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Abstract 

Background Aerobic glycolysis, also known as the Warburg effect, is predominantly upregulated in a variety of solid 
tumors, including breast cancer. We have previously reported that methylglyoxal (MG), a very reactive by‑product of 
glycolysis, unexpectedly enhanced the metastatic potential in triple negative breast cancer (TNBC) cells. MG and MG‑
derived glycation products have been associated with various diseases, such as diabetes, neurodegenerative disor‑
ders, and cancer. Glyoxalase 1 (GLO1) exerts an anti‑glycation defense by detoxifying MG to D‑lactate.

Methods Here, we used our validated model consisting of stable GLO1 depletion to induce MG stress in TNBC cells. 
Using genome‑scale DNA methylation analysis, we report that this condition resulted in DNA hypermethylation in 
TNBC cells and xenografts.

Results GLO1‑depleted breast cancer cells showed elevated expression of DNMT3B methyltransferase and significant 
loss of metastasis‑related tumor suppressor genes, as assessed using integrated analysis of methylome and transcrip‑
tome data. Interestingly, MG scavengers revealed to be as potent as typical DNA demethylating agents at triggering 
the re‑expression of representative silenced genes. Importantly, we delineated an epigenomic MG signature that 
effectively stratified TNBC patients based on survival.

Conclusion This study emphasizes the importance of MG oncometabolite, occurring downstream of the Warburg 
effect, as a novel epigenetic regulator and proposes MG scavengers to reverse altered patterns of gene expression in 
TNBC.
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Background
In last decades, major features of aggressive tumors such 
as metastatic expansion and drug resistance have been 
related to metabolic reprogramming. The best-studied 
metabolic property observed in cancer cells is indisput-
ably the Warburg effect. Contrarily to normal cells, most 
of cancer cells rely on glycolysis for building biomass to 
sustain their proliferation and ATP production, even in 
presence of oxygen [1]. A less understood and explored 
facet of this process is its significant role in the produc-
tion of methylglyoxal (MG), a highly reactive dicarbonyl 
molecule. In glycolytic cancer cells, MG is mainly formed 
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from the spontaneous conversion of dihydroxyacetone 
phosphate and glyceraldehyde 3-phosphate along the gly-
colysis pathway [2]. Cellular MG concentration is nota-
bly regulated by the detoxifying activity of the glyoxalases 
system, with glyoxalase 1 (GLO1) being the rate-limiting 
enzyme [3]. We previously used GLO1 stable depletion 
strategy in MDA-MB-231 TNBC breast cancer cells to 
induce endogenous MG accumulation and the forma-
tion of glycated adducts resulting in cellular dysfunction, 
hereafter mentioned as MG stress [4, 5]. We showed that 
GLO1-depleted MDA-MB-231 cells acquired enhanced 
growth and metastatic capacity in vivo that could be effi-
ciently reverted using carnosine, a natural dipeptide with 
potent MG scavenging capacity [4]. Our transcriptomic 
study of cancer cells with low MG detoxification capac-
ity notably pointed to the regulation of MAPK signaling, 
extracellular matrix remodeling and cell migration pro-
cesses [6].

MG is a very reactive glycating agent of proteins, 
lipids and DNA to form advanced glycation end prod-
ucts (AGEs) [7, 8]. For non-enzymatic glycation of pro-
teins, MG primarily reacts with arginine residues to form 
MG-derived hydroimidazolone [9] and argpyrimidine 
(ArgPyr) [10] adducts. We demonstrated that ArgPyr 
accumulation is a common feature in mammary [11] 
and colorectal [12, 13] malignant tumors when com-
pared with their normal counterparts. Identification of 
MG-modified proteins remains a challenge in glycation 
research. A short list of well-studied susceptible targets 
comprises extracellular proteins such as albumin [14], 
hemoglobin [15] and type IV collagen [16]. In cancer 
cells, we and others contributed to demonstrate that heat 
shock proteins (HSPs) are key MG targets. When modi-
fied by MG, HSP27 favored cancer cell escape from apop-
tosis [17–19] and HSP90 induced the blockade of Hippo 
tumor suppressor pathway [4]. More recent studies 
pointed to intense MG glycation on histones under basal 
and high glucose conditions across normal and cancer 
cell lines [20] and in breast tumors [21].

Next to histone code, epigenetic regulation of gene 
expression is governed by DNA methylation. In cancer, 
specific hot spots of hypermethylated CpGs are concen-
trated at gene promoter and enhancer regulatory domains 
[22]. Lately, DNA methylation at enhancers gained grow-
ing interest and notably pinpointed differentially meth-
ylated enhancers between ER-positive and ER-negative 
tumors [23]. DNA methyltransferases (DNMTs), responsi-
ble for DNA methylation, inhibit the expression of tumor 
suppressor genes (TSGs), conferring growth, invasion 
and survival advantages to cancer cells [24]. Accordingly, 
the cytosine analogue 5-Aza-2’-Deoxycytidine (5-AZA) 
reactivates silenced TSGs and has therapeutic efficacy 
in hematopoietic malignancies [25] and in selected solid 

tumors [26]. When compared with other breast cancer 
subtypes, TNBC showed extensive hypermethylation of 
specific epigenetically regulated genes [27]. Up-regulation 
of the expression and activity of DNMTs, and particularly 
DNMT3B, has been associated with the acquisition of a 
hypermethylator signature in breast cancer [28].

Independently of one another, metabolic reprogram-
ming and DNA hypermethylation aberrations have been 
extensively studied in breast cancer. However, the possi-
bility that a glycolysis by-product could be the trigger of 
major epigenetic changes on DNA has never been inves-
tigated to date. In this study, we used genome scale meth-
ylation analysis combined with transcriptome profiling 
to show that the pro-cancer effects of MG accumulation 
are associated, at least in part, with extensive DNA hyper-
methylation notably leading to the silencing of specific 
metastasis-related TSGs. These latter delineated a unique 
MG signature capable of segregating TNBC patients with 
poor prognosis. Importantly, our findings position MG 
stress as a druggable target upstream of DNA methylation 
machinery in breast cancer.

Methods
Cell culture and reagents
MDA-MB-231 and Hs578T TNBC breast cancer cell 
lines were obtained from the American Type Culture 
Collection (ATCC, Manassas, VA, USA). Cells were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM) 
(Lonza) containing 10% fetal bovine serum (FBS, Ther-
moFisher Scientific) and 2  mM L-glutamine (Lonza), 
unless otherwise specified. L-carnosine (C9625), ami-
noguanidine (396,494), methylglyoxal (MG, M0252) 
and 5’Aza-2’-Deoxycytidine (A3656) and cycloheximide 
(C7698) were from Sigma.

shRNA transduction
We previously described the generation and the char-
acterization of shGLO1 and shNT stable clones [4]. 
Briefly, we used commercially available shRNAs target-
ing GLO1 (shGLO1) and non-target (shNT) (shGLO1#1, 
TRCN0000118627) and shGLO1#2, TRCN0000118631) 
and non-target NT, anti-eGFP shRNA, SHC005 (all from 
Sigma-Aldrich) and shRNA transfection using lentiviral 
vectors was performed at the GIGA Institute Viral Vec-
tors platform (University of Liège). Transduced MDA-
MB-231 and Hs578T cells were selected with 1  µg/ml 
and 0.5  µg/ml of puromycin (P9620, Sigma-Aldrich), 
respectively.

DNA methylation data analysis
Sample processing
We used MDA-MB-231 breast cancer cells, 3 biological 
replicates per condition (shNT-1, -2 and -3, shGLO#1–1, 



Page 3 of 18Dube et al. J Exp Clin Cancer Res           (2023) 42:78  

-2 and -3 and shGLO1#2–1, -2 and -3) and MDA-
MB-231 mouse tumor xenografts, 3 mice per condition 
(shNT and shGLO1#2). Genomic DNA was extracted 
with the QIAamp DNA Mini Kit (Qiagen, Hilden, Ger-
many) as previously described [29]. Genomic DNA 
(500  ng) was converted with sodium bisulfite using the 
Zymo EZ DNA Methylation Kit (Zymo Research, Orange, 
USA) following the alternative incubation conditions of 
the manufacturer recommended for Illumina Infinium 
Human Methylation assays. Using 4 µl converted DNA at 
50 ng/µl according to the manufacturer’s protocol, DNA 
methylation was assessed on Infinium HumanMethyla-
tion 850 K bead-arrays. Illuminaio R package was used to 
extract raw probe intensity values (raw data). The qual-
ity of array data was evaluated visually by assessing the 
intensity level of the control probes. All samples that 
showed the expected profiles for the different control 
probes were utilized for further analyses.

Infinium Human Methylation 850K data pre‑processing
Raw data (uncorrected probe intensity values) from the 
Infinium Methylation arrays were processed with the 
following steps: probes of low quality (detection p-value 
threshold > 0.05), cross-reactive probes (i.e. targeting 
several genomic locations) as well as probes containing 
SNPs based on the extended annotation of Mc Cartney 
et  al. [30] were removed. Additionally, probes target-
ing X and Y-chromosomes were also removed from the 
analysis. Beta-values were computed using the formula: 
β-value = M / [U + M], where M and U are the raw 
“methylated” and “unmethylated” signals, respectively. 
Beta-values were corrected for type I and type II bias 
using the peak-based correction [31].

Infinium Human Methylation 850K annotation
To define promoter, enhancer and gene body, we used 
the re-annotation of the EPIC array that we have recently 
published [32]. Briefly, the promoter and enhancer were 
defined using ENCODE genome segmentation, which 
is based on histone marks. The promoter of any gene 
is therefore defined as the promoter region overlap-
ping with the transcription start site (TSS) of that gene. 
Enhancers were associated to gene using the EnhancerAt-
las database (i.e. any ENCODE-defined enhancer region 
also present in the EnhancerAtlas database is associated 
to the gene predicted to be its target by the database). 
Finally, gene body were defined as region between TSS 
and transcription terminal site (TTS) of a gene.

Differential methylation analysis
To identify differential CpGs between shNT and shGLO1 
condition we followed recommendations from [31]. 
First, the methylation values were converted to M-values 

using the following formula: M-value = log2 (β-value/
(1–β-value)). Then the statistical significance of the dif-
ferential methylation was assessed using a t-test applied 
on these M-values. P-values were corrected for multi-
testing using Benjamini–Hochberg method. In parallel, 
median β-values (shNT) for each CpG from three control 
replicates and median β-values (shGLO1) from six shGLO1 
replicates were calculated. Then median Δβ was calcu-
lated using formula: Δβ = median CpG β-value (shGLO1) – 
median CpG β-value (control). CpGs with Δβ value above 
0.2 and corrected p-value less than < 0.05 was considered 
as differentially hypermethylated CpGs, while lower than 
-0.2 as differentially hypomethylated.

ROS measurement by FACS
ROS production was measured using CM-H2DCFDA 
fluorescent probe (Invitrogen) according to the manu-
facturer’s protocol. Briefly, MDA-MB-231 cells cultured 
in low- (1  g/L) or high-glucose (4.5  g/L) medium and 
GLO1-depleted cells were trypsinized and incubated 
with the probe (diluted 1/5000 in HBSS) for 15 min in the 
dark. After centrifugation, cells were incubated in their 
corresponding culture medium during 15  min at 37  °C 
before FACS analysis.  H202 treatment (100 μΜ) was used 
as positive control for ROS induction.

Cellular MG quantification
MBo (Methyl diaminobenzene-BODIPY) was used to spe-
cifically detect endogenous MG [33]. MDA-MB-231 cells 
cultured in low- (1 g/L) or high-glucose (4.5 g/L) medium 
were treated with 5  mM MBo. After 1  h, the cells were 
washed with PBS and incubated in the corresponding cul-
ture medium for 6 h. Cells were then trypsinized and ana-
lyzed by flow cytometry (FACSCanto, BD Biosciences).

Pathway analysis of methylation data
List of genes corresponding to differentially methylated 
CpGs (between shNT and shGLO1) was ranked accord-
ing to their Δβ (rank file) and a GMT file composed of 
C6 oncogenic signature gene sets [34] manually curated 
and reclassified into oncogene inhibition (OG-I) and 
tumor suppressor gene activation (TSG-A) signatures 
(Data S2) was submitted to Gene Set Enrichment Analy-
sis (GSEA) tool [35]. Signatures identified with p-values 
and FDR q-values less than 0.05 were called significant 
and positive normalized enrichment score (NES) consid-
ered further.

Analysis of gene expression data
We analyzed the previously published RNAseq data 
[6] of MDA-MB-231 GLO1-depleted cells along with 
their controls using Kallisto—Sleuth pipeline. Quality 
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control and preprocessing of reads was performed using 
FastQC (v0.11.4) (http:// www. bioin forma tics. babra ham. 
ac. uk/ proje cts/ fastqc/) and Trimmomatic (v0.36) [36].  
Kallisto (v0.44.0) package [37] was utilized for index-
ing the ENSEMBL cDNA transcripts (Human assem-
bly hg38 (GRCh38), ENSEMBL release 92) using the 
“index” function and quantifying RNA abundance, 
using “quant” function, with a number of bootstrap set 
to 100, at gene- as well as transcript-level in transcripts 
per million (TPM) counts.Differential gene expression 
was performed using Sleuth R package (v0.30.0) [38] to 
benefit from the bootstrap estimates of Kallisto and yield 
a gene-level normalized TPM matrix. For each gene, 
both the likelihood ratio test (LRT) and Wald test (WT) 
were applied on the condition parameter to obtain their 
respective False Discovery Rate (FDR)-corrected p-val-
ues. Significantly expressed genes were those passing the 
two tests at a cutoff of FDR < 0.05. The beta value gener-
ated from the Wald test was used as synonym to the fold 
change between shGLO1 and shNT conditions.

Bisulfite pyrosequencing validation
Confirmation of Infinium data was performed using 
bisulfite genomic pyrosequencing.  Converted DNA 
was used as  template in each subsequent PCR. Prim-
ers for PCR amplification and sequencing were deduced 
with the PyroMark® Assay Design 2.0 software (Qiagen) 
and are listed in Table S1. PCRs were performed  with 
the HotStarTaq DNA polymerase PCR kit (Qiagen) under 
the following conditions: 95 °C 15 min; 50 cycles of [95 °C 
30 s; Tm 1 min; 72  °C 1 min]; 72  °C 7 min. Some genes 
required a nested PCR, for which 10 µl of the first ampli-
fication were engaged in a second one using the same 
time parameters (see Table S1). The success of  amplifi-
cation was assessed by agarose gel electrophoresis and 
the pyrosequencing of the PCR products was performed 
with the Pyromark™ Q24 system (Qiagen).

Immunoblotting
Cells were extracted with SDS 1% buffer containing 
proteases and phosphatases inhibitors (Roche). Protein 
extracts were loaded in 7.5%, 10% or a 12.5% gel and 
transferred to a PVDF membrane (Roche). After 1  h of 
blocking with 5% non-fat milk (Biorad) in Tris Buffered 
saline- 0.1% Tween 20 (TBS-T), membranes were incu-
bated with the indicated primary antibodies (Table S2) 
overnight at 4  °C. After washes in TBS-T, membranes 
were incubated during 1  h with the corresponding sec-
ondary antibodies. Chemiluminescent detection of pro-
tein expression was performed using Pierce ECL Western 
(BioRad) or Clarity™ Western ECL Substrate (BioRad) 
depending on the expression level of proteins of interest. 

Band densities were quantified with Image J Software 
(https:// imagej. nih. gov/ ij/).

RNA isolation and reverse transcription‑ quantitative PCR 
(RT‑QPCR)
RNA extraction was performed according to the man-
ufacturer’s protocol (NucleoSpin RNA, Macherey–
Nagel, Düren, Germany). The reverse transcription was 
achieved with 2  µg of total RNA mixed with random 
hexamer primers (Thermoscientific), dNTP mix (Ther-
moscientific), RiboLock RNAse inhibitor (Thermoscien-
tific), reaction Buffer (Promega) and M-MLTV reverse 
transcriptase (Promega). For RT-QPCR, 100 ng of cDNA 
were mixed with primers, probe (Universal ProbeLibrary 
System, Roche) (Table S3) and 2 × Takyon Rox Probe 
MasterMix dTTP Blue (Eurogentec, Seraing, Belgium). 
Q-PCR were performed under the following condi-
tions: 95 °C 10 min; 40 cycles of [95 °C 15 s; 60 °C 1 min] 
using the QuantStudio™ 3 Real-Time PCR Systems using 
the corresponding manufacturer’s software (Applied 
Biosystems, Carlsbad, CA). The expression of genes of 
interest was normalized to 18S rRNA to obtain a relative 
mRNA expression in  2−ΔΔCt.

Real‑time cell migration assay
Cells were seeded in a 6–well plate and treated with 
5-AZA or transfected with siRNAs specifically directed 
against DNMT3B. Eighty thousand cells from the 6-well 
plates were seeded in IncuCyte® ImageLock 96-well 
microplates and were scratched with the woundmaker 
scratcher. Then, cells were washed with the appropriate 
medium and treated again with 5-AZA when indicated. 
The monitoring and the analysis of the migration pro-
cess were performed using the IncuCyte S3 System. The 
percentage of relative wound closure was calculated as 
follows: [(Wound width time 0 – Wound width time 1) / 
(wound width time 0)] * 100.

Xenografts
Tumor material from MDA-MB-231 cells xenografted in 
mice was available from our previous study [4]. Briefly, 
MDA-MB-231 shNT and shGLO1#2 cells were sus-
pended in 10% FBS culture medium and Matrigel (BD 
Biosciences) (1:1 v/v). One million of cells were subcu-
taneously inoculated in one flank of 5-week-old female 
NOD-SCID mice. Tumors were collected and frozen in 
liquid nitrogen until DNA, protein or RNA extraction, as 
indicated.

Meta integration of differential methylation, gene 
expression and pathway data
The data from differential gene expression and differen-
tial methylation analysis mentioned above were merged at 
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gene-level using in-house R script. Genes having differen-
tially up-regulated expression and hypomethylation were 
retrieved and called as differential gene list 1 (Data S4); 
and those having differentially down-regulated expression 
and hypermethylation were called as differential gene list 
2 (Data S3). As we understand from the literature [39] that 
hypermethylation in the promoter or enhancer region of a 
gene causes its down-expression, we considered methyla-
tion of only promoter or enhancer for retrieving the above 
differential gene lists (Fig. 3A). As the scope of our work is 
oriented towards hypermethylation and down-expression 
of genes caused by MG stress, we focused our attention 
on list 2 genes (Data S3) and used them for all the follow-
ing analysis. For the sake of completeness, genes having 
differentially up-regulated expression and hypermethyla-
tion in gene body are listed in Data S5; and those having 
differentially down-regulated expression and hypometh-
ylation in gene body are listed in Data S6.

Additionally, as depicted in Fig.  3A, results from the 
GSEA pathway analysis of methylation and gene expres-
sion data were integrated. Statistically significant pathways 
(p-values < 0.05, FDR q-value < 0.05) with positive NES 
from methylation and expression results were overlapped 
and called as ‘epigenetically repressed pathways’ (Fig. 3A). 
Common genes composing these pathways were identified 
and further overlapped with list of ‘epigenetically repressed 
genes’ to yield a ‘60-gene MG signature’.

As this ‘60-gene MG signature’ was derived from cell line 
data, we next aimed at generating a clinically relevant TNBC-
specific signature using METABRIC breast cancer patients 
data [40, 41]. For this purpose, signature optimization was 
carried out using pathway correction method where expres-
sion values of each gene were correlated with their respec-
tive pathway module score (see score calculation formula 
below) and genes with correlation R > 0.25 and p-value < 0.05 
were kept. This resulted in a refined and clinically relevant 
‘14-gene MG signature’ that was further correlated with clini-
cal parameters and other specific metabolic signatures.

MG score calculation
A score corresponding to MG signature (i.e. MG score) and 
other signatures used in this work was calculated using the 
following R function:

signature_score < −function(gene_list, expr_df ){

expr_df < −expr_df [intersect(gene_list, rownames(expr_df )), ]

expr_df < −as.matrix(expr_df )

scaled_expr_df < −apply(expr_df , 1, scale)

scaled_expr_df < −t(scaled_expr_df )

colnames(scaled_expr_df ) < −colnames(expr_df )

score < −apply(scaled_expr_df , 2,mean, na.rm = TRUE)

return(−1 ∗ score)}

where gene_list is a character vector of genes in the signa-
ture module and expr_data is a numeric dataframe with 
rows as genes and columns as samples. The ‘signature 
score’ is computed as the z-score normalized-expression 
sum for the signature genes: each gene expression is first 
z-score normalized across patients (i.e. we set the mean 
expression of each gene to zero and its expression value 
for each patient is then represent as its number of stand-
ard deviation toward the mean). This step allows each 
gene to contribute equally to the score. Then the signa-
ture_score is computed, for each patient, as the mean of 
the normalized expression of all the signature genes. For 
a more intuitive score, the final value was multiplied by 
-1 thus allowing the score to correlate with the expected 
MG stress level.

Statistical analysis
Experimental data from two groups were compared 
with unpaired t-test and experimental data from more 
than two groups were compared using one-way or two-
way analysis of variance (ANOVA) depending on the 
number of grouping factors. Dunnett’s test was applied 
for multiple comparisons. A bilateral p value < 0.05 was 
considered as statistically significant. Kaplan–Meier 
survival curves with log-rank tests, recording patients at 
the time of death or disease recurrence or last follow-up 
visit, were used to compare overall survival or disease-
free survival rates. All p-values were two-sided, and 
p-values of less than 0.05 were considered statistically 
significant.

Raw data availability
The Infinium DNA methylation data related to the study 
are publicly available in the NCBI’s GEO database (GEO 
ID: GSE185237).

Results
Knockdown of GLO1 contributes to major changes in DNA 
methylation in breast cancer cells
To interrogate DNA methylation status under low MG 
detoxification condition, we performed methylation pro-
filing using Infinium 850K human methylation array on 
MDA-MB-231 TNBC cells stably depleted for GLO1 
and on control cells (referred hereafter as shGLO1 and 
shNT, respectively). Efficient GLO1 depletion at the pro-
tein level in MDA-MB-231 cells is shown in Fig. S1A. 
Elevated levels of MG and its protein adducts in shGLO1 
MDA-MB-231 cells have been validated in a previ-
ous study [4]. For the first time, our methylome analysis 
pointed to major alterations in the epigenome associated 
with decreased GLO1-mediated detoxification in breast 
cancer cells. Principal component analysis (PCA) of DNA 
methylation data based on the 2000 probes showing the 



Page 6 of 18Dube et al. J Exp Clin Cancer Res           (2023) 42:78 

highest standard deviation emphasized a broad pattern 
of methylation in GLO1-depleted cells that was clearly 
different from shNT control cells (Fig. S1B). Assuring 
reliability of DNA methylation data, β-values of selected 
representative genes obtained using pyrosequencing 
technique showed consistent correlation with Infinium 
array methylation data (Pearson correlation coefficient 
R = 0.955, p-value = 7.23e-72, Fig. S1C).

By comparing control and GLO1-depleted cells, we 
identified 47,578 differentially methylated CpGs (DMCs) 
accounting for 22,702 genes, among which the large 
majority (41,431 DMCs; 87.1%) was hypermethylated in 
shGLO1 cells (Fig.  1A, Data S1) indicating a significant 
expansion of genome methylation upon GLO1 deple-
tion in breast cancer cells. These 41,431 hypermethyl-
ated DMCs were associated to 20,243 genes accounting 
for 37.1% of all genes present on the array. For the same 
cells and comparison, hypomethylation of 12.9% genes 
was observed. This latter could be linked, at least in 
part, to TET-mediated compensatory mechanism, as 
suggested by the significant overexpression of TET1 in 
GLO1-depleted cells when compared with control (Fig. 
S1D). Consistent DNA hypermethylation was observed 
in tumor xenografts generated by implantation of GLO1-
depleted cells in NOD-SCID mice. Using the same array, 
we identified 90,441 DMCs between control and GLO1-
depleted xenografts, with 79,419 (87.8%) hypermethyl-
ated DMCs and 11,022 (12.1%) hypomethylated DMCs 
(Fig. 1B). Differentially methylated CpGs identified using 
the cell line model were searched in the methylation 
data of the xenograft model that demonstrated a similar 
methylation pattern (Fig.  1C). Indeed, hypermethylated 
CpGs in cultured cells showed 90.1% of concordance 
with xenografts (Fig. S1E). Altogether these data indicate 
that in vitro  cell culture conditions or in vivo extracellu-
lar microenvironment did not significantly interfere with 
MG stress associated hypermethylation. Knowing that 
elevated oxidative stress can trigger DNA hypermethyla-
tion [42], we next excluded that ROS levels could have 
been significantly induced under both exogenous and 
endogenous MG stress conditions (Fig. S1F).

Upon GLO1 depletion, the hypermethylation cov-
ered intergenic, gene body and regions that regu-
late transcription initiation, i.e. gene promoters and 
enhancers (referred hereafter as “regulatory regions”) 
in MDA-MB-231 cells (Fig. 1D and Fig. S1G) and xeno-
grafts (Fig. S1H). It was however remarkable that 7% CpG 
probes corresponding to enhancers were hypermethyl-
ated against only 2% in promoter regions, suggesting 
that the effect of GLO1 depletion is more prominent on 
enhancer regulatory regions (Fig.  1D). Altogether, these 
results indicate that MG stress induced a strong DNA 
hypermethylation affecting a large proportion of genes 
including but not limited to tumor suppressors. There-
fore, we next investigated if genes hypermethylated in 
their regulatory region could be enriched among anti-
oncogenic pathways, which could suggest a potential 
inhibition of those pathways leading to the pro-onco-
genic phenotype we have previously observed in GLO1-
depleted breast cancer cells [4, 6].

Gene set enrichment analysis (GSEA) highlights 
key anti‑oncogenic pathways comprising MG 
stress‑hypermethylated genes
We then performed a gene set enrichment analysis 
(GSEA) searching for statistical associations between 
the observed enhancer/promoter methylation altera-
tions to genes under GLO1-depletion condition and 
those contained in a collection of pathways related 
to cancer development and progression [35]. We 
manually extracted two types of anti-oncogenic path-
ways from the C6 module of MSigDB (https:// www. 
gsea- msigdb. org/ gsea/ msigdb/): pathways compris-
ing TSG-activated genes (TSG-A) and those includ-
ing oncogene-inhibited genes (OG-I) (Data S2). This 
analysis allowed the identification of 70 pathways sig-
nificantly enriched in genes showing hypermethylated 
CpG loci (hereafter mentioned as hypermethylated 
pathways) with positive normalized enrichment score 
(NES) and FDR < 0.05 – and therefore potentially epi-
genetically silenced upon GLO1 knockdown. Among 
them, 53 belonged to OG-I and 17 represented TSG-A 

(See figure on next page.)
Fig. 1 GLO1‑depleted MDA‑MB‑231 breast cancer cells exhibit major DNA hypermethylation and loss of metastasis‑related TSGs. A and B Pie charts 
summarizing the proportion of hypomethylation (FDR < 0.05, Δβ < ‑0.2) and hypermethylation (FDR < 0.05, Δβ > 0.2) within differentially methylated 
CpGs (DMCs) found in MDA‑MB‑231 cells and mouse xenografts, respectively. C Heatmap representing unsupervised clustering of DMCs 
(rows) identified between control (shNT, n = 3) and GLO1‑depleted (shGLO1, n = 6) cells (columns) and their corresponding status in xenograft 
methylation data. Color key scale blue: low methylation and orange: high methylation. D Proportion of hypo‑ and hypermethylated DMCs 
distributed across the genome regulatory regions. Mixed regions correspond to Infinium array probes referring to either promoter or enhancer, 
according to the considered cell line. E Tumor suppressor gene activated (TSG‑A) and oncogene inhibited (OG‑I) pathways enriched in genes that 
were affected by hypermethylation in GLO1‑depleted cells as estimated from GSEA tool enrichment scores (with FDR < 0.05). For example, P53 
knockdown led to down expression of genes that composed the P53 TSG pathway (‘P53_DN.V1_DN’) whose activation (TSG‑A) was affected by 
high methylation (enrichment score). Please refer to Data S8 for more details on TSG‑A and OG‑I pathways. F Representative metastasis‑related TSGs 
that were hypermethylated and low expressed under MG stress. Data represent the mean values ± SEM of three independent experiments and 
were analyzed using a one‑way analysis of variance (ANOVA) followed by a Dunnett test (** p < 0.01, *** p < 0.001 and **** p < 0.0001)

https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
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hypermethylated pathways. These gene sets identified 
as the most significantly affected by MG-associated 
DNA hypermethylation were notably related to kinase 
signaling, cell cycle regulation and cellular differen-
tiation. The first type of gene sets, corresponding to 
OG-I, was related to kinase signaling and response 
to growth factors, notably comprising EGFR, MYC, 
LEF1 and PDGF enriched pathways following MG 
stress hypermethylation. Representative GSEA enrich-
ment plots are shown in Fig. 1E. The second category 
of the main hypermethylated pathways under study, 
namely TSG-A, pointed to gene sets related to classic 
TSGs such as RB, P53 and PTEN thus, inferring to a 
regulatory mechanism occurring under elevated MG 
condition that targets TSGs primarily known to be 
down-regulated/inactivated through mutation in can-
cer. Interestingly, pathways driven by epigenetic regu-
lators such as polycomb-repressive complex 1 (PRC1) 
and BMI1 were also enriched (Fig.  1E). FOXC1 gene, 
a target of PRC1 that is down-regulated at the mRNA 
level upon GLO1 depletion (Data S3), has been previ-
ously shown to inhibit migration and invasion in vitro 
and to reduce lung metastasis in  vivo when overex-
pressed in MDA-MB-231 cells [43].

Importantly, hypermethylated pathways under GLO1 
depletion comprised several silenced genes, as assessed 
based on RNASeq (Data S3) and using RT-QPCR 
(Fig.  1F), most of which were known as TSGs related 
to the metastatic process either in breast cancer or in 
other cancer cell types. These genes included TSGs 
involved in cell–cell contact and cell migratory capac-
ity, that have been previously shown to be silenced 
through DNA methylation. Best examples include the 
epithelial to mesenchymal transition (EMT) hallmark 
gene E-cadherin (CDH1), whose transcriptional silenc-
ing by hypermethylation occurs at high frequency 
in infiltrating primary breast cancers [44]; and Ras-
related protein 17 (RAB17) gene coding for a small 
GTPase whose expression must be reduced for tumor 
cells to migrate efficiently [45] (Fig.  1F). Remarkably, 
some metastasis-related TSGs exhibited hypermeth-
ylated CpGs in their enhancer region (eDMCs) upon 
MG stress. A representative example being gamma 
interferon-inducible lysosomal thiol reductase (GILT/
IFI30) whose low expression has been associated with 
a higher Ki67 proliferation index and poorer survival 
in breast cancer [46] (Fig.  1F). The down-regulation 
of most of the evaluated TSGs proved to be, at least 
in part, dependent upon methylation as demonstrated 
using 5-aza-2′-deoxycytidine (5-AZA), which signifi-
cantly restored gene expression in basal condition and/
or under GLO1 depletion (Fig. S1I).

DNMT3B up regulation is efficiently reversed using MG 
scavengers in GLO1‑depleted breast cancer cells
DNA methylation machinery essentially relies on the 
activity of DNMT1, DNMT3A and DNMT3B DNA 
methyltransferases. We next evaluated the expression 
of the three enzymes under both exogenous and endog-
enous MG stress in MDA-MB-231 cells. Under these 
conditions, DNMT1 basal protein level was not affected 
and DNMT3A expression was not consistently regu-
lated. However, DNMT3B protein level showed a sig-
nificant up regulation in GLO1-depleted MDA-MB-231 
cells compared to control (Fig.  2A). DNMT3B protein 
up regulation was retrieved in Hs578T, another TNBC 
cell line stably depleted for GLO1. Acute exogenous 
MG challenge triggered DNMT3B induction in both 
TNBC cell lines (Fig.  2A), thus recapitulating GLO1 
knockdown effect. Efficient GLO1 depletion at the pro-
tein level and subsequent MG adducts accumulation 
in Hs578T cells are shown in Figs.  S2A and B, respec-
tively. Consistent with cultured cells, was the marked 
increase of DNMT3B expression—but not DNMT1 
and DNMT3A—in GLO1-depleted MDA-MB-231 
tumor xenografts when compared with control tumors 
(Fig. 2B). Knowing that MG causes adduct formation on 
20S proteasomal subunit proteins [47] thus likely alter-
ing the half-lives of numerous cellular proteins, we next 
explored the effect of GLO1 depletion on DNMT3B 
protein half-life using cycloheximide protein synthe-
sis inhibitor. Interestingly, we observed that the abun-
dance of DNMT3B over time was significantly higher 
in GLO1-depleted cells than in shNT cells after protein 
synthesis blockade (Fig.  2C). Western blots displaying 
DNMT3B protein stability with time are shown in Fig. 
S2C. Roll et  al. have previously characterized a 9-gene 
signature associated with elevated DNMT3B expres-
sion (protein and mRNA) and DNMTs global activity, in 
breast cancer cell lines [48] and TNBC primary tumors 
[27]. We found that this DNMT3B signature effectively 
segregated breast cancer cells under MG stress from 
control cells (Fig. S2D). The silencing of 4 genes out of 
9, which passed a transcript per million (TPM) count 
cut-off of 1 in control cells, were further validated using 
RT-QPCR in GLO1-depleted cells. CDH1 (shown in 
Fig. 1F), CST6, MUC1 and SCNN1A genes, all reported 
to be aberrantly hypermethylated in breast cancer, were 
down-regulated in both MDA-MB-231 (Fig. S2E) and 
Hs578T (Fig. S2F) GLO1-depleted breast cancer cells 
when compared with control.

Next, we reasoned that we could mimic the Warburg 
effect condition by switching MDA-MB-231 cells cul-
tured in low glucose (1  g/L) to high glucose (4.5  g/L). 
After 24  h under high glucose condition, MG level 
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showed a significant increase as assessed using MBo 
specific fluorescent probe (Fig. S2G). Along this chal-
lenge, the cells effectively showed increased DNMT3B 
protein level (Fig. S2H) thus recapitulating both GLO1 
knockdown and exogenous MG effects. The accumula-
tion of MG-modified HSP27, a well described MG pro-
tein adduct in cancer cells, is shown as a read out for 
MG stress under the same culture conditions (Fig. S2H). 
Then, we sought to explore whether MG stress could 
up regulate DNMT3B level in other human cancer cell 
types that we stably depleted for GLO1 expression. 
Interestingly, colorectal HCT116 and pancreatic MIA 
PaCa-2 cancer cell lines displayed significantly elevated 
DNMT3B protein levels upon MG stress (Fig. S2I).

We next aimed at validating further the link between 
GLO1 depletion and the regulation of DNMT3B cel-
lular levels. For this purpose, we evaluated the effects 
of carnosine and aminoguanidine, two potent MG 
scavengers, on DNMT3B protein expression. Both 
scavengers induced a significant decrease of DNMT3B 
in GLO1-depleted MDA-MB-231 (Figs.  2D and E) 
and Hs578T cells (Figs. S3A and B). Altogether, these 
observations indicate that the MG stress associated to 
GLO1 depletion controls, at least in part, cellular avail-
ability of a de novo methylation key enzyme known 
to be essential for the acquisition of a hypermethyl-
ated phenotype in TNBC. Importantly, MG scaven-
gers efficiently brought back DNMT3B expression to 
basal level thus pointing to their potential impact on 
the re-expression of methylation-silenced genes such 
as TSGs. Moreover, carnosine treatment effectively 
re-induced the expression of all the metastasis-related 
TSGs under study (Fig. 2F).

The migratory advantage of GLO1‑depleted breast cancer 
cells is lost upon inhibition of DNMT3B
Based on the data gathered so far and on our previous 
reports linking MG stress with the metastatic capacity 
of breast cancer cells [4, 6], we envisaged the possibility 
that MG-associated changes of the methylome may play 
an essential role in the launching of dominant chromatin 
silencing on TSGs potentially impacting on the migra-
tory potential of breast cancer cells. Therefore, we next 
asked whether interfering with DNMTs activity using 
5-AZA or by specifically silencing DNMT3B would affect 
the migratory potential of GLO1-depleted MDA-MB-231 
cells. Both 5-AZA (Figs.  2G and H and Figs. S3C and D) 
and DNMT3B specific inhibition strategies (Figs. 2I and J 
and Figs. S3F and G) significantly impeded the migratory 
capacity of GLO1-depleted cells. Representative pictures of 
wound closure after silencing of DNMT3B are shown for 
control and GLO1-depleted cells at initial and final time 
points of the migration experiments under 5-AZA (Fig. 
S3E) and siDNMT3B conditions (Fig.  2I and S3G). Effi-
cient decrease of DNMT3B protein level was verified under 
the same experimental conditions (Figs. S3H and I). These 
results show that DNMT3B is implicated in the acquisi-
tion of an enhanced migratory phenotype in MG-stressed 
TNBC cells. At this stage of the study, we demonstrated 
that MG stress is an upstream epigenetic regulator process 
that impacts on the hypermethylation of metastasis-related 
TSGs and the pro-migratory capacity of breast cancer cells.

Integrative analysis of DNA methylation and gene 
expression data identifies a specific MG stress signature
In order to gain more insight into the genes epigeneti-
cally regulated upon GLO1 depletion, we next undertook 

Fig. 2 MG stress induces the overexpression of DNMT3B that is reversed using MG scavengers and that mediates enhanced migratory capacity 
of GLO1‑depleted cells.A Among DNMTs, endogenous MG stress consistently increased DNMT3B protein levels across GLO1‑depleted (shGLO1 #1 
and #2) MDA‑MB‑231 and Hs578T TNBC breast cancer cells as assessed using western blot on total protein cell extracts and compared with control 
(shNT) cells. Additionally, exogenous MG treatment significantly up regulated DNMT3B levels in both breast cancer cell lines $, †. B Among DNMTs, 
expression of DNMT3B was elevated in shGLO1 (n = 6) when compared with shNT mouse xenografts (n = 3), as assessed using western blot on total 
protein tumor extracts †. C DNMT3B protein abundance, in presence of cycloheximide (10 μg/mL) at the indicated timing, in shNT MDA‑MB‑231 
cells demonstrated shorter DNMT3B half‑life contrasting with GLO1‑depleted cells. Data are represented as means ± SEM of three independent 
experiments and were analyzed using two‑way analysis of variance (ANOVA) followed by Dunnett test (**** p < 0.0001). Corresponding western 
blots are shown in Fig. S2C. D and E Carnosine (48 h) and aminoguanidine (24 h) treatments significantly reduced DNMT3B protein expression 
in a dose‑dependent manner in GLO1‑depleted MDA‑MB‑231 cells, respectively $, †. F Carnosine re‑induces the expression of metastasis‑related 
TSGs under study in MDA‑MB‑231 cells as assessed using RT‑QPCR §. G The migratory capacity of GLO1‑depleted MDA‑MB‑231 cells was evaluated 
upon 5‑AZA treatment (72 h) using a scratch wound assay under Incucyte® life cell microscopy. Results are given as a percentage of relative wound 
closure over time for shGLO1#2 $, ¥. H Relative wound closure at 8 h time point post scratch in shGLO1#2 cells treated with increasing doses of 
5‑AZA $, ‡. I Representative pictures illustrating the wound closure at 8 h post scratch of MDA‑MB‑231 shGLO1#2 cells silenced (siDNMT3B) or not 
(Irr siRNA) for DNMT3B and compared to shNT cells. J Migratory capacity (8 h time point) of MDA‑MB‑231 shGLO1#2 cells upon DNMT3B silencing 
$, ‡. $ One of three experiments is shown. † Alpha‑tubulin was used as a loading control. ‡ Data represent the mean values ± SD of three technical 
replicates and were analyzed using a one‑way analysis of variance (ANOVA) followed by a Dunnett test (** p < 0.01, *** p < 0.001, **** p < 0.0001). 
§ Data represent the mean values ± SEM of three independent experiments and were analyzed using a one‑way analysis of variance (ANOVA) 
followed by a Dunnett test (* p < 0.05, ** p < 0.01, *** p < 0.001 and ns: not significant). ¥ Data represent the mean values ± SD of three technical 
replicates and were analyzed using a two‑way analysis of variance (ANOVA) followed by a Dunnett test (**** p < 0.0001)

(See figure on next page.)
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an integrative analysis using methylome and transcrip-
tome data of shGLO1#2 cells, which displayed the most 
efficient reduction of GLO1 and thereafter mentioned 
as shGLO1 (Fig. S1A). First, we implemented Kallisto-
Sleuth pipeline (see Materials and Methods) to analyze 
the transcriptomic data generated from shGLO1 and 
shNT MDA-MB-231 cells. We found 2018 differentially 
expressed genes (DEGs), among which 1095 genes were 
down-regulated and 923 genes were up-regulated. Sec-
ondly, we identified 26,938 differentially hypermethyl-
ated and 9553 hypomethylated genes. We integrated the 
aforementioned transcriptomic and methylome results 
(as described in Materials and Methods) to generate two 
lists of genes showing an inverse relation between their 
methylation level (promoter and/or enhancer regions) 
and their expression level under MG stress: hypermeth-
ylated/low expression (Data S3) and hypomethylated/
high expression (Data S4). This first step of integration 
resulted in 601 hypermethylated and down-expressed 
genes that represented epigenetically repressed genes in 
GLO1-depleted cells (see diagram in Figs. 3A and S4A). 
Interestingly, the ToppFun gene ontology analysis run 
on epigenetically repressed genes recapitulated most of 
the metastasis-related biological processes that we have 
previously highlighted based on MG stress transcriptome 
only [6] (Fig. S4B). Thus suggesting that these oncogenic 
processes are likely associated with the tumor suppressor 
genes identified as epigenetically repressed in the present 
study.

In the second step of integration (Fig. 3A), GSEA anal-
ysis of methylation data, based on the anti-oncogenic 
gene sets described above (Data S2), allowed the identi-
fication of 83 significant (FDR < 0.05) pathways with posi-
tive normalized enrichment score (NES) for methylation 

(hypermethylated pathways), that are affected upon 
induction of MG stress. GSEA analysis of shGLO1 tran-
scriptomic data revealed six significant pathways with 
negative NES (FDR < 0.05) for gene expression (under-
expressed pathways) (Fig. 3A and Data S2). Intersection 
of the hypermethylated and underexpressed pathways 
resulted in six common anti-oncogenic pathways 
expected to be epigenetically repressed under MG stress. 
The final intersection between the 872 genes composing 
these six epigenetically repressed pathways and the 601 
hypermethylated genes resulted in 60 genes that gener-
ated the ‘60-gene MG signature’ (Fig. 3A, Data S7). This 
signature summarizes MG pro-cancer effects at the gene 
and pathway levels that resulted from either OG-I or 
TSG-A control. Importantly, when verified, majority of 
the genes composing the 60-gene MG signature derived 
from cell lines consistently showed higher methylation 
levels in GLO1-depleted xenografts compared to control 
(Fig. S4C). Prompted by this observation, we performed 
RT-QPCR on GLO1-depleted tumor xenografts and 
validated the loss of expression of several genes compos-
ing the six main deregulated anti-oncogenic pathways 
and thus belonging to the 60-gene MG signature (Fig. 
S4D). The significant loss of cytokeratin 18 (KRT18), a 
well described luminal breast cancer marker, is worth 
mentioning, as the sole knockdown of KRT18 has been 
recently shown to induce EMT and stemness features 
in non-metastatic MCF-7 breast cancer cells [49]. Even 
more supportive of its TSG function, the forced expres-
sion of KRT18 in MDA-MB-231 cells has been reported 
to abolish their capacity to form tumors and metasta-
size in  vivo [50]. Another significantly repressed TSG 
under MG stress is phosphatidylinositol phosphatase 
(INPP4B) gene, the loss of which represents one of the 

(See figure on next page.)
Fig. 3 Integrative analysis of DNA methylation and gene expression data identifies a 14‑gene signature of MG stress with clinical 
relevance.A Workflow showing the integration of differential gene expression, methylation and their corresponding GSEA pathway enrichment 
under MG stress condition. This integration led to the selection of 60 potential candidates that represented genes repressed under MG stress. 
These 60 genes were validated in xenografts and refined further using pathway correlation approach (detailed in Material and Methods) using 
TNBC patient data from METABRIC cohort. This resulted in a final 14‑gene based signature of MG stress. Next, MG score was derived from this MG 
signature and was evaluated for its clinical relevance in TNBC patients. The numbers in the yellow boxes correspond to the genes resulting from 
the indicated analysis. The numbers in the green boxes represent GSEA pro‑oncogenic pathways with their respective total number of genes 
specified between brackets. B Signature optimization data are represented in a heatmap showing correlation between the six MG stress‑affected 
pathways (rows) and 60 integration genes (columns) using METABRIC TNBC patient cohort. Genes with statistically significant correlation greater 
than 0.25 with at least one of the pathways were selected for composing the final MG signature. The outcome of this optimization step is 14 genes 
highlighted in bold in the columns and composing MG signature (detailed in Material and Methods). Positive and negative correlations are shown 
in red and cyan colors, respectively. Insignificant correlation values (p‑value > 0.05 or correlation coefficient = 0) are shown as white boxes. C Top 
panel represents a heatmap of the 14‑gene MG signature in METABRIC TNBC patients (n = 277). Middle panel shows the waterfall plot representing 
TNBCs distribution from low to high MG score (Y‑axis). Bottom panel represents signature status of hypermethylator phenotype [27], metabolic 
glycolysis and hypoxia signatures based on Reactome gene lists, LDHB gene expression, and metabolic‑pathway‑based subtypes (MPS1, MPS2, 
MPS3) [53]. All these signature scores are represented as low (green), mid (yellow) and high (red) level and their respective Spearman correlation 
(R) with p‑values is given when compared to MG signature score. D Kaplan–Meier curves showing significant differences (p = 0.015) in disease 
specific survival between low (n = 93) and high (n = 93) MG score TNBC tumors from METABRIC cohort. E Kaplan–Meier curves showing significant 
differences of disease specific survival across Lehmann subtypes using METABRIC TNBC cohort with respective MG score status highlighted in the 
pie plots shown beside. As MG score increases the survival probability decreases, with patients bearing BL1 and UNS tumor subtypes being among 
the worst survivors. Respective number of patients for each TNBC subtype are mentioned in parentheses
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two best biomarkers (with nestin gain) for the identifi-
cation of basal-like subtype [51]. Interestingly, the MG 
signature notably comprised follistatin (FST), a member 
of the transforming growth factor-β ligands, previously 
reported as a metastasis suppressor in breast cancer [52].

In sum, this upper level of integration selected for six 
epigenetically repressed pathways included three TSG-A 
gene sets, the RB pathway and two pathways related to 
late stages of embryonic stem cell (ESC) differentiation 
(ESC J1 and ESC V6.5) that are potential suppressors of 
cancer stem cell phenotype; and three OG-I gene sets, 
the EGFR and RAF1 main drivers of stem cell and lym-
phoid enhancer-binding factor 1 (LEF1), as detailed in 
Data S2. The integrative analysis of DNA methylome and 
transcriptome highlighted cell cycle control, cell differ-
entiation and kinase signaling, all processes that are con-
sistent with a pro-oncogenic role for MG stress-mediated 
hypermethylation in breast cancer.

Optimization of MG stress signature based 
on epigenetically repressed pathways in TNBC patients
In order to assess MG stress in patients, we aimed at 
optimizing the MG signature in a TNBC cohort. For this 
purpose, we used the expression data from the Molecu-
lar Taxonomy of Breast Cancer International Consortium 
(METABRIC) cohort comprising 277 TNBC primary 
tumors to identify, from the 60-gene signature, the genes 
that best reflected MG affected pathways in cultured 
TNBC cells. For this identification, only the genes pre-
senting a significant positive correlation (Pearson’s cor-
relation coefficient R > 0.25, p-value < 0.05) with their 
respective pathway were considered as candidate genes 
for the refined MG signature (Fig. 3B). At this stage of the 
study, integrated methylation and expression data analy-
sis along with pathway enrichment assessment resulted 
in a comprehensive MG signature of 14 known or novel 
TSGs, whose expression was epigenetically repressed in 
breast cancer. This refined 14-gene MG signature was 
then taken forward for clinical association studies and 
analysis.

MG signature score correlates with key methylation, 
metabolic and clinical features in TNBC tumors
Next, we tested the 14-gene signature for its clinical rel-
evance using gene expression and patient clinical data 
from METABRIC cohort (Fig.  3C, top panel and Data 
S8). First, an MG score was calculated for each patient 
using its expression data, the 14-gene MG signature and 
the function ‘signature_score’, as described in Materials 
and Methods. Then, breast cancer patients were ordered 
from low to high MG score groups (Fig.  3C, middle 
panel). For validating the relation between the 14-gene 
MG signature and methylation status in TNBC tumors, 

we correlated MG score with the score calculated for 
the breast cancer hypermethylator phenotype signature 
[27], revealing an expected positive correlation (R = 0.24, 
p-value = 5.98e−05) (Fig.  3C, bottom panel). MG score 
also proved to be significantly correlated with pathways 
regulating glycolysis (R = 0.49, p-value = 1.60e−18) and 
hypoxia (R = 0.17, p-value = 5.38e−03) (Fig.  3C, bottom 
panel, signatures from Reactome gene lists).

We next referred to a study recently published by 
Gong and collaborators [53] who proposed the cluster-
ing of TNBC patients, of the Fudan University Shanghai 
Cancer Center (FUSCC) cohort, into three metabolic-
pathway-based subtypes (MPS1, MPS2 and MPS3) pre-
senting characteristic metabolic vulnerabilities that 
can be therapeutically targeted. We took advantage of 
MPS classification to understand how MG signature 
aligns and correlates with each metabolic subtype and 
may contribute to metabolism-based TNBC subtyp-
ing. We found that MG score was strongly correlated 
with MPS2 (R = 0.61, p-value = 4.36e−29), the glycolytic 
TNBC subtype with up regulated carbohydrate and 
nucleotide metabolism (Fig.  3C, bottom panel). Inter-
estingly, we observed that MG score showed a strong 
negative correlation with MPS1 signature (R = -0.48, 
p-value = 1.20e−17) representing lipogenic TNBCs and 
MPS3 (R = -0.50, p-value = 8.34e−19) corresponding to 
TNBCs displaying a mixed metabolic subtype [53]. MG 
stress was positively correlated with lactate dehydroge-
nase B (LDHB), a biomarker of the glycolytic phenotype 
that is overexpressed in TNBC tumors with poor clini-
cal outcome [54] (Fig. 3C, bottom panel). It is notewor-
thy that MPS2 TNBCs showed the worse relapse free 
survival when compared with other MPS subtypes and 
were sensitive to anti-LDHB therapy [53]. Altogether our 
results sustain the strong correlation existing between 
MG stress-related epigenetic changes and TNBC glyco-
lytic phenotype and let us propose that MG signature and 
MPS2 metabolomic phenotypes converge to identify a 
subset of TNBC patients with worst survival. To validate 
further the value of our 14-gene signature for the classifi-
cation of TNBC tumors, we next analyzed the expression 
data of TNBCs (n = 154) from The Cancer Genome Atlas 
(TCGA) cohort. In line with the correlations observed 
using METABRIC cohort, this second collection high-
lighted a subgroup of breast tumors with high MG scores 
that also presented high methylation and glycolysis cal-
culated scores (Fig. S5A and Data S9). Collectively, 
these results externally validate MG stress occurrence in 
human breast tumors across different cohorts.

TNBCs are generally poorly differentiated tumors with 
unfavorable outcome. Our analysis indicated that MG 
score was elevated from most to least histologically dif-
ferentiated TNBC tumors and discriminated moderately 
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(grade 2) from poorly (grade 3) differentiated tumors 
(p-value = 2.6e−06) (Fig. S5B). This is consistent with 
fast growing and more likely invasive histologic grade 3 
tumors undergoing a marked glycolytic switch [55] and 
prone to acquire an MG stress gene signature.

Importantly, global Kaplan Meier analysis revealed sig-
nificant segregation (p-value = 0.015) between high MG 
and low MG scored METABRIC patients in terms of 
disease specific survival (DSS, Fig.  3D) and overall sur-
vival (OS, Fig. S5C), with patients bearing high MG score 
tumors presenting the poorest survival.

Based on gene expression profiling analyses, Lehman 
and collaborators [56, 57] have delineated a widely rec-
ognized classification for TNBCs. We used the distri-
bution of Lehmann subtypes in the METABRIC TNBC 
dataset and further correlated this with MG score level. 
High MG score occurred in a majority of basal-like 1 
(BL1) subtype followed by unstable (UNS) and mesen-
chymal (M) subtypes, indicating that MG stress allows 
for the specific characterization of TNBC tumors across 
different Lehman subgroups. Even more remarkable is 
that BL1 and UNS high MG-stress subtypes represented 
TNBC patients with shorter DSS (Fig.  3E) and OS (Fig. 
S5D) when compared with the other Lehmann subtypes.

Collectively, our findings contribute to position MG 
stress in TNBC as a novel targetable biomarker impact-
ing on DNA methylation, which could effectively sign 
the glycolytic phenotype of a subgroup of poor prognosis 
TNBC tumors that may be sensitive to MG scavenger-
based therapy.

Discussion
It is admitted that abnormal patterns of DNA methylation 
localized gains have profound impact on gene expression 
during malignant tumor development and metastatic 
progression in cancer patients. As an emerging hallmark 
of cancer cells, the role of metabolic reprogramming is 
becoming increasingly important. Original connections 
recognized between metabolism and epigenetic regula-
tion were mainly based on metabolism issued substrates 
and co-factors that, directly or secondarily, favor or limit 
the activity of chromatin-modifying enzymes [58]. Glyco-
lysis products such as pyruvate [59] and lactate [60] have 
been shown to decrease the expression of histone dea-
cetylases (HDACs).  Most of published studies on MG-
mediated post-translational modifications have focused 
on hydroimidazolone adducts on arginine residues, likely 
due to their abundance and/or availability of specific 
polyclonal antibodies. Coukos and collaborators [61], 
using an elegant chemoproteomic approach, have gener-
ated the first proteome-wide landscape of MG modifica-
tion of cysteine residues, with key cysteines occurring 
in the catalytic site of major metabolic enzymes such as 

acetyl-coenzyme A acetyltransferase (ACAT1). Metab-
olites playing a key role in DNA methylation such as 
homocysteine, a methyl cycle intermediate comprising 
a thiol group, could be potentially targeted byMG.  No 
doubt that the continued characterization of MG pro-
tein targets and their functions will contribute to a better 
positioning of MG oncometabolite in cancer progression 
and metastasis development.

Our data, demonstrating that MG stress acts as a regu-
lator of DNA methylation, are a step toward enlighten-
ing the multifaceted cross-talk existing between energy 
metabolism and epigenetic silencing in cancer. In GLO1-
depleted cells, we observed minor hypomethylation and 
major DNA hypermethylation. The hypomethylation can 
potentially be explained by a compensatory mechanism, 
as we observed TET1 overexpression in GLO1-depleted 
cells. Also, in rapidly replicating cells (feature of cancer 
cells) it is known that the maintenance of DNA meth-
ylation during DNA replication could be compromised 
thus allowing “passive demethylation” [62, 63]. Concern-
ing the hypermethylation, we observed that the induc-
tion of MG stress caused an elevated DNMT3B protein 
level resulting, at least in part, from a prolonged cellular 
half-life in glycolytic and metastatic breast cancer cells. 
Importantly, we have shown that these cells lose their 
migratory capacity upon DNMT3B knockdown thus 
illustrating the link between MG stress pro-cancer phe-
notype and altered DNA methylation machinery.

Remarkably, most of the cancer gene signatures 
reported to date are based on oncogene-driven regu-
lation of gene expression as an outcome predictor in 
breast cancer [64, 65]. In comparison, TSGs have been 
poorly appreciated as potential indicators of progno-
sis and/or response to therapy. In this study, aberrant 
DNA methylation under MG stress led us to character-
ize a 14-gene signature consisting of hypermethylated 
and down-regulated genes that is significantly correlated 
with poor survival in TNBC patients. Hypermethylation 
affected promoter and/or enhancer regions of specific 
TSGs known primarily for their role in regulating the 
metastatic potential of cancer cells such as: ENTPD3, an 
inhibitor of EMT and metastasis in breast cancer [66], 
and ALCAM cell adhesion molecule which reduced 
expression has been associated with poor prognosis in 
a large TMA-based immunohistochemical analysis of 
breast cancer [67].

There are several implications for this newly iden-
tified role of MG stress in DNA methylation. First, 
it mechanistically sheds light on both known and 
novel metastasis-related TSGs that are epigenetically 
inactivated in glycolytic TNBC cells. More specifi-
cally, it brings a new approach for explaining the loss 
of TSG pressure in breast cancer that could result 
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from metabolic alterations rather than mutations. We 
showed that MG stress exerted its regulatory effect on 
DNMT3B levels in breast, colon and pancreatic cancer 
cells. Future studies will prove useful in expanding our 
original findings to the numerous other cancer types 
that are characterized by oncogene-driven glycolytic 
reprogramming, as observed in most of melanoma 
tumors for example. Another potentially important 
implication of linking MG stress and epigenetic dereg-
ulation concerns our understanding of the increased 
risk of cancer in diabetic patients [68]. MG has been 
directly related to the development of diabetes [69] 
and its complications [70]. Our results suggest that the 
alterations exerted by MG stress on the epigenome may 
contribute to the growing evidence supporting the role 
of epigenetic regulation not only as a trigger but also as 
a response to obesity and type 2 diabetes [71].

Several MG-repressed TSGs in this study are typi-
cally known to be less expressed in basal than in lumi-
nal breast cancer cells. Intriguingly, MG likely imposed 
an “exacerbated” epigenetic repression on genes already 
expressed at low levels in basal breast cancer cells. The 
down-regulation of ESR1, CDH1 and FST genes under 
MG stress is the best example of this phenomenon. We 
propose that MG stress could represent an upstream 
mechanism responsible, at least in part, for the acquisi-
tion of a basal-like phenotype. Additional studies using 
luminal breast cancer MG stress models are needed to 
explore further this inspiring observation. Complemen-
tary to the seminal Knudson’s two-hit model that initially 
allowed the identification of TSGs [72], it is important to 
also consider the expression levels of TSGs and not only 
assess mutations within these genes. Although difficult to 
measure and normalize, subtle changes in TSG expres-
sion levels could influence cancer progression and metas-
tasis, as it is now recognized for oncogenes (i.e. Myc 
amplification or KRAS hyperactivation).

Alterations in DNA methylation patterns have been 
tracked in order to target metastatic dissemination and 
chemoresistance: the two most critical challenges for 
TNBC patients. We have previously reported that MG 
scavengers inhibit the migratory capacity of breast can-
cer cells [6] and repress their metastatic potential in vivo 
[4]. In this study, we show that MG scavengers are novel 
powerful down-regulators of DNMT3B provoking the 
re-expression of TSGs implicated in key processes such 
as differentiation, cell cycle control and apoptosis; all 
therapeutically desirable effects. Although further pre-
clinical confirmation is required, MG scavengers such 
as carnosine (an endogenously produced dipeptide) and 
aminoguanidine (used to reduce diabetes complications) 
represent a novel and promising non toxic treatment 
option for TNBC tumors with high MG score.

Considering the subtle crosstalk existing between his-
tone modification and DNA methylation, it is well estab-
lished that their mutual influence contributes to genomic 
instability and cancer progression. For example, de novo 
DNA methylation in cancer is possibly targeted to some 
genes marked with histone H3 lysine 27 methylation 
Interestingly, the other way around, DNA methylation 
might serve as a template for some histone modifica-
tions after DNA replication [73]. Based on this, we do 
not exclude that MG-mediated glycation of histones may 
influence DNA methylation either directly with glycated-
histones defining a novel histone code, yet to be deci-
phered, that may favor the recruitment of specific writer 
and/or eraser proteins; or indirectly as it has been shown 
that some histones see their canonical post-translational 
modifications (i.e. acetylation) hampered by MG-medi-
ated glycation [20].

Consequently, it is expected that the complex molec-
ular mechanisms needed to trigger the re-activation 
of epigenetically silenced TSGs requires the concomi-
tant use of DNA hypomethylating agents and inhibi-
tors of histone deacetylases such as trichostatin A or 
LAQ824. Previous use of such combined treatments 
resulted in a synergistic reversal of TSG silencing in 
MDA-MB-231 cells [74]. Taking into account that 
MG induces DNA hypermethylation and the glycation 
of core histones in breast cancer cells, the use of MG 
scavengers appears to be an attractive, but yet to be 
demonstrated, “one stone two birds” option in view of 
the recognized roles of epigenetic regulation in tumor 
initiation, progression and resistance following thera-
peutic intervention.

Conclusion
Our study complements the recent positioning of MG 
stress as a key regulatory mechanism of histone epig-
enome and brings a new dimension to the use of DNMTs 
inhibitors for the personalized treatment of patients 
bearing specific subtypes of TNBC.
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