, we observed an 
enrichment of several stress-related pathways upregu-
lated in rapidly progressing VS, such as Senescence, 

Telomerase Signaling, Hepatic Fibrosis Signaling Path-
way, Autophagy, LPS-stimulated MAPK Signaling, Role 
of BRCA1 in DNA Damage Response, Activation of 
IRF by Cytosolic Pattern Recognition Receptors, UVB-
Induced MAPK Signaling, among others, suggest-
ing that these tumors are under the  effect of a stressor. 
Interestingly, we found that rapidly progressing VS cases 

Fig. 2  Rapidly progressing vestibular schwannoma has an enrichment of genes associated with innate immune cell activation. A Heatmap 
showing 44 genes differentially expressed (p < 0.01) between vestibular schwannoma patients with early (red) and late (blue) recurrence. Gene 
expression levels are represented in log2 scale. B Principal component analysis with the same set of 44 genes confirmed that tumors from patients 
with early recurrence and those from patients with late recurrence have distinct gene expression profiles. C The Bubble plot shows KEGG and 
Reactome pathways significantly enriched by the 44 differentially expressed genes (DEG) between the early- and late-recurrence VS groups (left 
y-axis). Enrichment corrected p-values were -log10 − transformed for representation (right y-axis). Each DEG associated with the depicted enriched 
pathways are represented by a bubble, in which their color and size represents the gene log2 fold-change and -log10 transformed p-values obtained 
from VS group comparison. D The Bubble plot shows Gene Ontology (GO) terms significantly enriched by the 44 differentially expressed genes 
(DEG) between the early- and late-recurrence VS groups (left y-axis). Enrichment corrected p-values were -log10 − transformed for representation 
(right y-axis). Each DEG associated with the depicted enriched pathways are represented by a bubble, in which their color and size represents the 
gene log2 fold-change and -log10 transformed p-values obtained from VS group comparison
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exhibited activation of several pathways linked to viral 
infection, such as the canonical pathway NF-κB Activa-
tion by Viruses, and others highlighted in Fig. 3C. These 
findings may indicate that fast progressing VS are associ-
ated with an underlying viral infection, which is associ-
ated with the dramatic upregulation of stress-related and 
proliferation/survival signaling pathways, as well as the 
significant downregulation of immune signaling.

We used the STRING database to construct a protein–
protein interaction network. The protein–protein interac-
tion network consisted of 343 nodes and 559 edges with a 
significant number of interactions (P < 0.0001). Consider-
ing only the genes with known high confidence interac-
tions with each other, we performed an additional ORA 
using the STRING database. These genes significantly 
enriched several pathways and GO terms associated 
with molecular signaling associated with viral infection, 
especially mechanisms associated with immune innate 
response against viruses (Fig. 4, Supplementary Table S7).

Immunosenescence gene signature predicts rapid VS 
progression
Given our finding that rapidly progressing VS has 
enriched expression of immune response-related genes, 
we focused our biomarker discovery approach on 438 
immune-related genes included in our HTG EdgeSeq 
Oncology Biomarker panel (designated “Cluster of Dif-
ferentiation” and “Immuno-Oncology”). k − Top Scor-
ing Pair (KTSP) analysis identified 9 gene pairs (18 
genes total) whose combined scores provided the best 
discriminatory power between rapidly progressing VS 
and slowly or non-progressing VS. The finding of more 
CD4+ and CD8+ T cells in rapidly progressing VS in the 

absence of increased T-cell activation levels suggests 
immunosenescence.

Immunosenescence is most often described as a state 
in which either the number or function of a patient’s 
total T cells is markedly poorer than those of younger or 
healthier patients. This decrease in available or functional 
T cells is thought to mediate older individuals’ increased 
susceptibility to disease [16]. Hence, we further pruned 
the list of 18 genes based on the impact of these genes’ 
relative up- or downregulation on immunosenescence. 
KTSP analysis of the final list of 12 genes revealed several 
genes that correlate with functional adaptive immune 
activity—and thus negatively correlate with immunose-
nescence—that were upregulated in our samples. These 
genes included CD38, CD22, MADCAM-1, APCS, IL-6, 
and CXCL2. Conversely, our analysis uncovered several 
genes associated with T-lymphocyte dysfunction that 
were downregulated. The downregulation of these genes, 
which included KDR, CXCR6, STAT5A, MPL, NFATC3, 
and TLR6, also signifies a healthy adaptive T-cell 
response. The overexpression of each of these genes typi-
cally results in the impaired T-cell activity seen in immu-
nosenescence. This final analysis generated a prognostic 
gene-set biomarker composed of 6 gene pairs (CD38-
KDR, CD22-STAT5A, APCS-CXCR6, MADCAM1-MPL, 
IL6-NFATC3, and CXCL2-TLR6; Fig. 5A, B), which cor-
rectly included all rapidly progressing VS in our cohort 
and correctly excluded 7 of 9 slowly or non-progressing 
VS (sensitivity = 1.00, specificity = 0.78; Fig.  5A, B). of 
note, the two patients that were incorrectly classified as 
rapidly progressing VS, had relatively large tumors (i.e. 28 
and 30 mm); yet neither experienced disease progression 
during follow up period.

Fig. 3  Pathways significantly enriched in rapidly progressing vestibular schwannoma. A Ingenuity Pathway Analysis (IPA) canonical pathways 
predicted to be activated (positive z-score) in early recurrent VS patients. The predicted level of pathway activation (z-score) is represented by bar 
color and its activation significance level (-log10 transformed p-value) by bar length (y-axis). B IPA canonical pathways predicted to be inhibited 
(negative z-score) in early-recurrent VS patients. The predicted level of pathway inhibition (z-score) is represented by bar color and its activation 
significance level (-log10 transformed p-value) by bar length (y-axis). C IPA Disease & Function terms predicted as significantly activated (positive 
z-score; x-axis) and inhibited (negative z-score; x-axis) among early recurrent VS patients. Significance levels are represented by bar color (-log10 
transformed p-value)
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Single cell proteomic analysis shows loss 
of polyfunctionality in CD8+ T cells cultured with VS cells
To test our hypothesis that VS can alter immune func-
tion leading to suppressed immunosurveillance that 
potentially allows for VS progression, we next sought 
to characterize the functional impact of VS on effector 
T cell function. To accomplish this, we analyzed sin-
gle cell proteomic profiles (Mouse Adaptive Immune 
panel, IsoPlexis, USA) of activated murine T cells cul-
tured with and without murine vestibular schwannoma 

TR6Bc1 cells. Principal component analysis showed that 
CD8+ T cells cultured with vestibular schwannoma cells 
are functionally distinct from activated T cells cultured 
alone (Fig. 6A – C). In the presence of VS cells we found 
a significant downregulation of effector phenotype mark-
ers (e.g. Granzyme B, IFNγ and TNFα), chemoattractive 
molecules (e.g. IP-10, CCL11 and RANTES), inflamma-
tory markers (e.g. IL17A and MCP1) and stimulatory 
signals (e.g. GM-CSF, IL2 and IL7) (Fig. 6D – E). Taken 
together, the loss of effector T cells polyfunctionality in 
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Fig. 4  Protein–protein interaction analysis identifies gene hubs associated with viral infection-related pathways in rapidly progressing vestibular 
schwannoma. The figure depicts the protein–protein interactions with high level of confidence (gray lines) that are established among genes 
(circles) differentially expressed between VS groups (p < 0.05). Circle colors indicate whether a gene is known to be associated with a specific 
viral-related pathway or not (grey circles)



Page 10 of 15Amit et al. J Exp Clin Cancer Res          (2022) 41:292 

the presence of VS supports the notion that schwannoma 
cells might drive immunosenescence in the tumor micro-
environment of patients with rapidly progressing VS.

Discussion
VS recur and progress at unpredictable rates, complicat-
ing disease management especially in the context of less 

Fig. 5  Relative expression of immune-related genes is associated with outcomes of vestibular schwannoma (VS). A Expression differences in 
pairs of genes are represented in green (“True”) if the expression of the first gene was higher than that of the second gene or in orange (“False”) 
otherwise. KTSP classification (top row) was calculated by summing votes for each gene pair; red indicates predicted late recurrence, and blue 
indicates predicted early recurrence. The bottom row indicates the correct group for each sample; L indicates late recurrence, and E indicates early 
recurrence. The KTSP model correctly categorized all 8 of the patients with early recurrence and 7 of the 9 patients with late recurrence. B The 
scatter plots show the expression levels of each gene pair (individual genes in each pair are indicated on the y- and x-axes, respectively) in each of 
the 17 VS patients. The black line represents the gene-pair classification boundaries; samples represented above the line have higher expression 
of the y-axis gene than the x-axis gene and are classified as “True,” and samples below the line have higher expression of the x-axis gene than the 
y-axis gene and are classified as “False.” Blue triangles and red circles indicate samples from patients with early VS recurrence and those with late VS 
recurrence, respectively
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than total surgical resection. Our results shed light on the 
potential mechanisms involved in VS progression. We 
found that multiple pathways, particularly immune-asso-
ciated pathways involved in innate immunity and anti-
gen presentation, are dysregulated in rapidly progressing 
forms of sporadic VS. Surprisingly, many of the cell repli-
cation- and tumorigenesis-associated pathways were not 
enriched, and some of these pathways (e.g., those related 
to DNA synthesis and central nervous system solid tumor 
formation) were significantly downregulated in patients 

with rapidly progressing VS. Taken together, these results 
indicate that the drivers of VS progression are external 
rather than internal genetic perturbations.

The drivers of sporadic VS associated with progres-
sion have never been characterized previously, although 
electron microscopical studies of bovine schwannomas 
have revealed viral particles in the tumors, suggesting 
a potential viral etiology [17, 18]. In the present study, 
we uncovered the involvement of viral response path-
ways, underscoring the importance of adaptive immune 

Fig. 6  Decreased adaptive immune response in activated CD8+ T cells co-cultured with schwannoma cells. A Principal Component Analysis of 
a population of activated CD8+ T cells with (orange) and without (blue) co-cultured schwannoma cells. B Heat map demonstrating the difference 
in proteomic profile expression in activated CD8+ T cells with and without co-cultured schwannoma cells. C Cumulative polyfunctionality metric of 
activated CD8+ T cells with and without co-cultured schwannoma cells. D Single marker expression distribution in activated CD8+ T cells cultured 
alone (blue) or co-cultured with VS cells (orange). E Activated CD8+ T cell functional subset abundance in the presence or absence of VS cells. Note 
that the CD8+ T cells cultured with VS lost expression of their functional markers (grey)
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dysfunction in rapidly progressing VS, and perhaps even 
a role of viruses themselves in VS oncogenesis. Our find-
ings show that in rapidly progressing VS, virus-inducible 
cellular gene networks, such as interferon gamma signal-
ing, are enriched. The timing of potential viral infection 
still remains to be elucidated, that is, whether viral infec-
tion occurred after initial surgery for VS or whether the 
presence of such enrichment represents a reactivation 
of latent viral infection [19]. Yet the interaction between 
a virus and its host organism, which is innately inflam-
matory, can modify the tumor immunobiology, and may 
overwhelm and inhibit specific acquired responses nec-
essary to achieve viral clearance. Similarly, we detected 
significant dysregulation of the expression of Toll-like 
receptors and IRF3 and IRF7 in sporadic VS. Upon acti-
vation, Toll-like receptors recruit adapter proteins that 
orchestrate inflammatory responses by the infected cells; 
immune cells in the tumor microenvironment that have 
detected a virus may also release anti-viral factors such as 
interferons.

Our findings showed a recruitment of CD4+, CD8+, 
and CD20+ cells to the tumor microenvironment in 
rapidly progressing VS. However, RNA sequencing sug-
gested that these lymphocytes are senescent. Hence, we 
evaluated the predictive role of these cells’ dysregulated 
immunosenescence-related genes; these genes, identi-
fied and validated in our cohort, comprise the prognostic 
biomarker for VS progression rate. Our final biomarker is 
composed of 6 gene pairs, each known to play a distinct 
and important role in adaptive immune function: CD38-
KDR, CD22-STAT5A, APCS-CXCR6, MADCAM1-MPL, 
IL6-NFATC3, and CXCL2-TLR6. CD38, expressed on 
activated T-cells is a well-defined surface protein denot-
ing a robust T-cell response [20]. Other identified genes, 
are also indicative of a healthy T-cell response, although 
they are expressed on cooperating immune cells [21]. 
CD22, expressed on activated B-cells, denotes T-cell:B-
cell crosstalk [22]. MADCAM-1 is a mucosal adhesion 
molecule that binds surface proteins on T lymphocytes, 
thereby guiding them into lymphoid tissue for activation 
[23]. Although MADCAM-1 has been studied primarily 
in the context of gastrointestinal lymphoid tissue [24], 
queries of the GTEx database reveal robust MADCAM-1 
expression in several other organs, including the thyroid 
and brain. In line with these findings, our data indicates 
that MADCAM-1 expression was increased in late recur-
ring VS.

Other genes associated with T-cell activity, like APCS, 
do not directly interact with T lymphocytes. Rather, 
they interact with important T cell-related proteins, 
thereby indirectly reflecting T-cell activity. APCS, also 
known as SAP, is a major acute-phase reactant protein 
that is dramatically upregulated during IL-6-mediated 

inflammation [25, 26], indirectly driving T-cells to release 
further IL-6, IL-17, and CXCL2. Thus, the increased 
expression of APCS, IL-6, and CXCL2 found in our 
patient cohort corresponds with improved immune cell 
function, and subsequent delays in VS tumor recurrence. 
Additionally, the 6 markers (KDR, CXCR6, STAT5A, 
MPL, NFATC3, and TLR6) we found to be downregulated 
in our late-recurring tumor samples are also biologically 
relevant to functional T-cell activity, which helps explain 
their expression and function in this context.

Other identified biomarker genes impact T-cell migra-
tion and differentiation rather than cytotoxicity and acti-
vation. Activated KDR, also known as VEGFR2, acts in an 
immunosuppressive manner by inhibiting the migration 
of T lymphocytes [27, 28]. Concordantly, the inhibition 
of KDR activity with an anti-KDR antibody improves the 
T-cell response [29, 30]. Thus, the decreased expression 
of KDR seen in our analysis associates with a stronger 
immune response and a subsequent delay in tumor 
recurrence. Another membrane-bound marker of T-cell 
activity is CXCR6, a chemokine receptor expressed on T 
lymphocytes that is downregulated upon T-cell activa-
tion [31]. Thus, the downregulation of CXCR6 expression 
is a useful biomarker of functional T-cell response. In our 
patients, downregulation of CXCR6 associated with bet-
ter tumor control and late VS recurrence. In concert with 
this, CXCR6 knockout mice are better able to control 
infections that are known to depend on a T-cell response. 
However, these effects appear to be independent of T-cell 
activity, suggesting the need for further work to elucidate 
the mechanism underlying these effects [32].

STAT5A is a multi-functional protein that regulates 
several immune-related processes, including T-cell dif-
ferentiation [33, 34]. However, while serving as a poten-
tial marker of adaptive immune function, STAT5A 
activity and overexpression predict both early recurrence 
and tumor aggression in head and neck carcinoma [35], 
as well as prostate cancer patients [36], matching our 
findings in VS. Similarly, the protein MPL, also known as 
CD110, is vital for proper immune function; MPL knock-
out mice generate only 10% of the megakaryocytes that 
wild type mice do [37]. However, MPL overexpression is 
associated with increased aggression and poor prognosis 
in cancer patients [38], again mirroring the expression 
pattern and cancer phenotype seen in our cohort. Given 
these proteins’ relation to proper immune cell function 
and the importance of immunosenescence in cancer 
development, progression, and recurrence, the misregu-
lation of STAT5A and MPL likely mediates increased 
oncogenesis in VS via their immune-related pathways.

Nuclear factor of activated T cells 3 (NFATC3) is 
a transcription factor that promotes the expression 
of several genes that are essential for proper T-cell 
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development and activity. Knockout studies of members 
of the NFAT gene family demonstrate a functional redun-
dancy between family members [39]. Thus, NFATC3 
downregulation may not be particularly damaging to 
a cell. However, NFATC3 also drives the expression of 
stem cell-promoting proteins like OCT4 [40]. Thus, 
NFATC3 overexpression and hyperactivity may be par-
ticularly oncogenic. Similarly, TLR6 is a membrane-
bound receptor found on the surface of T cells. TLR6 
activation, a sign of innate immune activation, results in 
inflammation at the site of expression [41]. Inflamma-
tion is a key immune-related factor in cancer develop-
ment and progression, and sequence variation in TLR6 
predicts inflammation-related cancer development [42]. 
Moreover, TLR6 overexpression is associated with poor 
outcomes in patients with certain cancers [43]. These 
descriptions match the findings of the present study, in 
which NFATC3 and TLR6 overexpression were associ-
ated with early recurrence, whereas decreased NFATC3 
and TLR6 expression were associated with late recur-
rence. Given the links between NFATC3 and TLR6 
activity and proper immune system functioning, the 
overexpression described here likely has both immu-
nosenescent and oncogenic effects. Therefore, similar to 
the decreased expression of KDR, CXCR6, STAT5A, and 
MPL, the decreased expression of NFATC3 and TLR6 is 
an indicator of functional T-cell activity and subsequent 
late VS recurrence.

In vitro, VS cells induce “deactivation” of CD8+ T cells; 
these findings might indicate that inhibited immune sur-
veillance results in rapid progression of VS and raise the 
tantalizing possibility that drugs that target immune cell 
regulation could be useful in the treatment of VS.

Our study was limited by the low number of patients. 
Additionally, this is the first analysis of its kind in spo-
radic VS, and there currently exist no external datasets 
with available expression data; hence, our work requires 
further validation, including validation using in  vivo 
models. Still, our well-defined, surgically-treated patient 
population enabled the detection of signals that allowed 
us to further explore the possibility of a viral link with 
progression of residual tumor following the subtotal 
resection of sporadic VS. Our data confirm the role of 
innate immune response in, and the potential viral etiol-
ogy of, VS progression. Our study tested a relatively small 
number of genes (2,549) and it employed bulk rather 
than single-cell sequencing. Although the assay we used 
was not designed for the evaluation of the impact that 
external perturbations have on the tumor microenviron-
ment, its results clearly demonstrate their role in disease 
progression. These novel results provide data that sup-
port further investigation of the immunobiology of VS. 
Further studies are needed to identify any potential viral 

pathogens, prior to considering any antiviral approach. 
The senescent or exhausted adaptive immune microenvi-
ronment in rapidly progressing VS, however, suggests a 
potential role for immune checkpoint (e.g. anti-PD1) and 
innate immune cell targeting.

Conclusion
The rapid progression of residual VS following subto-
tal surgical resection has an underlying immune etiol-
ogy that may be virally originating. Despite the adaptive 
immune response, we find evidence that T-cell immu-
nosenescence may be associated with the rapid pro-
gression of VS. These findings provide a rationale for 
clinical trials evaluating immunotherapy in patients 
with rapidly progressing VS. Here we propose a non-
platform dependent (KTSP), transcriptomic signature 
to allow identification of patients with rapidly progress-
ing VS. Harnessing this signature will allow for rapid 
transcriptomic sequencing of surgically resected sam-
ples to stratify patients based on their risk of rapid pro-
gression, thereby identifying candidates for adjuvant 
multimodal therapy or immunotherapy.
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