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Abstract 

Background:  Lamins, key nuclear lamina components, have been proposed as candidate risk biomarkers in different 
types of cancer but their accuracy is still debated. AKTIP is a telomeric protein with the property of being enriched 
at the nuclear lamina. AKTIP has similarity with the tumor susceptibility gene TSG101. AKTIP deficiency generates 
genome instability and, in p53−/− mice, the reduction of the mouse counterpart of AKTIP induces the exacerbation of 
lymphomas. Here, we asked whether the distribution of AKTIP is altered in cancer cells and whether this is associated 
with alterations of lamins.

Methods:  We performed super-resolution imaging, quantification of lamin expression and nuclear morphology 
on HeLa, MCF7, and A549 tumor cells, and on non-transformed fibroblasts from healthy donor and HGPS (LMNA 
c.1824C > T p.Gly608Gly) and EDMD2 (LMNA c.775 T > G) patients. As proof of principle model combining a defined 
lamin alteration with a tumor cell setting, we produced HeLa cells exogenously expressing the HGPS lamin mutant 
progerin that alters nuclear morphology.

Results:  In HeLa cells, AKTIP locates at less than 0.5 µm from the nuclear rim and co-localizes with lamin A/C. As 
compared to HeLa, there is a reduced co-localization of AKTIP with lamin A/C in both MCF7 and A549. Additionally, 
MCF7 display lower amounts of AKTIP at the rim. The analyses in non-transformed fibroblasts show that AKTIP mislo-
calizes in HGPS cells but not in EDMD2. The integrated analysis of lamin expression, nuclear morphology, and AKTIP 
topology shows that positioning of AKTIP is influenced not only by lamin expression, but also by nuclear morphology. 
This conclusion is validated by progerin-expressing HeLa cells in which nuclei are morphologically altered and AKTIP 
is mislocalized.

Conclusions:  Our data show that the combined alteration of lamin and nuclear morphology influences the localiza-
tion of the tumor-associated factor AKTIP. The results also point to the fact that lamin alterations per se are not predic-
tive of AKTIP mislocalization, in both non-transformed and tumor cells. In more general terms, this study supports the 
thesis that a combined analytical approach should be preferred to predict lamin-associated changes in tumor cells. 
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Background
AKTIP is a factor associated with cancer at multiple 
levels. Firstly, AKTIP and its mouse counterpart Ft1 
are needed for telomere integrity. Indeed, depletion 
of AKTIP or Ft1 causes telomere fragility, DNA dam-
age, and genome instability [1, 2]. Secondly, in  vivo, 
Ft1 is associated with cancer invasiveness. Namely, in 
p53−/− mice, depletion of Ft1 exacerbates lymphoma 
invasiveness to secondary sites [2]. Finally, AKTIP has 
sequence similarities with the protein TSG101, a tumor 
susceptibility gene [3]. We have shown that AKTIP, as 
TSG101, acts in association with the Endosomal Sort-
ing Complex Required for Transport (ESCRT) complex 
[4], a membrane regulating machinery operating at the 
nuclear rim post-mitotically and at the midbody during 
cytokinesis [5].

The biology of AKTIP includes the unique property, 
as a telomere associated factor,  to be stably enriched 
at the nuclear rim [1, 6]. In eukaryotic cells, the main 
constituents of the nuclear rim are the inner and outer 
membranes and the nuclear pores [7, 8]. Below the 
inner nuclear membrane there is the lamina. In mam-
malian cells, the lamina is constituted mainly of A- and 
B-type lamins. The LMNA gene encodes lamins A and C, 
whereas the LMNB1 and LMNB2 genes encode lamins 
B1 and B2, respectively. Imaging studies with high reso-
lution microscopy have shown that lamins are organized 
into a meshwork structure [9, 10], which plays critical 
roles in the biology of the cell. The meshwork structure 
confers to the nucleus its mechanical properties, contrib-
utes to the organization of chromatin, and is associated 
with factors controlling nuclear functions [6, 11, 12].

Nuclear morphology and lamin alterations are pre-
sent in malignant cells. Nuclear dysmorphisms have 
been proposed as diagnostic approach [13, 14], and the 
alteration of lamins has been reported in breast, ovar-
ian, prostate, and colorectal carcinoma and in neuro-
blastoma [15]. Lamin mutations have also contributed to 
reveal the role of the ESCRT machinery to repair nuclear 
envelope ruptures occurring during cancer cell migration 
[16]. However, given the overall stratification of genetic 
and functional alterations in cancer, the molecular dis-
section of the impact of lamins on the disease is complex 
and multifaceted. Reduced levels of lamin A/C have been 
associated with poor prognosis, which has been mecha-
nistically imputed to alterations of nuclear morphology 
in breast and ovarian cancers [17–19] and to increased 

cell motility in neuroblastoma [20]. On the other end, 
overexpression of lamin A/C has been observed in pros-
tate and colorectal cancers where the alteration of lamins 
has been associated with an increased capability of can-
cer cells to invade surrounding tissues [21, 22].

A possible approach to correlate phenotypic traits to 
lamin mutations is the use of cells derived from lamino-
pathic patients with identified mutations of the LMNA 
gene. Two examples are the Emery-Dreifuss Muscular 
Dystrophy (EDMD) and the Hutchinson Gilford Progeria 
Syndrome (HGPS). Autosomal EDMD has been linked to 
LMNA mutations as the LMNA c.775 T > G [23]. HGPS 
is due in most cases to heterozygous de novo C > T tran-
sition that exposes a cryptic splice site of the LMNA 
gene, generating the permanently farnesylated Δ50 vari-
ant of lamin A known as progerin [24]. The morphology 
of the nuclei is altered in both diseases, although differ-
ently, which reflects also on lamin-associated factors and 
on the clinical phenotypes [25–29].

Here, we asked whether the distribution of AKTIP is 
altered in cancer cells and whether this is associated with 
alterations of lamins. To this goal, we performed high 
resolution analyses of AKTIP in a set of cancer cell lines 
and in HGPS and EDMD lamin mutant cells. Perform-
ing the quantification of lamin expression and of nuclear 
morphology we observe that it is their combined altera-
tion that influences the localization of the tumor-associ-
ated factor AKTIP. In general terms, these data support 
the thesis that a combined analytical approach should be 
used to predict lamin-associated intranuclear changes 
with potential tumor effects.

Materials and methods
Cells and viral vectors
HeLa (ATCC CCL-2), A549 (ATCC CCL-185) and MCF7 
(ATCC HTB-22) and 293  T (ATCC CRL-11268) cells 
were cultured in DMEM (Invitrogen) supplemented with 
10% FBS (Invitrogen). HGPS (HGADFN167, carrying 
LMNA c. 1824 C > T mutation) skin fibroblasts and their 
controls from relatives (HGMDFN090) were obtained 
from Progeria Research Foundation (PRF) Cells and 
Tissue Bank (Boston, MA, USA). Emery-Dreifuss mus-
cular dystrophy (EDMD2, EDMD184, carrying LMNA 
c.775  T > G mutation) skin fibroblasts were obtained 
from the BioLaM biobank. The experimental proto-
col was approved by the local ethics committee (Rizzoli 
Orthopedic Institute Ethical Committee approval Prot. 

This paves the way of next translational evaluation to validate the use of this combined analytical approach as risk 
biomarker.
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Gen. 0,018,250–2016) and followed EU regulations. Pri-
mary cells were used at low (between 7–9) passages and 
cells were cultured in DMEM (Invitrogen) supplemented 
with 20% FBS.

Second generation recombinant lentiviruses (LV) were 
produced and titrated as previously described [30] by 
co-transfection of 293  T cells with the vectors pCMV-
dR8.74, pMD2.G (http://​www.​addge​ne.​org) and a trans-
fer vector. The transfer vector encoding progerin is 
pCDHblast MCSNard OST-LMNAd50 [31] and was pro-
vided by Addgene (Addgene plasmid 22,662); the transfer 
vector for control lentivector (LV-ctr) has been described 
previously [1]. The moi (molteplicity of infection meas-
ured as p24pg per cell) used for all experiments was 1. 
Transductions were performed in complete medium sup-
plemented with 8ug/ml polybrene (Sigma). After viral 
addition, cells were centrifuged for 30 min at 1800 rpm at 
RT, incubated 1 h at 37 °C, and then transferred to fresh 
complete medium.

pCMV6-AC-AKTIP-GFP (Origene) and full length 
Flag-tagged prelamin A (LA-WT, pCI mammalian 
expression vector) [32] were transiently transfected into 
293  T cells using the FuGene6 reagent (Promega). The 
transfection efficiency was over 75%. Cells were analyzed 
24hs post transfection.

The population doubling was calculated with the for-
mula Log(nt/n0) × 3.33, where n0 is the  number of cells 
plated and nt the number of cells after n days.

Quantification of gene expression
One-week post-transduction, cells were lysed by addi-
tion of TRIzol reagent (Invitrogen) and RNA extracted 
according to the manufacturer’s instructions. After 
DNase treatment (Invitrogen), RNA was reverse tran-
scribed into cDNA as previously described [33]. QPCR 
reactions were carried out as previously described [34], 
using the following primers:

AKTIP Forward 5’-TCC​ACG​CTT​GGT​GTT​CGA​
T-3’;
AKTIP Reverse 5’-TCA​CCT​GAG​GTG​GGA​TCA​
ACT-3’;
lamin A/C Forward 5’-TGG​AGG​AGG​TGG​ATG​
AGG​AG-3’;
lamin A/C Reverse 5’-CAT​TCT​GGC​GCT​TGA​TCT​
GC-3’;
lamin A Forward 5’-CTC​CTA​CCT​CCT​GGG​CAA​
CT-3’;
lamin A Forward 5’- AGG​TCC​CAG​ATT​ACA​TGA​
TGCT-3’;
lamin C Forward 5’- CTC​AGT​GAC​TGT​GGT​TGA​
GGA-3’;
lamin C Reverse 5’- AGT​GCA​GGC​TCG​GCCTC-3’;

GAPDH Forward 5’-TGG​GCT​ACA​CTG​AGC​ACC​
AG-3’;
GAPDH Reverse 5’-GGG​TGT​CGC​TGT​TGA​AGT​
CA-3’;
and analyzed with the 2–ΔΔCq method as previously 
described [35].

For Western blotting, protein extracts were obtained 
as previously described [1] and quantified by Bradford 
assay. 100  µg of protein extracts were loaded onto pre-
cast 4–12% gradient acrylamide gels (Novex, Life Tech-
nology). After electro-blotting, filters were incubated 
with anti-AKTIP (HPA041794 Sigma), anti-lamin A/C 
(sc-7292, Santa Cruz Biotechnology), anti laminB1 (sc-
6017 Santa Cruz Biotechnology) and anti-actin-HRP 
conjugated (sc-1615, Santa Cruz Biotechnology) antibod-
ies. Filters were then incubated with appropriate HRP-
conjugated secondary antibody (sc-2004, sc-2005 Santa 
Cruz Biotechnology). Detection was performed using 
the enhanced chemiluminescence system (Clarity ECL, 
Biorad).

Immunofluorescence and microscopy
Cells were seeded onto glass coverslips in 6-well plates, 
were pre-permeabilized according to [36] and fixed with 
3.7% formaldehyde in PBS for 10  min. Cells were then 
permeabilized with 0.25% Triton X-100 in PBS for 5 min 
and treated with PBS 1%BSA for 30  min, and stained 
with primary antibodies in PBS 1% BSA for 1  h at RT. 
The following primary antibodies were used: anti-AKTIP 
(WH0064400M2 clone 2A11, Sigma), anti-lamin A/C 
(sc-6215, Santa Cruz Biotechnology), anti-lamin B1 [37], 
anti-TPR (ab84516, Abcam), anti-progerin (clone 13A4, 
Abcam), anti-Flag (clone M2, sc-F3165, Sigma Aldrich). 
Alexa488, Alexa568, Alexa647 or FITC conjugated sec-
ondary antibodies were applied in PBS for 45 min at RT. 
Nuclei were visualized using DAPI (4,6 diamidino-2-phe-
nylindole) and coverslips were mounted in Vectashield 
H-1000.The slides were then examined with a Zeiss Axi-
oplan epifluorescence microscope equipped with a CCD 
camera (CoolSnap HQ; Photometrics,). Grayscale images 
were pseudocolored and combined in Adobe Photoshop 
CC to create merged images.

For 3D-SIM imaging cells were seeded onto glass 
coverslips (high performance coverslips #1.5H Cat. 
#0,107,052—Marienfeld superior) in 6-well plates, were 
pre-permeabilized according to [36] and fixed with 3.7% 
formaldehyde in PBS for 10 min at RT and then incubated 
in 50  mM NH4Cl/PBS (15  min). Primary and second-
ary antibodies were applied in PBS BSA1% for 1 h at RT 
and washed in PBS. Acquisition was performed using a 
DeltaVision OMX v4 Blaze microscope (GE Healthcare, 
Singapore) with the BGR-FR filter drawer for acquisition 

http://www.addgene.org
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of 3D-SIM images. An Olympus Plan Apochromat 
100 × /1.4 PSF oil immersion objective lens was used with 
liquid-cooled Photometrics Evolve EM-CCD cameras for 
each channel. Fifteen images per section per channel were 
acquired with a z-spacing of 0.125 μm [38, 39]. Structured 
illumination reconstruction and wavelength alignment 
was done using the SoftWorX software (GE Healthcare). 
For A549 and MCF7 SIM imaging was performed using 
a Nikon Eclipse Ti equipped with: X-Light V3 spinning 
disk combined with a VCS (Video Confocal Super resolu-
tion) module (CrestOptics) based on structured illumina-
tion. LDI laser source (89 North) and Prime BSI Scientific 
CMOS (sCMOS) camera with 6.5  µm pixels (Photomet-
rics) were used. The images were acquired by using Meta-
morph software version 7.10.2. (Molecular Devices) with 
a Nikon 100x/1.45 Plan Apochromat Lambda oil immer-
sion objective at a z-spacing of 0.2 μm. In order to achieve 
super-resolution, raw data obtained by the VCS module 
were processed with a modified version of the joint Rich-
ardson-Lucy (jRL) algorithm [40–43], where the out of 
focus contribution of the signal has been explicitly added 
in the image formation model used in the jRL algorithm, 
and evaluated as a pixel-wise linear “scaled subtraction” 
[44] of the raw signal.

Image analysis and quantification
Image analyses were performed using Imaris Software 
(Bitplane, Zurich, Switzerland) for 3D-SIM microscopy 
or NIS-Elements Software (Nikon) for A549 and MCF7 
SIM images and using Image J/Fiji (National Institutes 
of Health, Bethesda, MD [45]) for the other images. For 
3D-SIM images, co-localization between AKTIP and the 
indicated proteins was quantified as Pearson correlation 
coefficient, using the co-localization module of Imaris 
Software or the co-localization module of NIS-Element 
software. AKTIP spot counts were made using the spots 
module of Imaris Software. 3D volume reconstructions 
and movies generation from 3D-SIM data were done 
using Imaris Software.

AKTIP foci were identified in immunofluorescence 
images and analyzed using Analyze particles module 
of Image J on processed images through FFT bandpass 
filter (used set up: filter large structure down to 4pix-
els; filter small structures up to 4pixels; suppress stripes 
None; tolerance of direction 5%) and after water-
shed process to binary threshold (moments) images. 
To identify AKTIP foci at the rim, the processed pic-
tures were superimposed on the corresponding DAPI 
images. Morphometric nuclei analyses were conducted 
on DAPI images using Analyze particles module of 
Images J and measuring shape descriptors parameters, 
circularity, roundness and solidity. Results are shown 

as mean ± SEM. Statistical analyses were conducted 
using unpaired two-tailed Student’s t-test using Prism 
software (Graphpad). p-values below 0.05 were consid-
ered significant and reported on graph as * p < 0.05; ** 
p < 0.01; *** p < 0.001. P-values > 0.05 were considered 
not significant and were not reported on graphs.

Results
AKTIP co‑localization with lamins in HeLa cells
As a first step to analyze AKTIP localization, we imaged 
with high resolution HeLa cancer cells. We used 3D 
structured illumination microscopy (3D SIM), which 
delivers images with nanometer scale resolution [46]. 
Lamin B1 staining was employed to visualize the nuclei 
(Fig.  1A). Co-labelling of HeLa cells with anti-lamin 
B1 and anti-AKTIP antibodies shows that AKTIP 
prevalently localizes as discrete foci enriched at a dis-
tance < 0.5 µm from the rim (Fig. 1A-C and Supplemen-
tary movie 1). Co-labelling of AKTIP and lamin A/C 
shows that AKTIP and lamin A/C signals co-localize 
(Fig. 1D, F and Supplementary movie 2). We next deter-
mined by semi-automatic analysis the relative percent-
age of AKTIP foci co-localizing with lamin A/C in the 
nucleoplasm and at the nuclear rim. This quantitative 
analysis showed that AKTIP co-localizes with lamin A/C 
more at the nuclear rim than at the nucleoplasm (Figure 
S1A). We next analyzed whether AKTIP recruitment 
at the nuclear rim depends on the level of lamin A. To 
address this point, we overexpressed lamin A in 293  T 
cells containing GFP-tagged AKTIP. We observed that, 
as compared to control GFP-AKTIP 293  T cells, lamin 
A overexpressing AKTIP-GFP cells show higher AKTIP 
staining at nuclear rim (Figure S1B). These data indicate 
that increased lamin A drives AKTIP at the nuclear rim.

Since a regular rim pearl pattern is typically observed 
for nuclear pore complexes (NPCs) [47], we next inves-
tigated the position of AKTIP foci relative to NPCs. 
We performed co-immunofluorescence using an anti-
AKTIP antibody and an antibody directed towards 
the NPC basket protein TPR [47]. Images show the 
distribution at the rim of both TPR and AKTIP, with 
foci of apparent similar size but with distinct positions 
(Fig.  1E). This independent localization of TPR and 
AKTIP is quantitatively defined by a correlation coef-
ficient < 0.1, in contrast to the robust correlation coef-
ficient established for the signals of AKTIP and lamin 
A/C (Fig. 1F).

These data together show that in HeLa cells AKTIP 
is in proximity of lamin B1 and co-localizes with lamin 
A/C, while it has a distinct pattern at the rim with respect 
to the nucleoporin TPR.
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Comparative AKTIP localization in tumor cells
As a second step, we comparatively analyzed AKTIP 
in HeLa, MCF7 and A549. These three cell lines derive 
from different cancer types, namely, HeLa from cervi-
cal cancer, A549 from lung adenocarcinoma, and MCF7 
from breast cancer (see Materials and Methods). We 
selected these cell lines because they express wild type 
p53, though at different levels (HeLa < A549 < MCF7) 

[48], while lamin A is expressed both in HeLa and A549 
[49–51], but it is lowered in MCF7 [17, 52].

We analyzed the localization of AKTIP in parallel in 
the three cell types co-stained for lamin A/C and AKTIP 
(Fig. 2A, B). A549 cells show enrichment of AKTIP at the 
nuclear rim, however, AKTIP foci appear more spaced 
apart and show a reduced overlapping with the signal of 
lamin A/C, when compared to HeLa. MCF7 show high 

Fig. 1  3D SIM imaging of the localization of AKTIP in HeLa cells (A, B) 3D rendering (A) and projections of an extended section viewed from 
orthogonal planes and magnified sections (B) from super resolution images of a HeLa nucleus labelled with anti-lamin B1 and anti-AKTIP 
antibodies. C Quantification of the percentage of AKTIP foci at a distance below or above 0.5 µm from the lamin B1 signal. D Projection of an 
extended section of a nucleus labelled with anti-lamin A/C and anti-AKTIP antibodies and magnified sections. E Projections of an extended section 
viewed from orthogonal planes of a nucleus labelled with anti-TPR and anti-AKTIP antibodies and magnified sections (F) Co-localization between 
AKTIP and the indicated proteins from (D) and (E) quantified as Pearson correlation coefficient. Each dot corresponds to a nucleus. Mean ± SEM are 
shown, images from 9 nuclei per cell condition were analyzed. ***p < 0.001 in unpaired Student t-test
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heterogeneity in lamin A/C fluorescence levels in the cell 
population. Additionally, anti-lamin A/C staining high-
lights the presence of nuclear wrinkles and blebs. AKTIP 

foci, despite being enriched at the nuclear rim, are spaced 
and only partially overlap with lamin A/C (Fig.  2A). 
These observations are confirmed by quantitative 

Fig. 2  Comparative 3D SIM imaging of the localization of AKTIP in tumor cells (A) Projections of an extended section of Hela, A549 and MCF7 nuclei 
labelled with anti-lamin A/C and anti-AKTIP antibodies, viewed from orthogonal planes and magnified sections. B Pearson correlation coefficient of 
the co-localization between AKTIP and lamin A/C in A549 and MCF7 and HeLa cells. C Projections of an extended section of Hela, A549 and MCF7 
nuclei labelled with anti-lamin B1 and anti-AKTIP antibodies, viewed from orthogonal planes and magnified sections. D Quantification of AKTIP 
foci distribution in HeLa, A549 and MCF7 cells measured as the percentage of AKTIP positive rim. In B and D each dot corresponds to a nucleus. 
A minimum of 7 nuclei were counted for each cell line. Mean ± SEM are shown. * p < 0.05, ** p < 0.01 in unpaired Student t-test, ***p < 0.001 in 
unpaired Student t-test
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analysis. We observe a significant reduction of the cor-
relation index of the signals from AKTIP and lamin A/C 
in A549 and MCF7, as compared to HeLa cells. These 
data point to a reduced association between AKTIP and 
lamin A/C in the nucleus, both in the nucleoplasm and 
at the nuclear rim in A549 and MCF7 (Fig. 2B). We next 
analyzed cells co-stained for AKTIP and lamin B1. This 
analysis confirms that AKTIP is present at the rim in the 
three cell types, but also highlights a specific pattern in 
MCF7 (Fig.  2C). Namely, in MCF7, lamin B1 staining 
highlights multiple nuclear defects, wrinkles, blebs, and 
rim interruptions. Image quantification indicates that the 
portion of nuclear rim occupied by AKTIP is significantly 
reduced in MCF7 as compared to HeLa and to A549. 
These data suggest that the localization of AKTIP at the 
nuclear rim is slightly increased in A549 and reduced 
in MCF7, as compared to HeLa cells (Fig.  2D). These 
findings are also consistent with the observation that 
increased lamin A promotes the localization of AKTIP 
localization at the nuclear rim (Figure S1B).

These results indicate heterogeneous lamin expression 
and nuclear organization patterns in the three tumor 
cell types and highlight that in MCF7 breast tumor cells 
AKTIP is mislocalized.

AKTIP localization in non‑transformed cells with lamin 
alterations
With the goal of assessing whether AKTIP mislocaliza-
tion was generated by lamin alterations, we used two cell 
models with known LMNA mutations: non-transformed 
fibroblasts derived from HGPS LMNA c.1824C > T 
p.Gly608Gly and from EDMD2 LMNA c.775  T > G 
patients. As control in this experimental setting, we used 
non-transformed wild type fibroblasts derived from a 
healthy donor.

Orthogonal planes of lamin A/C-AKTIP stained nuclei 
show the co-localization of AKTIP and lamin A/C in 
non-transformed wild type fibroblasts (Fig. 3A). In HGPS 
and EDMD2 cells the images and the quantitative analy-
sis show a selective reduction of co-localization of AKTIP 
and lamin A/C in HGPS cells as compared to wild type 
and to EDMD2 (Fig. 3A, B). Orthogonal planes of lamin 
B1/AKTIP stained nuclei reveal a pattern similar to that 
observed in lamin A/C-stained nuclei (Fig.  3C). The 
localization of AKTIP at the rim is evident in wild type 
nuclei, significantly lost in HGPS cells, and modestly, but 
not significantly, altered in EDMD2 nuclei (Fig. 3C, D).

These results show that AKTIP is mislocalized in 
HGPS, but not in EDMD2 cells, although both cell types 
have LMNA mutation. Given the profoundly altered 
shape of HGPS nuclei, the data suggest that aberrant 
nuclear morphology could contribute to AKTIP mislo-
calization. Moreover, AKTIP mislocalization in HGPS 

cells indicates that AKTIP localization is independent of 
the p53 gene status, which is wild type in these cells.

Quantitative analysis of lamin A/C expression and nuclear 
morphology
To explore the interrelation between AKTIP mislocali-
zation, lamin expression, and nuclear morphology, we 
quantified these traits in all cell models, including tumor 
and non-transformed laminopathic cells.

We measured LMNA expression by RT-QPCR using 
oligos recognizing both lamin A and lamin C. This analy-
sis shows that the levels of LMNA mRNA are significantly 
reduced in the three tumor cell lines (HeLa, A549, and 
MCF7), as compared to non-transformed cells (wild type, 
HGPS and EDMD2) (Fig.  4A). Primers targeting either 
lamin A or C, confirm these results (Fig. 4B, C). We next 
measured the level of lamins A and C by Western Blot-
ting (Fig. 4D-F). We observe the reduction of lamin A in 
MCF7 (Fig. 4D, E) and the presence of the progerin band 
in HGPS cells (Fig. 4D). We next evaluated the levels of 
lamin B1 by Western Blotting (Figure S2A). We observe 
a reduction of lamin B1 in HGPS, EDMD2 cells and in 
A549 and MCF7 tumor cells, as compared to non-trans-
formed wild type fibroblasts (Figure S2A, B).

We next performed morphometric measurements of 
the nuclei of the different cell types. By semi-automated 
quantification, we monitored the circularity, solidity, 
and roundness indices and the number of nuclear blebs 
(Fig. 5). This analysis shows that the circularity [4π(area/
perimeter2)] is reduced in MCF7 (Fig.  5A). Roundness, 
defined by the Eq. (4xarea)/(πxmajor axis2), is decreased 
in EDMD2 (Fig.  5B). Solidity, calculated as the ratio of 
area of the nucleus and the area of its convex hull shape, 
is slightly but significantly reduced in HGPS and MCF7 
(Fig. 5C). Blebs are abundant in HGPS (Fig. 5D). To con-
dense these data into a single morphometric index defin-
ing nuclear aberration, we considered the percentage of 
nuclei that simultaneously showed lower circularity and 
solidity indices and higher roundness index. Based on 
this cumulative morphometric index, HGPS and MCF7 
are the cells with the highest frequency of nuclear aberra-
tion, i.e., 56% and 40%, respectively (Fig. 5E).

Correlation between AKTIP localization, lamin A/C 
expression and nuclear morphology
We next wanted to establish to what extent AKTIP 
mislocalization correlated with lamin expression and 
nuclear morphology. To this goal, we calculated cor-
relative values based on linear regression between the 
different parameters and report the r and p values per-
formed on all cell types (Fig.  6). No significant correla-
tion (p > 0.1) is observed between lamin mRNA levels and 
the positioning of AKTIP (Fig. 6A-C). When considering 
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protein expression, we observed no significant correla-
tion (p > 0.05) between lamin B1 levels and between the 
ratio lamin A/lamin B1 levels and AKTIP positioning 
at rim (Fig.  6D, E and Figure S2C-D). On the contrary, 

a negative correlation is present for AKTIP positioning 
at the rim and the level of lamin C (r2 = 0.31, p < 0.001). 
When we consider the association between the pres-
ence of AKTIP at the nuclear rim and the level of nuclear 

Fig. 3  Comparative 3D SIM imaging of the localization of AKTIP in non-transformed laminopathic cells (A) Projections of an extended section of 
non-transformed wild type, HGPS and EDMD2 patient derived fibroblast nuclei labelled with anti-lamin A/C and anti-AKTIP antibodies, viewed from 
orthogonal planes and magnified sections. B Pearson correlation coefficient to measure the co-localization between AKTIP and lamin A/C in wild 
type, HGPS and EDMD2 cells. C Projections of an extended section of non-transformed wild type, HGPS and EDMD2 nuclei labelled with anti-lamin 
B1 and anti-AKTIP antibody, viewed from orthogonal planes and magnified sections. D Percentage of AKTIP positive rim in wild type, HGPS and 
EDMD2 cells. In B and D each dot corresponds to a nucleus. A minimum of 7 nuclei were counted for each cell type. Mean ± SEM are shown. 
***p < 0.001 in unpaired Student t-test



Page 9 of 17La Torre et al. J Exp Clin Cancer Res          (2022) 41:273 	

aberration, we observe a significant negative correlation 
(r2 = 0.35, p = 0.0001; Fig. 6F). Merging the lamin protein 
expression parameter with the cumulative morphometric 
index, we recapitulated the information on the different 
cell types. Namely, the mislocalization of AKTIP, evident 
in HGPS and MCF7 cells, is associated with alterations of 
the lamin protein and of nuclear morphology (Fig. 6G).

Considering the involvement of AKTIP in several 
essential cellular processes [1, 2, 6], we next evaluated 
whether there was a correlation between the localization 
of AKTIP at the nuclear rim and the proliferation rate of 
the tumor cell lines. To this aim, we monitored the prolif-
eration rate of HeLa, A549 and MCF7 (Figure S2E, F). We 
observe that the proliferation rate of HeLa cells is higher 
than that of A549 and MCF7 (Figure S2E). We next cal-
culated the correlative values based on linear regression 
between population doubling and AKTIP positioning at 
the rim. We did not find a correlation, which suggests 
that the two aspects are not interdependent (Figure S2F).

AKTIP localization in HeLa cells expressing HGPS mutant 
lamin
As described in the previous paragraph, the integrated 
analysis of lamin expression, nuclear morphology 

and AKTIP distribution shows that the positioning of 
AKTIP is influenced not only by lamin expression, but 
also by nuclear morphology. To validate this concept, 
we generated HeLa cells expressing the HGPS mutant 
lamin progerin. These cells were obtained using a lenti-
viral vector encoding progerin (LV-progerin). We firstly 
monitored the expression of progerin by immunofluo-
rescence using an anti-progerin antibody (Fig.  7A, B) 
and by RT-QPCR (Fig. 7C). We next performed recon-
struction of nuclei stained with anti-lamin B1 antibody 
(Fig.  7D). AKTIP is mislocalized in LV-progerin HeLa 
cells, indeed we observe a reduced number of AKTIP 
foci at nuclear rim that appear more spaced apart as 
compared to HeLa transduced with a control vector 
(LV-ctr). We successively performed the analysis of 
AKTIP on LV-progerin HeLa in nuclei stained with anti-
lamin A/C antibody (Fig.  7E). DAPI and anti-AKTIP 
antibody staining show that LV-progerin determines 
a reduction in the number of AKTIP foci at the rim as 
compared to LV-ctr HeLa (from 2966/cell in LV-ctr to 
1157/cell in LV-progerin; Fig.  7F). To exclude that the 
reduction of AKTIP foci was due to decreased AKTIP 
expression, we monitored AKTIP protein and mRNA 
levels by Western blotting and RT-QPCR, respectively. 

Fig. 4  Lamin expression in tumor and non-transformed laminopathic cells (A) RT Q-PCR of LMNA mRNA. B RT Q-PCR of lamin A mRNA. C RT 
Q-PCR of lamin C mRNA. D-F Western Blotting and relative quantification showing lamin A, lamin C and progerin protein levels. Actin was used as 
loading control. In A-C and E–F for each sample, relative fold change respect to non-transformed wild type fibroblasts is shown. Mean values of two 
independent experiments ± SEM are shown. *p < 0.05, ** p < 0.01, ***p < 0.001, in unpaired Student t-test
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We observed no difference in the expression of AKTIP 
in LV-progerin HeLa cells compared to LV-ctr (Fig. 7G, 
H). We next wanted to exclude the possibility that the 
aberrant AKTIP localization observed in the presence of 
progerin was due to physical sequestration of AKTIP by 
progerin. Indeed, it was previously demonstrated that 
progerin sequesters some of lamin A interactors. This 
has been suggested to contribute to the HGPS patho-
logical phenotype [53–56]. To investigate if AKTIP 
was sequestered by progerin, we used HPGS cells. Co-
staining of the cells for lamin A/C, AKTIP, and progerin 
shows the profile of these proteins at the nuclear rim 

(Fig. 7I-K). The quantification of the signals shows that 
AKTIP has a similar distribution profile at the nuclear 
rim to that of lamin A/C in both control and HGPS cells 
(Fig. 7K). AKTIP and progerin, on the other hand, show 
different distribution profiles (Fig.  7K). This aspect is 
also highlighted by the absence of AKTIP signal in prog-
erin aggregates (Fig.  7J), indicating that AKTIP reduc-
tion at the rim is not due to sequestration by progerin.

Taken together these experiments show that when 
aberrant HGPS lamin is expressed in tumor cells it can 
induce alteration of nuclear morphology and a robust 
mislocalization of AKTIP.

Fig. 5  Morphometric analysis of tumor and non-transformed laminopathic cell nuclei (A-D) Quantification of morphometric parameters for nuclei 
of the indicated cell types (x axis). E Percentage of nuclei that simultaneously show lower circularity and solidity indices and a higher roundness 
index respect to the mean values of non-transformed wild type fibroblast. Each dot corresponds to a nucleus. A minimum of 7 nuclei were counted 
for each cell type Mean value and minimum and maximum values are shown. * p < 0.05, ** p < 0.01; ***p < 0.001 in unpaired Student t-test
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Fig. 6  Correlation analysis of AKTIP localization with lamin expression and morphometric index. A-C AKTIP localization at the rim, expressed as 
the percentage of AKTIP positive rim, does not significantly correlate with lamin mRNA levels quantified by RT Q-PCR. D, E Correlation between 
percentage of AKTIP positive rim and lamin A and lamin C expression quantified by Western Blotting. F Inverse correlation between AKTIP 
localization at the rim and morphometric index, calculated for each nucleus as the sum of the differences between each morphometric index and 
their mean value in wild type non-transformed fibroblasts. G Correlation between AKTIP positioning at the rim and cumulative parameter obtained 
merging for each type the ratio between lamin A and lamin C proteins levels from WB quantification and morphometric index as in F proteins ratio 
and morphometric index. In F each dot corresponds to a nucleus. In A-E, and G mean values ± SEM are shown. Linear regression values are shown

Fig. 7  AKTIP localization in progerin expressing HeLa cells (A, B) Images (A) and quantification (B) of DAPI and progerin stained nuclei of HeLa 
cells transduced with a control vector (LV-ctr) or with progerin expressing vector (LV-progerin) and stained for progerin and DAPI. C RT Q-PCR of 
LMNA mRNA (including progerin) expression. In B-C mean values of two independent experiments ± SEM are shown. In A 100 nuclei were counted 
for each condition D 3D rendering, projections of an extended section viewed from orthogonal planes and magnified sections of LV-progerin 
HeLa nucleus labelled with anti-lamin B1 and anti-AKTIP antibodies. E Projections of an extended section viewed from orthogonal planes of 
images of LV-progerin HeLa nuclei stained with anti-lamin A and anti-AKTIP antibodies, and magnified sections. F Quantification of AKTIP foci at 
a distance > 0.5 µm from lamin B1 in control (LV-ctr) and progerin (LV-progerin,) HeLa cells. Each dot corresponds to a nucleus. A minimum of 15 
nuclei were analyzed for each condition. G Western blotting using anti-AKTIP antibody in control (LV-ctr) and progerin expressing (LV-progerin) 
HeLa cells. Actin was used as loading control. H RT Q-PCR of AKTIP mRNA in control (LV-ctr) and progerin expressing (LV-progerin) HeLa cells. Mean 
values of two independent experiments ± SEM are shown. I Images of wild type and HGPS fibroblasts stained for lamin A/C and AKTIP showing in 
merge that there is no AKTIP accumulation at the site in which lamin A/C is accumulated due to progerin expression. J Images of HGPS fibroblasts 
stained for progerin and AKTIP and relative enlargements showing that there is no AKTIP signal at the site of progerin accumulation at nuclear rim. 
DNA was stained with DAPI. K Pearson correlation value of intensity plot of AKTIP-lamin A/C distribution at nuclear rim in wild type fibroblasts, and 
AKTIP-lamin A/C and of AKTIP-progerin distribution at nuclear rim in HGPS fibroblasts. Each dot corresponds to a nucleus. A minimum of 10 nuclei 
were evaluated for each condition. Mean values ± SEM are shown. *p < 0.05, ***p < 0.001, in unpaired Student t-test

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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Discussion
Lamins are key nuclear components, which control many 
cell functions and shape nuclear morphology. Lamin 
alterations and nuclear morphology have long been 
studied in cancer [13–15]. Lamin expression is altered 
in many tumors and cancer cell lines, but the impact of 
this alteration on the disease is still confounding. For 
instance, both reduced and increased levels of lamin A/C 
have been associated with poor cancer prognosis [17–
19, 21, 22]. In more general terms, the data on the link 
between lamin and cancer suggest that the mechanistic 
implication of lamin is multifaceted and, on the other 
hand, that the measure of its expression is not sufficient 
to predict its impact on the disease.

Concerning the relation of nuclear morphology with 
cancer, the clinical data indicate that nuclear morpho-
metrics is a relatively accurate approach for the diagno-
sis of late-stage cancer [57]. However, the use of nuclear 
morphometrics for early diagnosis is still a challenge. 
To overcome this difficulty, the forefront of this area of 
study proposes the usage of nuclear morphometrics at a 
single-cell resolution level, combined with artificial intel-
ligence analyses of the images [57]. This approach can 
be improved even more by applying micromechanical 
manipulations to the test samples, to mimic the mechani-
cal pressure of tumor microenvironments [58, 59]. In this 
experimental setting, the sample response to perturba-
tions depends on the properties of the cells, thus it can be 
used as a source for further dissection, measurement, and 
prediction of the cancer phenotype. These approaches 
have, however, limitations. These are especially criti-
cal when considering the switch from bench to bedside. 
Indeed, a single and integrated analysis based on single-
cell resolution, artificial intelligence, and mechanical 
manipulation, requires the suitability of the cancer clini-
cal specimens and highly competitive dedicated facilities.

Another way for the use of nuclear morphology and 
lamin expression for cancer prognosis is to perform a 
refined integrative analysis of these two parameters. This 
approach is being implemented in laminopathies; rare 
genetic conditions due to genetic mutations in the lamin 
encoding gene LMNA. The involvement of different tis-
sues and the different clinical symptoms in laminopa-
thies suggest that the pathomolecular events downstream 
to LMNA mutations are complex and heterogeneous. 
For example, patients with HGPS suffer from prema-
ture aging, growth retardation, loss of subcutaneous fat, 
reduction in bone density, poor muscle development, and 
succumb to the disease at an early age [60, 61]. In con-
trast, laminopathic EDMD mutations cause contractures, 
muscle wasting, and cardiomyopathy [62]. To respond to 
the complexity of this genotype-to-phenotype relation-
ship, to reconstruct and interpret the pathomolecular 

cascade occurring in laminopathic patients, recent works 
are studying not only the mutation of lamins per se, but 
also how lamin mutations control the morphology of 
the nucleus and, consequently, intranuclear elements 
[63–67]. Such an approach could be applied to cancer. 
This way of analyzing the problem is expected to be help-
ful in disease prognosis. In addition, it provides hints on 
the molecular mechanistic elements that are conditioned 
by lamin and nuclear alterations in cancer. This could be 
especially relevant in the study of tumor-associated fac-
tors residing at the nuclear rim.

AKTIP is a protein enriched at the nuclear rim [6] asso-
ciated with cancer [2]. It is essential for cell survival, it is 
required to ensure the integrity of telomeres and genome 
[1], and, in  vivo, the depletion of the mouse counter-
part of AKTIP contributes to cancer aggressiveness [2]. 
AKTIP shares similarity with the tumor-associated factor 
TSG101. We discovered that AKTIP can genetically and 
physically interact with TSG101 [4]. In this study, we ana-
lyzed the positioning of AKTIP with super resolution and 
asked whether the distribution of AKTIP was altered in 
cancer cells and whether this was associated with altera-
tions of lamins and/or with nuclear morphology.

We report that AKTIP is in close proximity with lamin 
B1, but specifically co-localizes with lamin A. This is rein-
forced by the observation that lamin A/C overexpression 
impacts on AKTIP recruitment at the rim. This associa-
tion suggests a putative functional link of AKTIP with 
lamin A. This aspect could be of help to mechanistically 
interpret the partial phenotype overlap between prog-
eroid mice and mice depleted of Ft1, the mouse ortho-
logue of AKTIP. It could be speculated that this overlap 
is due to a functional association between AKTIP and 
lamin A [1, 2, 6].

NPCs are intertwined with the organization of the lam-
ina [68, 69]. For example, cells depleted for lamin B or for 
lamin A/C display clustering of NPCs. In HGPS cells it 
has been hypothesized that the alteration of the nuclear 
shape drives NPC clustering [70, 71]. Despite the simi-
larity between the pearl pattern of AKTIP at the rim and 
the distribution of NPCs, we found a distinct positioning 
of AKTIP and the NPC component TPR [46]. Since we 
previously demonstrated that the reduction of AKTIP 
expression triggers nuclear misshaping [6], in future 
work, it will be interesting to analyze if TPR alterations 
are driven by AKTIP depletion as in HGPS cells.

We next focused on cancer cells MCF7, HeLa and 
A549. We selected these three types because of their 
different origin and of their extensive previous charac-
terization, including their lamin and p53 status [6, 17, 
48–52]. We herein report that AKTIP positioning at 
the rim is altered in the breast cancer cell line MCF7 
and not in HeLa and A549. Since p53 is wild type in our 
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MCF7 cells [48], the finding that AKTIP is mislocalized 
these cells indicates that the p53 status does not have 
a role in determining AKTIP localization. However, at 
this point, we cannot rule out the possibility that gain-
of-function mutations of p53 might alter this localiza-
tion. We also show that AKTIP alteration is observable 
in a HeLa-progerin model system, in which we com-
bined the presence of a defined lamin mutation with a 
cancer cell setting. These data suggest that AKTIP can 
be mislocalized in cancer cells with lamin alterations 
and this could have an impact on the disease pheno-
type. We also report that it is the combined alteration 
of lamin and nuclear morphology that influences the 
localization of the tumor-associated factor AKTIP. The 
fact that our results highlight that lamin alterations 
per se are not predictive of AKTIP mislocalization has 
multiple conceptual spin offs. The data suggest that for 
predicting a potential implication of AKTIP in cancer 
cells, lamin alterations should be monitored in parallel 
with nuclear morphology. Secondly, the data embrace 
the idea that the usage of lamin expression as potential 
prognostic biomarker in cancer is reinforced by a com-
bined analysis of other biomarkers.

AKTIP is implicated in essential cellular processes 
including telomere metabolism and cell division [1, 2, 
6], and it is possible that the mislocalization of AKTIP 
in MCF7 alters its function possibly contributing to the 
tumor phenotype. It is interesting to note in relation with 
this aspect that Cbioportal (www.​cbiop​ortal.​org) and 
Oncomine [72] data sets report that AKTIP expression 
is altered in tumor. Additionally, the Human cell atlas 
(www.​prote​inatl​as.​org) indicates AKTIP as a prognos-
tic marker of survival in renal cancers. This information 
taken together, suggest that AKTIP delocalization linked 
to lamin alterations could be further investigated as a 
mechanistic path to cancer disease.

This study also opens new insights for laminopathies. 
Indeed, consistently with the close association of AKTIP 
with the nuclear rim and with lamin A, the analysis of 
nuclei with either exogenous expression of progerin, or 
with the endogenous HGPS mutation, reveals that prog-
erin profoundly impinges on AKTIP distribution, which 
suggests that AKTIP dysfunction could be a co-element 
in the progeroid disease. On the other hand, we do not 
see significant alterations of AKTIP in EDMD2 cells. Our 
data also highlight that the mislocalization of AKTIP in 
HGPS cells is not related to progerin sequestration, but 
rather to the specific morphological alterations of HGPS 
nuclei, i.e., their altered solidity and circularity. It is to 
note that HGPS cell abnormalities have also been associ-
ated to permanent protein farnesylation [73, 74]. We can-
not exclude at this stage that this aspect could have an 
influence on AKTIP localization.

Conclusion
In conclusion, this work, on one hand, contributes to 
defining the relationship between AKTIP, lamin, and 
nuclear alterations in cancer cells. On the other hand, 
it points to AKTIP dissociation from the nuclear rim 
as being one of the consequences of nuclear morpho-
logical changes caused by the HGPS LMNA mutation. 
Given that AKTIP is required for correct telomere 
function and genome integrity [1], its aberrant distri-
bution in both cancer and laminopathic cells could be 
considered not only as a potential tool in disease prog-
nosis, but also as a putative co-driver of the disease 
phenotypes. Overall, these results pave the way of next 
translational evaluation to validate the use of this com-
bined analytical approach as risk biomarker.
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