
Liu et al. J Exp Clin Cancer Res           (2023) 42:85  
https://doi.org/10.1186/s13046-023-02647-8

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Experimental &
Clinical Cancer Research

Targeting inhibition of prognosis‑related 
lipid metabolism genes including CYP19A1 
enhances immunotherapeutic response 
in colon cancer
Lilong Liu1†, Min Mo1†, Xuehan Chen1, Dongchen Chao1, Yufan Zhang1, Xuewei Chen2, Yang Wang1, 
Nan Zhang1, Nan He1, Xi Yuan1, Honglei Chen3* and Jing Yang1*    

Abstract 

Background  Lipid metabolic reprogramming in colon cancer shows a potential impact on tumor immune microen-
vironment and is associated with response to immunotherapy. Therefore, this study aimed to develop a lipid metab-
olism-related prognostic risk score (LMrisk) to provide new biomarkers and combination therapy strategies for colon 
cancer immunotherapy.

Methods  Differentially expressed lipid metabolism-related genes (LMGs) including cytochrome P450 (CYP) 19A1 
were screened to construct LMrisk in TCGA colon cancer cohort. The LMrisk was then validated in three GEO datasets. 
The differences of immune cell infiltration and immunotherapy response between LMrisk subgroups were investi-
gated via bioinformatic analysis. These results were comfirmed by in vitro coculture of colon cancer cells with periph-
eral blood mononuclear cells, human colon cancer tissue microarray analysis, multiplex immunofluorescence staining 
and mouse xenograft models of colon cancer.

Results  Six LMGs including CYP19A1, ALOXE3, FABP4, LRP2, SLCO1A2 and PPARGC1A were selected to establish the 
LMrisk. The LMrisk was positively correlated with the abundance of macrophages, carcinoma-associated fibroblasts 
(CAFs), endothelial cells and the levels of biomarkers for immunotherapeutic response including programmed cell 
death ligand 1 (PD-L1) expression, tumor mutation burden and microsatellite instability, but negatively correlated 
with CD8+ T cell infiltration levels. CYP19A1 protein expression was an independent prognostic factor, and positively 
correlated with PD-L1 expression in human colon cancer tissues. Multiplex immunofluorescence analyses revealed 
that CYP19A1 protein expression was negatively correlated with CD8+ T cell infiltration, but positively correlated with 
the levels of tumor-associated macrophages, CAFs and endothelial cells. Importantly, CYP19A1 inhibition downregu-
lated PD-L1, IL-6 and TGF-β levels through GPR30-AKT signaling, thereby enhancing CD8+ T cell-mediated antitumor 
immune response in vitro co-culture studies. CYP19A1 inhibition by letrozole or siRNA strengthened the anti-tumor 
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immune response of CD8+ T cells, induced normalization of tumor blood vessels, and enhanced the efficacy of anti-
PD-1 therapy in orthotopic and subcutaneous mouse colon cancer models.

Conclusion  A risk model based on lipid metabolism-related genes may predict prognosis and immunotherapeutic 
response in colon cancer. CYP19A1-catalyzed estrogen biosynthesis promotes vascular abnormality and inhibits CD8+ 
T cell function through the upregulation of PD-L1, IL-6 and TGF-β via GPR30-AKT signaling. CYP19A1 inhibition com-
bined with PD-1 blockade represents a promising therapeutic strategy for colon cancer immunotherapy.

Keywords  Lipid metabolism, CYP19A1, Tumor immune microenvironment, Immunotherapeutic response, Colon 
cancer

Introduction
Colon cancer is one of the most common human malig-
nancies in the world [1]. Despite the fact that clinical 
treatment for colon cancer has been improved with the 
development of immune checkpoint inhibitors (ICIs), the 
majority of colon cancer patients have limited response 
to ICI therapies [2]. Emerging biomarkers such as tumor 
mutational burden (TMB), inflammatory tumor micro-
environment (TME) and microsatellite instability (MSI) 
have been identified to predict therapeutic benefit in 
colon cancer [3]. Unfortunately, drawbacks still remained 
in current biomarkers [3]. Therefore, it is important to 
excavate the predictive biomarkers for immunotherapy 
response and find a novel strategy for sensitizing ICIs in 
colon cancer.

Lipid metabolic reprogramming promotes tumor 
growth, angiogenesis and metastasis [4]. A prognostic 
signature of nine lipid metabolism-related genes (LMGs), 
including CDIPT, MTMR7, PIK3CB, PIK3C2G, ARSE, 
ARSJ, GLA, GLB1 and UGCG, has been established in 
diffuse gliomas [5]. The model including the four LMGs 
(ABCA1, ACSL1, AGPAT1 and SCD) is proposed as 
a  prognostic marker of colon cancer with stage II [6], 
but not effective in all stages of colon cancer [7]. A very 
recent study has shown an 8-gene prognostic signature 
based on LMGs in colon adenocarcinoma [8]. However, 
the prognostic prediction model of multiple LMGs in 
colon cancer has only begun to be appreciated.

Metabolic reprogramming of tumor cells induces 
metabolic stress in tumor-infiltrating immune cells and 
stromal cells, and thereby impairs antitumor immune 
responses [9]. Targeted reprogramming of lipid metabo-
lism inhibits tumor cell growth, alleviates the immu-
nosuppressive TME and improves response to ICI 
therapy [10]. A study has shown that cyclooxygenase 
(COX) enzyme inhibitor aspirin in combination with 
anti-programmed cell death protein 1 (PD-1) treatment 
exhibits a synergistic effect in reducing tumor growth 
[11]. Our recent study has also shown that inhibition of 
COX-2 catalyzed metabolism of arachidonic acid (AA) 
by melafolone promotes anti-PD-1 therapy in lung can-
cer through PD-L1 downregulation [12]. Avasimibe, an 

inhibitor of cholesterol esterification enzyme, signifi-
cantly empowers the anti-tumor response of CD8+ T 
cells, and its combination with anti-PD-1 antibody has 
a better efficacy in melanoma [13]. Some clinical studies 
have further confirmed that targeted metabolic repro-
gramming enhances the anti-tumor efficacy of ICIs [14]. 
Therefore, it is essential to investigate the new strat-
egy of targeting tumor lipid metabolism to alleviate the 
immunosuppressive TME and to  enhance anti-tumor 
immunotherapy.

Cytochrome P450 (CYP) 19A1 encodes aromatase, an 
isoenzyme of estrogen biosynthesis, and is overexpressed 
in colon cancer tissues [15]. Aromatase inhibitors, 
including letrozole, anastrozole and exemestane, inhibit 
the synthesis of estrogen from androgen by binding to 
the aromatase, and thereby block tumor cell prolifera-
tion [15]. Aromatase inhibitors are widely used to treat 
post-menopausal hormone-sensitive breast cancer [16]. 
Exemestane exhibits great growth inhibitory potentials in 
gastric cancer when administered in combination therapy 
with 5-fluorouracil [17]. Letrozole plus mTOR inhibitor 
everolimus results in a better progression free survival in 
patients with breast cancer, accompanied by decreases 
in Ki-67 index and tumor-infiltrating regulatory T cells, 
and an increase in tumor-specific CD8+ T cells [18–20]. 
Recently, the combination of exemestane and CTLA-4 
monoclonal antibody tremelimumab in breast cancer 
has entered a phase II clinical trial [21]. However, the 
effect of aromatase inhibitors on the immunotherapeutic 
response of colon cancer is not well understood.

In this study, we utilized The Cancer Genome Atlas 
(TCGA) cohort as a training set to develop a lipid 
metabolism-related gene prognostic risk score (LMrisk) 
in colon cancer, and the significant prognostic values of 
the model were then validated in three Gene Expression 
Omnibus (GEO) testing sets. The relationships of LMrisk 
with 36 immune cell signatures and predictive biomark-
ers for immunotherapeutic response were evaluated. In 
particular, the bioinformatic findings were confirmed 
using human colon cancer tissue samples, in vitro cocul-
ture of colon cancer cells with peripheral blood mono-
nuclear cells (PBMCs), and mouse xenograft models of 
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colon cancer. Our study develops a novel lipid metabo-
lism-related risk model to predict immunotherapeutic 
response, and elucidates the molecular mechanism by 
which CYP19A1-catalyzed estrogen synthesis mediates 
immune escape, providing new targets and candidates for 
sensitizing colon cancer immunotherapy.

Methods
Data and resources
The RNA-sequencing data and clinical information of 
colon cancer patients were downloaded from the TCGA 
database (https://​portal.​gdc.​cancer.​gov). The RNA 
expression profiles contained 494 samples. We obtained 
453 colon cancer samples and 41 adjacent normal tis-
sue samples. 435 colon cancer patients with survival 
data were included in the following study. Gene expres-
sion profiles of GSE41258 dataset based on the Affym-
etrix human genome U133A array platform, GSE38832 
and GSE39582 datasets based on the Affymetrix human 
genome U133 Plus 2.0 array platform and clinical data 
were downloaded from the GEO database (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/). A list of LMGs was collected 
from the “metabolism of lipids” in Reactome (https://​
react​ome.​org/​downl​oad-​data/). Genes not included in 
TCGA or GEO databases were excluded, and 731 genes 
related to lipid metabolism were obtained.

Differential expression analysis of LMGs and functional 
annotation
The “edgeR” [22] package was used to identify differen-
tially expressed LMGs between the tumor and adjacent 
normal tissue samples. Adjusted P-value < 0.05 and |log2 
(fold change) |> 1 were chosen as the cut-off threshold. 
The protein–protein interaction network of differen-
tially expressed LMGs was analyzed by STRING database 
(https://​string-​db.​org/). Principal component analysis 
(PCA) was utilized to analyze the expression pattern in 
the  colon cancer and normal tissues. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis were performed with the 
differentially expressed LMGs by using the “clusterPro-
filer” R package [23]. False discovery rate < 0.05 was con-
sidered statistically significant.

Construction and verification of the LMrisk
Univariate Cox regression analysis was performed to 
identify the prognosis-related LMGs. The P-value < 0.05 
in univariate Cox regression analysis was considered 
statistically significant. The “glmnet” R package was 
used to perform a least absolute shrinkage and selec-
tion operator (LASSO)-Cox regression model analysis. 
The weighted LASSO-Cox coefficients based on indi-
vidual gene expression levels were used to calculate the 

lipid metabolism-related risk score (LMrisk) as follows: 
LMrisk = ∑ (expression of genei × Coefficient of genei). 
The patients in the TCGA database were stratified into 
the low- and high-LMrisk groups according to median 
LMrisk value, and their survival were analyzed using 
the Kaplan–Meier method. Log-rank test was used to 
compare the survival curves of two or more groups. The 
specificity and sensitivity of the LMrisk in predicting 
3-, 5- and 10-year survival were determined by receiver 
operating characteristic (ROC) analysis using the “sur-
vivalROC” R package, and the areas under curves (AUC) 
were calculated. We used a similar approach in the 
GSE41258, GSE38832 and GSE39582 datasets to verify 
the applicability of the LMrisk. To study whether the 
LMrisk is an independent predictor for overall survival 
of colon cancer patients, univariate and multivariate Cox 
regression analyses were conducted. The LMrisk, age, 
gender and TNM stage were used as covariates.

Construction and verification of prognostic nomogram
After testing for collinearity, all independent prognostic 
parameters were included in the construction of a nom-
ogram to predict 3- and 5-year overall survival of colon 
cancer patients. Age, TNM stage and LMrisk were used 
to construct the nomogram using the “rms” and “sur-
vival” packages in R. The discrimination power of the 
predictive model was evaluated by Harrell’s concordance 
index (C-index). We calculated the C-index with 95% 
confidence interval using the bootstrap approach with 
1000 resamples. Then, calibration curves were drawn to 
assess the consistency between actual and predicted sur-
vival. The nomogram performance was validated by ROC 
curves at 3 and 5 year using the TNM stage as control.

Analysis of tumor immune signatures and function 
enrichment for LMrisk
The Estimation of Stromal and Immune cells in Malig-
nant Tumors using Expression data (ESTIMATE) was 
used to evaluate the immune score, stromal score and 
ESTIMATE score of each sample [24]. Based on the 
gene expression data in the cancer tissues, the xCell and 
TIMER algorithms were applied to estimate the infiltra-
tion of immune cells in each sample [25]. The R package 
“maftools” was used to evaluate and sum the mutation 
data.

Chemicals and reagents
Letrozole (T1590) was purchased from TargetMol (Bell-
ingham, WA, USA). CYP19A1 siRNA (sc-41498) and 
CYP19A1 antibody (sc-374176) were purchased from 
Santa Cruz Biotechnology (Santa Cruz, CA, USA). 
PD-L1 (13684) antibody was purchased from Cell Sign-
aling Technology (Danvers, MA, USA). PE-conjugated 
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anti-CD3 antibody (555340), APC-conjugated anti-CD8 
antibody (566852), PE-Cy7-conjugated anti-IFN-γ anti-
body (557643) were purchased from BD Biosciences (San 
Jose, CA, USA). FITC-conjugated anti-CD107a antibody 
(328606) and Zombie NIR (423105) were purchased from 
BioLegend (San Diego, CA, USA). Opal Polaris 7 Color 
IHC Detection Kit (NEL861001KT) was purchased from 
Akoya Bioscience (Menlo Park, CA, USA). Chitosan 
(CS, deacetylation 98%, Mw = 50 KDa) and sodium trip-
olyphosphate (TPP) were purchased from Sigma Chemi-
cal Co (St. Louis, MO, USA). Hyaluronic acid (HA) was 
purchased from Meryer Chemical Technology Co Ltd 
(Shanghai, China).

Human tissue microarray analyses for CYP19A1 and PD‑L1 
expression
Human colon carcinoma tissue microarray (HCol-
Ade180Sur-05) containing 90 patients with colon cancer 
and adjacent normal tissues were obtained from Shang-
hai Outdo Biotech Co., Ltd. Each sample dot with a 
diameter of 1.5 mm and a thickness of 4 μm was prepared 
according to a standard method. Immunohistochemistry 
(IHC) of human colon cancer tissue microarrays were 
performed by using the CYP19A1 (1:100) and PD-L1 
(1:300) antibodies. Immunostaining was graded using a 
two-score system based on intensity score and propor-
tion score as previously described [26]. The two scores 
were then multiplied to yield a total immunoreactivity 
score regarding the protein expression in a sample. IHC 
score was assessed independently by two pathologists, 
and a consensus of grading was reached. Patients were 
divided into high- and low-expression groups according 
to the median IHC score.

Multiplex immunofluorescence analysis
Tumor tissues from 20 patients with colon cancer were 
obtained from Zhongnan Hospital, Wuhan University 
(Hubei, China) between 2020 and 2021. The histologi-
cal diagnosis for each sample was reconfirmed using 
microscopic examination of hematoxylin/eosin-stained 
sections. All samples were collected from patients with 
informed consent, and all procedures were conducted 
with the approval of the Ethical Committee of the 
Medical School of Wuhan University and performed in 
accordance with relevant regulations and guidelines.

Quantitative multiplex immunofluorescence (mIF) 
was performed to characterize the immune landscape in 
human colon cancer tissues using Opal Polaris 7 Color 
IHC Detection Kits (NEL861001KT, Akoya Bioscience, 
CA, USA) as previously described [27]. Briefly, formalin-
fixed paraffin-embedded sections were deparaffinized, 
followed by antigen retrieval with citrate acid buffer (pH 
6.0)/Tris–EDTA buffer (pH 9.0) and then blocking with 

blocking/Ab diluent. Next, slides were incubated with 
primary antibodies against CYP19A1 (1:200), CD68 
(Abcam, ab955, 1:800), CD31 (Abcam, ab24590, 1:300), 
α-SMA (Abcam, ab7817, 1:300), CD8 (DAKO, IR623, 
1:5) and CK (AE1/AE3) (DAKO, IS05330-2, 1:3). Primary 
antibody was visualized using tyramide signal amplifica-
tion linked to a specific fluorochrome from the mIF kit 
for each primary antibody. A stripping procedure based 
on microwaves was performed for each consecutive anti-
body staining. The stained slides were scanned using a 
Vectra® 3 multispectral microscope (Akoya Bioscience). 
From each slide, Vectra automatically captured the fluo-
rescent spectra from 420 to 720  nm at 20-nm intervals 
with the same exposure time and then combined the cap-
tured images to create a single stack image that retained 
the particulate spectral signature of all markers. These 
data were analyzed using InForm 2.6 software.

Cell culture, cell proliferation assays, aromatase activ-
ity assays, CYP19A1 siRNA transfection, isolation of 
PBMCs and their coculture with colon cancer cells, flow 
cytometry analyses for tumor cell death and CD8+ T cell 
function, western blot analyses for CYP19A1 and PD-L1 
expression, tumor models and therapeutic efficacy study, 
and statistical analysis were described in Supplementary 
Materials and Methods.

Results
Differential expression analysis of LMGs and functional 
annotation
Expression data and clinical information of four cohorts 
were downloaded from the TCGA and GEO databases. 
The TCGA cohort consisted of 453 colon cancer and 41 
normal samples, and was used for differential expression 
analysis. Seven hundred thirty-one LMGs were screened, 
and 178 LMGs were differentially expressed with 86 
upregulation and 92 downregulation between colon can-
cer and normal samples (Fig. 1A). PCA revealed an obvi-
ous difference in a distinct cluster of these differentially 
expressed LMGs between the colon cancer tissues and 
adjacent normal tissues (Fig. 1B). The hub genes includ-
ing CYP19A1 were identified by the protein–protein 
interaction network of differentially expressed LMGs in 
the colon cancer (Fig. 1C). Next, GO and KEGG pathway 
annotation analyses were performed to explore the bio-
logical functions of the differentially expressed LMGs in 
the  colon cancer. GO analysis showed that these LMGs 
were enriched in the basic biological processes, including 
steroid metabolism, fatty acid metabolism, lipid catabo-
lism and glycerolipid metabolism, and the most highly 
enriched terms for the cellular component and molecular 
function were lipid droplet and oxidoreductase activity, 
respectively (Fig.  1D). KEGG analysis showed that 178 
LMGs were primarily related to AA metabolism, PPAR 
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signaling pathway and bile secretion (Fig.  1E). These 
results suggest significant alterations of LMGs in human 
colon cancer.

Construction and verification of the LMrisk
To develop prognostic models in the TCGA colon can-
cer cohort, machine learning methods such as random 

Fig. 1  Differential expression analysis of LMGs and functional annotation in colon cancer. A Volcano plot of the differentially expressed lipid 
metabolism-related genes (LMGs) analysis in the colon cancer tissues (n = 453) and adjacent normal tissues (n = 41). Red/blue dots represent 
upregulated/downregulated genes according to the criteria: adjusted P-value < 0.05 and |log2 (fold change) |> 1. B Principal components analysis 
(PCA) based on the differentially expressed LMGs. C Protein–protein interaction network of differentially expressed lipid metabolism-related 
genes. D Gene ontology (GO) enrichment analysis of the differentially expressed LMGs. “BP” stands for “biological process”, “CC” stands for “cellular 
component” and “MF” stands for “molecular function”. E Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially 
expressed LMGs. The color represents the statistical significance of the term. The size indicates the counts of enriched genes
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survival forest, CoxBoost, support vector machine, gradi-
ent boosting machine, elastic net and LASSO-Cox were 
employed. A univariate combined LASSO-Cox regres-
sion model with the maximum C-index (Fig.  2A) was 
used for subsequent analysis. Univariate Cox regression 
analysis revealed that the LRP2, CYP19A1, SLCO1A2, 
FABP4, ALOXE3, PLAAT5 and SPHK1 were risk 
genes with hazard ratio (HR) > 1, while PPARGC1A 
was protective gene with HR < 1 among 178 differen-
tially expressed LMGs (Fig.  2B). By using LASSO-Cox 

regression analysis to further reduce overfitting, the six 
LMGs, including LRP2, CYP19A1, SLCO1A2, FABP4, 
ALOXE3 and PPARGC1A, were identified to construct 
the optimal lipid metabolism-related prognostic signa-
ture (Fig.  2C and D). The expression levels and LASSO 
coefficients of six LMGs were extracted to calculate 
the LMrisk for each patient with the following formula: 
LMrisk = (0.124 × LRP2 expression) + (0.145 × CYP19A1 
expression) + (0.0551 × SLCO1A2 expression) + (0.00237 ×  
FABP4 expression) + (0.117 × ALOXE3 expression) +  

Fig. 2  Construction and verification of a lipid metabolism-related prognostic risk core (LMrisk). A C-index of prognostic models constructed by 
multiple machine learning methods. B Forest plot of prognostic-related LMGs based on univariate Cox regression analysis. C The least absolute 
shrinkage and selection operator (LASSO) coefficient profiles of prognostic-related differentially expressed lipid metabolism-related genes (LMGs). 
D Tuning parameter (λ) selection in the LASSO model used ten-fold cross-validation based on the minimum criteria. The dotted vertical lines were 
drawn at the optimal values using the minimum criteria and one standard error of the minimum criteria. E Survival status and time distribution 
of patients in the high LMrisk and low LMrisk groups. F Kaplan–Meier survival curves for colon cancer patients according to the LMrisk in TCGA 
database. G Time-dependent receiver operating characteristic (ROC) curve analysis at 3, 5 and 10 years showing the area under curve values 
(AUC) for overall survival. H–J Kaplan–Meier survival curves for colon cancer patients according to the LMrisk in the GSE41258 (n = 182), GSE38832 
(n = 122) and GSE39582 (n = 556) datasets
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(-0.182 × PPARGC1A expression). Based on the 
median LMrisk, the patients were assigned to low 
LMrisk (n = 217) and high LMrisk groups (n = 218). 
We observed more deaths and shorter survival time 
in the colon cancer patients with the high LMrisk as 
compared with the low LMrisk (Fig.  2E and F). Next, 
time-dependent ROC curves were used to evaluate the 
predictive value of the LMrisk. As shown in Fig. 2G, the 
AUC of LMrisk at 3, 5 and 10 years were 0.68, 0.73 and 
0.81, respectively. Consistently, Kaplan–Meier survival 
curves indicated that the survival time was shorter in 
the high LMrisk group than in the low LMrisk group 
in the GSE41258 (P = 0.0072), GSE38832 (P = 0.0099) 
and GSE39582 (P = 0.022) datasets (Fig. 2H–J). To vali-
date the predictive ability of the LMrisk on colon can-
cer prognosis, we conducted a stratified analysis based 
on clinicopathological features including age, gender, 
TNM stage, N stage, M stage and T stage in the high 
and low LMrisk groups. Kaplan–Meier survival analy-
ses revealed that the high-risk group had worse overall 
survival compared to the low LMrisk group in differ-
ent strata of clinical characteristics including younger 
(< 66 years) or older (≥ 66 years), male or female, stage 
I–II or stage III–IV, N0 or N1–N2, M0 or M1 and T3–
T4 patients (Fig. S1). These results suggest that the 
LMrisk has good robustness for predicting prognosis of 
colon cancer.

To identify the factors affecting the survival of 
patients with colon cancer, we analyzed the prognos-
tic value of the LMrisk and clinicopathological param-
eters in the TCGA dataset. As shown in Fig. S2A, the 
LMrisk, in addition to clinical factors (age, T stage, 
N stage, M stage and TNM stage), was closely associ-
ated with survival outcomes. Multivariate analysis 
manifested that the LMrisk, age and TNM stage were 
independent prognostic indicators (Fig. S2B). The AUC 
of LMrisk was larger than other indicators including 
TNM stage, suggesting that the LMrisk has a better 
ability to predict prognosis in  the colon cancer (Fig. 
S2C). The LMrisk was significantly correlated with the 
age, T stage, N stage, M stage and TNM stage. We also 
observed relatively low expression of PPARGC1A and 
high expression of CYP19A1, FABP4, ALOXE3, LRP2 
and SLCO1A2 in the patients with high LMrisk (Fig. 
S2D). The patients had higher LMrisk in stage III–
IV than in stage I–II (P = 0.023), and in T3–T4 than 
in T1–T2 (P = 0.016). The patients with lymph node 
metastasis (N1–N2) or distant metastasis (M1) had 
higher LMrisk than those without lymph node metas-
tasis (N0) or distant metastasis (M0) (Fig. S2E). These 
data suggest that the LMrisk is an independent prog-
nostic risk factor in the colon cancer.

Construction and validation of a prognostic nomogram 
based on LMrisk
To predict overall survival probabilities of colon can-
cer patients, a prognostic nomogram was established by 
integrating the LMrisk with age and TNM stage in the 
TCGA dataset (Fig. S3A). We used calibration curve to 
verify the accuracy of the prediction model, and found 
that the predicted probability of 3- and 5-year survival 
fitted well with the observed survival (Fig. S3B and C). 
The AUC values of nomogram were higher than those of 
TNM stage in 3 and 5 year (Fig. S3D and E). The nomo-
gram also showed satisfactory discrimination and cali-
bration with a C-index of 0.79 (95% confidence interval: 
0.74–0.84). These data suggest that our nomogram pre-
sents superior prognostic value than that of TNM stage 
in colon cancer.

The association of LMrisk with immune cell infiltration
The tumor immune microenvironment innately modu-
lates tumor progression [28]. Thus, the ESTIMATE 
algorithm was used to evaluate the immune score and 
stromal score of colon cancer patients. Figure 3A showed 
that the LMrisk was positively correlated with the 
immune score, stroma score and ESTIMATE score in the 
TCGA dataset. Next, immune cell and stromal cell infil-
tration in colon cancer tissues were inferred by xCell and 
EPIC algorithms. We observed less infiltration of CD8+ T 
cells, but more proportions of immunosuppressive cells 
including macrophages, monocytes, CAFs and endothe-
lial cells in the high LMrisk group compared to the low 
LMrisk group (Fig. 3B). These data confirm that the infil-
tration of CD8+ T cells is decreased but the infiltration of 
immunosuppressive cells is increased in the colon cancer 
with high LMrisk.

Association of the LMrisk with immunotherapy response 
in colon cancer
The TME includes immune checkpoint regulators as well 
as inflammatory mediators besides immune cells [13]. To 
understand the molecular mechanisms altering immuno-
therapy responsiveness, we evaluated the association of 
the LMrisk with immunotherapy response in colon can-
cer. As shown in Fig. 4A, PD-1, PD-L1, CTLA-4, LAG3 
and HAVCR2 (TIM3) were significantly overexpressed 
in the high LMrisk group than in the low LMrisk group. 
The patients with low LMrisk and high PD-L1 had bet-
ter survival than those with high LMrisk and high PD-L1, 
and patients with low LMrisk and low PD-L1 had bet-
ter survival than those with high LMrisk and low PD-L1 
(Fig. 4B). Similar results were obtained in the PD-1 and 
CTLA-4 stratifying groups (Fig.  4C and D). MSI status, 
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consensus molecular subtypes (CMS) heterogeneity and 
TMB display different immune landscapes in the TME, 
and therefore are used as predictive biomarkers for 
response of ICIs [29–32]. Accordingly, we compared the 
LMrisk between different MSI status, and found that the 
LMrisk was higher in the colon cancer with MSI-H and 
MSI-L as compared with MSS (Fig. 4E). The LMrisk was 
higher in CMS1 (immune activated phenotype) or CMS4 
(immune inflamed phenotype) than in CMS2 (immune 
desert phenotype) and CMS3 (immune excluded phe-
notype) (Fig.  4F). A previous study shows that, in six 
immune subtypes, IFN-γ dominant subtype has bet-
ter ICI outcomes [33, 34]. We observed the significantly 

increased LMrisk in IFN-γ dominant subtype than in 
wound healing subtype, though there was no significant 
difference of LMrisk between inflammatory and lym-
phocyte depleted subtypes (Fig. 4G). The TMB was sig-
nificantly increased in the patients with high LMrisk as 
compared with low LMrisk (Fig.  4H). Maftools analysis 
results showed that TTN gene mutated more frequently 
in the high LMrisk than in the low LMrisk group (Fig. 4I). 
Because of unavailable datasets for colon cancer patients 
treated with immune checkpoint blockade, we ana-
lyzed publicly available datasets from urothelial cancer 
patients treated with anti-PD-1 therapy. As shown in 
Fig. 4J, the high LMrisk was correlated with a complete 

Fig. 3  Correlation between the lipid metabolism-related prognostic risk core (LMrisk) and immune microenvironment scores and infiltration levels 
of immune cells and stromal cells. A Correlations of the LMrisk with immune score, stromal score and ESTIMATE score calculated by ESTIMATE 
algorithm. B The heatmap showed the normalized infiltrations of immune and stromal cells. Blue/red represents cells with lower/higher infiltration 
in the high LMrisk group than in the low LMrisk group. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant
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or partial response (CR/PR), while low LMrisk corre-
lated with stable disease or progressive disease (SD/PD) 
when the patients received anti-PD-1 therapies. The high 
LMrisk also predicted significant improvement in overall 
survival for the patients received anti-PD-1 therapy com-
pared with the low LMrisk. These results indicate that 
the LMrisk is a potential predictive biomarker of immu-
notherapeutic response.

CYP19A1, a risk factor of the LMrisk model, is associated 
with immune signature
Among the differentially expressed lipid metabolism 
genes in colon cancer and adjacent normal tissues, 

CYP19A1 is a key molecular node and has the largest 
prognostic hazard ratio (Figs.  1C and 2B). Therefore, 
CYP19A1, a risk factor of the LMrisk model, was used 
for subsequently experimental verification. We found 
that CYP19A1 gene was highly expressed in the colon 
cancer tissues compared to the adjacent normal tissues 
in the Gene Expression Profiling Interactive Analysis 
(GEPIA) webserver (Fig. S4A). CYP19A1 gene expression 
was a strong prognostic risk factor in  the colon cancer 
(Fig. S4B), and positively correlated with PD-L1 expres-
sion in the GEPIA webserver (Fig. S4C). Subsequently, 
we conducted functional verification by using a tissue 
microarray of human colon cancer. Similarly, CYP19A1 

Fig. 4  The lipid metabolism-related prognostic risk core (LMrisk) predicts therapeutic responses of immune checkpoint inhibitors in colon cancer. 
A Immune checkpoint genes expression levels in the high and low LMrisk groups in TCGA. B–D Kaplan–Meier survival curves of overall survival 
among four groups stratified by the LMrisk and expression of PD-L1, PD-1 and CTLA-4. E The LMrisk of colon cancer patients with microsatellite 
instability-high (MSI-H), microsatellite instability-low (MSI-L) and microsatellite stability (MSS). F The LMrisk of colon cancer patients with different 
CMS. G The LMrisk of colon cancer patients in four immune subtypes. H The TMB in the high and low LMrisk groups. I Top 15 mutated genes were 
illustrated in the high and low LMrisk groups. J The LMrisk of the patients with CR/PR and SD/PD. Kaplan–Meier survival curves for the patients 
according to the LMrisk in IMvigor210 cohort. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. *, P < 0.05; **, 
P < 0.01; ***, P < 0.001; ns, not significant
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protein expression was significantly increased in human 
colon cancer tissues (Fig. 5A and B), and positively cor-
related with PD-L1 expression (Fig. 5D). CYP19A1 pro-
tein expression in the colon cancer tissues was negatively 
correlated with overall survival (Fig.  5C), and positively 
associated with N stage, and an independent prognostic 
parameter of overall survival (Tables S1 and S2). Next, 
mIF staining was performed to explore the relationship 
between CYP19A1 expression and immune landscape in 
the  colon cancer. We observed an apparent colocaliza-
tion of CYP19A1 with CK (tumor cell marker), indicat-
ing that CYP19A1 is mainly expressed in tumor cells. The 
infiltration of CD8+ T cells was more but the proportions 
of CD68+ cells (macrophages), α-SMA+ cells (CAFs) 
and CD31+ cells (endothelial cells) were fewer in human 
colon cancer tissues with low CYP19A1 expression as 
compared with high CYP19A1 expression (Fig.  5E). We 
analyzed PD-L1 expression in the same biopsies, and 
found that PD-L1+ CAFs and macrophages were sig-
nificantly higher in CYP19A1 high expression group as 
compared with low CYP19A1 expression group (Fig. 5F). 
These data indicate that high CYP19A1 expression leads 
to poor prognosis, accompanied by the low infiltration 
level of CD8+ T cells and high infiltration levels of immu-
nosuppressive cells in colon cancer.

CYP19A1 inhibition potentiates CD8+ T cell‑mediated 
anti‑tumor immune response in vitro
To gain insight into the role of CYP19A1 in tumor immu-
nity, the inhibitor (letrozole) and siRNAs of CYP19A1 
were used in the in vitro co-culture of human HT29 and 
HCT116 cells with PBMCs. We found that the letro-
zole (5 μM) significantly decreased aromatase activity in 
human HT29 and HCT116 cells (Fig. 6A) without affect-
ing their proliferation (Fig.  6B). The CYP19A1 siRNAs 
significantly inhibited CYP19A1 expression (Fig.  6C). 
Unsurprisingly, CYP19A1 inhibition by the letrozole or 
siRNA in tumors increased the proportion of 7-AAD+ 
tumor cells after co-culture with PBMCs (1.5- and 2-fold, 
respectively) (Fig. 6D). The letrozole or CYP19A1 siRNA-
treated HT29 and HCT116 cells significantly increased 
CD8+ T cell proliferation and the proportion of CD8+ 
CD107a+ and CD8+ IFN-γ+ T cells (Fig.  6E–G), and 
promoted pericyte cell migration and reduced endothe-
lial cell migration (Fig.  6H). These data indicate that 

CYP19A1 inhibition in colon cancer cells enhances CD8+ 
T cell-mediated antitumor immunity.

CYP19A1 inhibits CD8+ T cells through upregulation 
of PD‑L1, IL‑6 and TGF‑β
Tumor cells upregulate the expression of immune check-
point molecules or secrete cytokines to induce abnormal 
angiogenesis, thereby promoting tumor immune escape 
[35, 36]. We found that CYP19A1 expression level was 
significantly positively correlated with PD-L1, IL-6 and 
TGF-β levels in the TCGA colon cancer dataset (Fig. 7A). 
Next, we verified the factors derived from tumor cells in 
HT29 and HCT116 colon cancer cells, and comfirmed 
that CYP19A1 inhibition significantly reduced PD-L1, 
IL-6, and TGF-β expression in tumor cells (Fig.  7B–D). 
Neutralizing antibodies against PD-L1, IL-6 or TGF-β 
partially ameliorated the effects of CYP19A1 overexpres-
sion on the proliferation and effector function of CD8+ 
T cells (Fig. 7E and F). Neutralizing IL-6 and TGF-β also 
promoted pericyte cell migration and inhibited endothe-
lial cell migration (Fig.  7G). Importantly, combined 
blockade of PD-L1, IL-6 and TGF-β exerted better effi-
cacy than single blockade (Fig. 7E–G). These data high-
light compelling evidence that CYP19A1 inhibits the 
proliferation and effector function of CD8+ T cells by 
upregulating PD-L1, IL-6 and TGF-β expression in colon 
cancer cells.

CYP19A1/estradiol mediates immunosuppression 
via GPR30‑Akt signaling
Activation of G-protein coupled estrogen receptor 30 
(GPR30) promotes colon cancer growth through medi-
ating estrogenic activity in colon cancer cells [37], and 
Akt signaling is one of the key downstream pathways of 
GPR30 in cancer progression [38]. We discovered that 
CYP19A1 inhibition by letrozole or si-CYP19A1 down-
regulated GPR30, p-Akt and PD-L1 in HCT116 and 
HT29 colon cancer cells (Fig.  8A), which were greatly 
enhanced by exogenous addition of estradiol (Fig.  8B). 
GPR30 knockdown decreased p-Akt and PD-L1 lev-
els  (Fig.  8C and D), and Akt knockdown also inhibited 
PD-L1 protein expression  in HCT116 and HT29 colon 
cancer cells (Fig.  8E and F). Exogenous supplementa-
tion of estradiol increased IL-6 and TGF-β expres-
sion in HCT116 and HT29 colon cancer cells (Fig. 8G). 

(See figure on next page.)
Fig. 5  CYP19A1 is highly expressed in colon cancer and is correlated with poor prognosis, PD-L1 level and the infiltration levels of immune cells 
and stromal cells. A Representative images of immunohistochemistry (IHC) staining of CYP19A1 and PD-L1 protein in human colon cancer tissue 
microarrays. B Statistical analysis of CYP19A1 IHC score in colon tumor tissue microarray (n = 90). C Kaplan–Meier survival curves for colon cancer 
patients according to the IHC score of CYP19A1. D Correlation analysis of CYP19A1 and PD-L1 protein expression (n = 90). E Representative images 
of multiplex immunofluorescence in CYP19A1-low (n = 10) and CYP19A1-high (n = 10) human colon cancer tissues. Quantification of CD8+ T cells, 
CD31+ endothelial cells, CD68+ macrophages and α-SMA+ CAFs as a proportion of total cells. F The correlations between CYP19A1 expression and 
PD-L1 level in CAFs and macrophages were analyzed by immunofluorescence. Scale bars, 50 μm. *, P < 0.05; **, P < 0.01
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Fig. 5  (See legend on previous page.)
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Fig. 6  CYP19A1 inhibition potentiates CD8+ T cell-mediated antitumor immunity in vitro coculture model. A The HT29 or HCT116 cells were 
treated with the letrozole or vehicle for 24 h. Aromatase activity was evaluated by culturing cells with testosterone and measuring estradiol levels 
in the culture medium with enzyme-linked immunosorbent assay. B The viabilities of HT29 and HCT116 cells were determined by MTT assay. 
C The level of CYP19A1 protein expression was measured in HT29 and HCT116 cells transfected with CYP19A1 siRNA (si-CYP19A1) or si-Scram. 
Human PBMCs were cocultured with the letrozole (5 μM) or si-CYP19A1-treated HT29 cells or HCT116 cells for 24 h. D Tumor cells pre-incubated 
with anti-EpCAM antibody were stained by 7-AAD, and then the proportion of EpCAM+ 7-AAD+ cells were analyzed by flow cytometry. E 
Carboxyfluorescein succinimidyl ester (CFSE) dilution was used to measure the proliferation of CD8+ T cells. F and G The percentage of IFN-γ+ or 
CD107a+ CD8+ cells were determined by flow cytometry. H Transwell migration analysis of human brain vascular pericytes (HBVP) and human 
umbilical vein endothelial cells (HUVEC) treated with the conditioned medium (CM) from the above treated-HT29 cells and HCT116 cells. The 
number of the migrated cells was counted. The values are presented as the mean ± standard error of the mean, n = 5. *, P < 0.05; **, P < 0.01 vs. 
control. ##, P < 0.01 vs. si-Scram
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Importantly, GPR30 or Akt siRNA reversed the increased 
expression of IL-6 and TGF-β in HCT116 and HT29 
colon cancer cells in response to estradiol stimulation 
(Fig. 8G). These results imply that GPR30-Akt signaling 
is crucial for CYP19A1/estradiol-mediated immunosup-
pression in colon cancer.

Nanoparticle‑encapsulated CYP19A1 siRNA synergizes 
with anti‑PD‑1 therapy
The established hyaluronic acid-modified chitosan nano-
particles are recently shown to be effective for the sys-
temic administration of siRNA to tumors [39, 40]. To 
explore the possibility of using CYP19A1 as a target for 
sensitizing anti-PD-1 therapy, the effect of nanoparticle-
encapsulated CYP19A1 siRNA on PD-1 blockade therapy 
was investigated in the orthotopic and subcutaneous 

colon cancer models. We detected obvious decreases in 
CYP19A1 protein expression and estradiol production in 
siCYP19A1-treated MC38 tumor as compared with the 
si-Scram (Fig.  9A-C). Knockdown of CYP19A1 by spe-
cific siRNA significantly impeded growth of orthotopic 
and subcutaneous MC38 colon cancer, but its combina-
tion with anti-PD-1 treatment was far more effective than 
monotherapy (Fig. 9D-H). CYP19A1 knockdown boosted 
tumor-infiltrating CD8+ T cells and enhanced GzmB 
and IFNγ production, indicative of CD8+ T cells-elicited 
adaptive immunity against colon cancer, which were 
amplyfied in combination therapy (Fig.  9I). Addition-
ally, the CYP19A1 siRNA remarkably inhibited PD-L1 
expression on tumor cells (Fig. 9J), induced vascular nor-
malization, as manifested by an obvious decrease in the 
hypoxia-inducible factor (HIF) -1α level and an increase 

Fig. 7  CYP19A1 inhibits CD8+ T cells through upregulation of PD-L1, IL-6 and TGF-β. A Correlations of CYP19A1 with PD-L1, IL-6 and TGF-β 
expression levels in GEPIA database. B and C IL-6 and TGF-β expression levels in HT29 and HCT116 cells were measured by qPCR. D PD-L1 
expression level was determined by flow cytometry. E CFSE dilution was used to measure the proliferation of CD8+ T cells. F GzmB and IFN-γ in 
CD8+ T cells were determined by qPCR. G Transwell migration analysis of endothelial cells and pericyte cells treated with the conditioned medium 
from the above treated-HT29 cells. The values are presented as the mean ± standard error of the mean, n = 5. **, P < 0.01 vs. control. ##, P < 0.01 vs. 
si-Scram. ^, P < 0.01; ^^, P < 0.01 vs. CYP19A1
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Fig. 8  CYP19A1/estradiol mediates immunosuppression via GPR30-Akt signaling. A GPR30, p-Akt and PD-L1 protein levels in HT29 and HCT116 
cells treated with letrozole and si-CYP19A1. B GPR30, p-Akt and PD-L1 protein levels in HT29 and HCT116 cells treated with estradiol. C GPR30 
protein level in HT29 and HCT116 cells transfected with si-GPR30. D PD-L1 and p-Akt protein levels in HT29 and HCT116 cells transfected with 
si-GPR30. E Akt protein level in HT29 and HCT116 cells transfected with si-Akt. F PD-L1 protein level in HT29 and HCT116 cells transfected with 
si-Akt. G TGF-β and IL-6 mRNA levels in HT29 cells of indicated groups. The values are presented as the mean ± standard error of the mean, n = 5. *, 
P < 0.05; **, P < 0.01 vs. control. #, P < 0.05; ##, P < 0.01 vs. si-Scram. ^, P < 0.05; ^^, P < 0.01 vs. estradiol + si-Scram

(See figure on next page.)
Fig. 9  Nanoparticle-encapsulated CYP19A1 siRNA synergizes with anti-PD-1 immunotherapy. A and B CYP19A1 protein level in orthotopic and 
subcutaneous colon tumor tissues. C Intratumoral estradiol level. D Representative ex vivo images of colon with an orthotopic tumor in the cecum. 
E Average orthotopic tumor weight. F Photographs of excised subcutaneous MC38 tumors. G Tumor growth curves in subcutaneous MC38 
tumor-bearing mice. H Average subcutaneous tumor weight. I Representative immunohistochemistry (IHC) staining of CD8 and double staining 
for CD8 (red) and IFNγ (green) or GzmB (green) and their quantitative analyses in the MC38 tumors. Scale bar, 20 μm. J The level of PD-L1 protein in 
the tumor cells. K Hypoxia-inducible factor (HIF) -1α mRNA level. L Representative immunofluorescence staining and frequency of CD31 (red) and 
αSMA (green) in the MC38 tumor tissues. Scale bar, 50 μm. The values are presented as the mean ± standard error of the mean, n = 6. *, P < 0.05; **, 
P < 0.01 vs. si-Scram. ##, P < 0.01 vs. α-PD-1
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Fig. 9  (See legend on previous page.)
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in CD31+ αSMA+ cells number (Fig. 9K and L). Together, 
our results demonstrate that CYP19A1 inhibition drasti-
cally enhances anti-PD-1 therapy for colon cancer.

Letrozole facilitates anti‑PD‑1 therapy by promoting CD8+ 
T cell‑mediated anti‑tumor immune response in murine 
models
Next, we further explored the possibility of using 
CYP19A1 as a target for sensitizing anti-PD-1 therapy, 
and found that the CYP19A1 inhibitor letrozole sensi-
tized anti-PD-1 therapy in subcutaneous tumors derived 
from the MC38 and CT26 murine colon cancer (Fig. 10A 
and B). The combination of letrozole with PD-1 blockade 
promoted expression of IFNγ and CD107a and intra-
tumoral infiltration of CD8+ T cells compared to the 
monotherapy (Fig.  10C and D). The combination treat-
ment reduced GPR30 and p-Akt levels in MC38 and 
CT26 colon cancer tissues with an obvious decrease in 
estradiol production compared to the anti-PD-1 mono-
therapy (Fig.  10E and F). The letrozole inhibited PD-L1 
expression in tumor cells (Fig. 10G), boosted tumor per-
fusion, promoted vascular normalization, and downreg-
ulated HIF-1α in CT26 and MC38 tumor (Fig.  10H–J). 
Similar results were obtained in the mice model of ortho-
topic MC38 colon cancer (Supplementary Fig. S5). The 
combination of letrozole with anti-PD-1 treatment did 
not result in any extra toxicity compared with the anti-
PD-1 monotherapy (Supplementary Table S3). Overall, 
these findings strongly indicate that CYP19A1 inhibition 
greatly facilitates anti-PD-1 therapy for colon cancer.

Discussion
Previous studies have shown that the alterations in 
lipid metabolism including cholesterol metabolism and 
AA metabolism affect immunotherapeutic response, 
and are promising biomarkers to predict the efficacy of 
immunotherapy [41, 42]. In the present study, two novel 
observations have been made. First, we used differen-
tially expressed LMGs, including CYP19A1, FABP4, 
LRP2, SLCO1A2, PPARGC1A and ALOXE3, to con-
struct the LMrisk for predicting prognosis of colon can-
cer, and found that the LMrisk was associated with the 
immunosuppressive TME and predictive biomarkers of 

immunotherapeutic response in colon cancer. To our 
knowledge, this is the first study that directly demon-
strated that a prognostic risk model based on LMGs may 
predict immunotherapeutic response in colon cancer. 
Second, we uncovered for the first time that CYP19A1 
inhibition downregulated PD-L1, IL-6 and TGF-β expres-
sion in colon cancer cells, and thereby enhanced  the 
tumor-killing ability of CD8+ T cells. These results impli-
cate the LMrisk based on the prognostic model as a pre-
dictive biomarker of immunotherapeutic response in 
colon cancer, highlighting its therapeutic potential for 
optimizing anti-PD-1 immunotherapy.

ALOXE3, PPARGC1A or FABP4 are prognostic bio-
markers in colon cancer [43–45]. However, a single gene 
is difficult to provide powerful predictive performance 
for colon cancer patients [46]. Therefore, it is a trend to 
use a multiple gene model to predict prognosis of cancer 
patients [47]. Indeed, several studies have used multiple 
LMGs to construct prognostic models in patients with 
breast cancer, gastric cancer or osteosarcoma [48–50]. 
Here we integrated CYP19A1, FABP4, LRP2, SLCO1A2, 
PPARGC1A and ALOXE3 with clinicopathological infor-
mation of patients to construct a prognostic nomogram 
in colon cancer. A recent study shows an 8-gene signature 
based on LMGs including RTN2, FYN, HEYL, FAM69A, 
FBXL5, HMGN2, LGALS4, STOX1 as a novel marker 
to predict colon cancer patients’ survival [8]. We reason 
that this discrepancy in prognosis-related LMGs could 
be due to different algorithms (differentially expressed 
LMGs vs. all LMGs). Our lipid metabolism-related nom-
ogram has larger C-index than the model of Jiang et  al. 
[8], suggesting its ability to better predict colon cancer 
prognosis as compared with gene signature-derived risk 
score. A previous study shows that nomogram-derived 
prognosis, together with user-friendly digital interfaces, 
elevates the accuracy of cancer survival prediction, and 
thereby allows for seamless incorporation to aid clinical 
decision making [47].

High level of MSI is closely related to the improved 
prognosis of colon cancer patients receiving immu-
notherapy [29], and higher TMB results in more neo-
antigens, increasing chances for T cell recognition, 
accompanied by better ICI outcomes [30]. Here we 

Fig. 10  CYP19A1 inhibitor letrozole facilitates anti-PD-1 therapy in MC38 and CT26 mouse tumor models. A and B Tumor growth curves and 
tumor weight of C57BL/6 or BALB/c mice injected subcutaneously with MC38 or CT26 colon cells with the treatment of IgG control (IgG), 
letrozole, anti-PD-1 antibody (α-PD-1) alone or in combination with letrozole (n = 8). C Representative flow staining and frequency of CD107a+ 
CD8+ T cells and IFN-γ+ CD8+ T cells in tumor tissues of indicated groups. D The infiltration level of CD8+ T cells in tumor tissues was analyzed 
by immunohistochemistry. E Intratumoral estradiol level was detected by ELISA. F GPR30 and p-Akt/Akt levels were measured in MC38 and CT26 
tumor tissues by western blot. G The expression level of PD-L1 on tumor cells was determined by flow cytometry. H Hypoxia-inducible factor 
(HIF) -1α level was measured in MC38 and CT26 tumor tissues by western blot. I Tumor perfusion was measured using a laser Doppler analyzer 
in the MC38 and CT26 tumor model. Scale bar, 2 mm. The quantitative analysis showed the relative levels of tumor perfusion in the tumors. J 
Immunofluorescence analysis of tumor vessel normalization. Scale bar, 50 μm. n = 5. The values are presented as the mean ± standard error of the 
mean. *, P < 0.05; **, P < 0.01 vs. control. #, P < 0.05; ##, P < 0.01 vs. α-PD-1

(See figure on next page.)
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Fig. 10  (See legend on previous page.)
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demonstrated that the LMrisk was positively correlated 
with TMB and MSI, suggesting that the patients with 
high LMrisk are more likely to benefit from immuno-
therapy. Further analysis revealed that TTN mutation 
was the major reason for the high TMB in the colon can-
cer patients with high LMrisk. Previous studies show 
that TTN mutation is related to high immunogenicity 
and inflammatory tumor immune microenvironment in 
lung adenocarcinoma, accompanied by favorable objec-
tive response and survival with ICI administration [51, 
52]. Along with immunogenicity, inflammatory TME 
makes colon cancer patients amenable to respond to ICIs 
[53]. We also observed more infiltration of macrophages, 
monocytes, NK cells and CAFs, and higher PD-L1 
expression in colon cancer tissues from the patients with 
high LMrisk. Our extensive functional studies dem-
onstrated that CYP19A1 protein expression was posi-
tively correlated with PD-L1 expression and infiltration 
of macrophages, CAFs and endothelial cells in human 
colon cancer tissues. Given that strong correlations of the 
LMrisk with PD-L1 expression, TMB and MSI, we con-
clude that the LMrisk including CYP19A1 is a promising 
biomarker for predicting immunotherapeutic response to 
colon cancer.

Several studies showed that men have a higher inci-
dence of colon cancer than women, suggesting that 
estrogen may play a protective role in the development 
of colon cancer [54]. However, recent epidemiological 
studies have shown that hormone replacement therapy 
in postmenopausal women does not inhibit the devel-
opment of colon cancer [55, 56]. Moreover, anti-PD-1 
or anti-PD-L1 treatment resulted in a trend to greater 
overall survival and better response rates in individual 
males with colon cancer as compared with females [57]. 
Aromatase encoded by CYP19A1 and GPR30 are highly 
expressed in colon cancer tissues, and high expression of 
GPR30 predicts poor prognosis in colon cancer patients 
[58, 59]. Here, we demonstrated that CYP19A1 inhibition 
by letrozole or siRNA reduced production of IL-6 and 
TGF-β and downregulated PD-L1 expression by inacti-
vating GPR30-Akt signaling, and thereby promoted the 
proliferation and cytotoxic activity of CD8+ T cells (Fig. 
S6). These data delineate that CYP19A1 inhibition com-
bined with PD-1 antibody represents a promising thera-
peutic strategy for colon cancer.

According to our analyses, the LMrisk may predict 
response and outcome of immunotherapy in colon can-
cer. However, there are still some limitations that should 
be acknowledged. Firstly, because the mRNA expression 
data from colon cancer patients with immunotherapy is 
not available, the predictive ability of LMrisk for immu-
notherapeutic response is estimated indirectly by urothe-
lial cancer cohorts and biomarkers. Therefore, further 

well-powered prospective studies are still needed. Sec-
ondly, we studied the expression and pathophysiological 
significance of CYP19A1 in vitro and in vivo, and further 
studies are needed on other LMGs including FABP4, 
LRP2, SLCO1A2, PPARGC1A and ALOXE3 in colon 
cancer.

Conclusions
Collectively, we screened the six LMGs including CYP19A1, 
FABP4, LRP2, SLCO1A2, PPARGC1A and ALOXE3, and 
constructed a signature to predict prognosis and immuno-
therapeutic response in colon cancer, which was extendedly 
and externally validated. Importantly, CYP19A1 inhibition 
improves anti-PD-1 immunotherapy for colon cancer and 
blunts PD-L1-induced anergy of CD8+ T cells. Our findings 
facilitate prediction for prognosis and immunotherapeutic 
response in colon cancer, and targeting lipid metabolism 
reprogramming in the TME may be promising strategies for 
synergy with anti-PD-1 treatment.
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