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Abstract 

Current clinical and observational evidence supports the EXTREME regimen as one of the standards of care for 
patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) followed by the administra-
tion of immune checkpoint inhibitors (ICIs). In addition to the inhibition of the epidermal growth factor receptor 
(EGFR) pathway, cetuximab-mediated EGFR blockade has been shown to modulate tumor microenvironment (TME) 
characteristics, such as antibody-dependent cellular cytotoxicity (ADCC) activity, cytotoxic T-lymphocyte (CTL) infiltra-
tion into the tumor, anti-angiogenesis activity, and cytokine secretion via associated natural killer (NK) cells, etc.. On 
the other hand, there are reports that nivolumab affects the TME via Programmed cell death 1 (PD-1) inhibition, Inter-
leukin-10 upregulation via T-cells, myeloid-derived suppressor cell-mediated immune escape induction, and tumor 
vessel perfusion by promoting CD8 + T-cell accumulation and Interferon-γ production in treatment-sensitive tumor 
cells. Actually, nivolumab administration can give T cells in the TME both immune superiority and inferiority. HNSCC 
treatment using cetuximab increases the frequency of FoxP3 + intratumoral effector regulatory T cells (Tregs) express-
ing CTL associated antigen (CTLA)-4, and targeting CTLA-4 + Tregs using ipilimumab restores the cytolytic function 
of NK cells, which mediate ADCC activity. Treg-mediated immune suppression also contributes to clinical response 
to cetuximab treatment, suggesting the possibility of the addition of ipilimumab or the use of other Treg ablation 
strategies to promote antitumor immunity. Moreover, also in hyper progression disease (HPD), intratumoral frequency 
of FoxP3 + effector Tregs expressing CTLA-4 is increased. Therefore, combination treatment with cetuximab plus anti-
CTLA-4 antibody ipilimumab for HNSCC and this combination therapy after nivolumab administration for HPD may 
be expected to result in a higher tumor-control response. Based on the above evidence, we here suggest the efficacy 
of using these therapeutic strategies for patients with local-advanced, recurrent, and metastatic HNSCC and patients 
who do not respond well to nivolumab administration.
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Introduction
Until recently, patients with platinum-refractory recur-
rent or metastatic head and neck squamous cell carci-
noma (R/M HNSCC) had poor prognoses and limited 
options besides the therapy including cetuximab [1]. Cur-
rent field-based clinical and observational evidence sup-
ports the EXTREME regimen as the standard of care for 
fit patients with R/M HNSCC, followed by a new treat-
ment option involving immune-checkpoint inhibitors 
(ICIs). Cetuximab targets epidermal growth factor recep-
tor (EGFR) and interrupt oncogene signaling in tumors 
that have become oncogene-addicted. Moreover, it can 
result in the induction of innate and adaptive immune 
responses and the downregulation of immunosuppres-
sive mechanisms [2–5]. It has also been observed that 
cetuximab-mediated EGFR blockade downregulates 
interferon-gamma (IFN-γ)-induced programmed death 
ligand 1 (PD-L1) expression in HNSCC; this may signify 
the restoration of the antitumor immune response [6, 7]. 
Cetuximab also drives the antibody-dependent cellular 
cytotoxicity (ADCC) of natural killer (NK) cells as well as 
the maturation and the crosstalk between NK cells and 
dendritic cells (DC). In contrast, it promotes the multipli-
cation of immunosuppressive regulatory T cells (Tregs) 
in the tumor microenvironment (TME) [4]. Cetuximab-
activated NK cells also secrete cytokines, which enhance 
antigen presentation [8]. In these respects, patients 
treated long-term with cetuximab may be under the mul-
tiplication of both positive (NK, dendritic cell) and sup-
pressive cell types (Tregs, myeloid-derived suppressor 
cells (MDSCs)). Thus, the response to ICI treatment is 
limited and controversial [4, 8, 9].

The CheckMate-141 trial, a phase III trial aimed at 
investigating the suitability of nivolumab versus the inves-
tigator’s choice of therapy for patients with R/M HNSCC, 
who had experienced tumor progression or recurrence 
within 6 months of platinum-based chemotherapy in the 
locally advanced R/M setting. Patient randomization was 
stratified based on prior cetuximab exposure to minimize 
imbalances in the treatment arms due to the reported 
immunomodulatory effects of cetuximab. Thus, the pri-
mary analysis showed that compared with the investiga-
tor’s choice of therapy, nivolumab significantly improved 
survival in the overall study population and showed a 
potential advantage for patients without prior cetuximab 
exposure [10]. Since the discontinuation of cetuximab or 
nivolumab is usually due to uncontrolled disease progres-
sion (here, we do not consider the occurrence of severe 
adverse events as an exception), there is often a need 
to replace cetuximab with nivolumab, and thereafter, 
it may be considered to rechallenge with cetuximab in 
some cases. Under such conditions, some patients with 
R/M HNSCC show prominent tumor-suppressing effects 

owing to cetuximab administration following nivolumab 
administration and some previous studies have reported 
the excellent antitumor effect of cetuximab after 
nivolumab treatment [11–13]. There is also evidence 
that nivolumab recruits tumor-infiltrating lymphocytes, 
including CD4 + and CD8 + T cells, and upregulates IFN-
γ-related chemokines [14]. However, detailed investiga-
tions of the TME are not enough to explain the biological 
states of tumors.

In this narrative review, we summarize and discuss 
background evidence regarding the biological effects of 
nivolumab after cetuximab administration and of cetuxi-
mab after nivolumab administration and suggest how the 
efficacy of the regimens can be optimized for patients 
with HNSCC who do not show a good response to these 
current targeted therapies.

Biological contribution of nivolumab other than PD‑1 
inhibition
Current general understanding of ICI strategy
The therapeutic activity of ICIs results from a complex 
interplay among intrinsic cancer cell traits, the TME, and 
the host immune system [15]. With the integration of 
next-generation sequencing in clinical practice for tumor 
molecular profiling for personalized cancer treatment, a 
rise in somatic alterations that could influence response 
to immunotherapy has been observed [16]. Somatic 
mutations in mismatch repair genes and high microsat-
ellite instability lead to a particular immunophenotype 
characterized by increased responsiveness to ICIs [17]. 
Furthermore, increasing tumor mutation burden, usu-
ally defined as the number of nonsynonymous mutations 
per megabase of sequenced DNA, is also a predictive bio-
marker for better response to programmed cell death 1 
(PD-1) blockade and improved clinical outcomes [18, 
19]. It is also worth noting that cancer cells are capable 
of increasing PD-L1 expression in response to a robust 
immune attack that is usually mounted by tumor anti-
gen-specific T cells, and this process is largely depend-
ent on effective immune recognition, which in turn, is 
dependent on increased somatic mutation and neoanti-
gen burden [20]. In addition, EGFR-driven tumors have 
been reported to possess a lower mutational burden [21].

IFN‑ γ and anti‑PD‑1 therapy
Other than PD-1 inhibition, studies on the biologi-
cal dynamics of nivolumab in HNSCC are still lim-
ited. Indeed, even though nivolumab mainly targets the 
blockade of the formation of the PD-1/PD-L1 axis, the 
surrounding effector (i.e., cytokines, chemoattractants, 
tissue acidosis, etc.) dynamics might also be affected by 
this blockade, and may modulate their population in the 
TME. Observations corresponding to patients who are 
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responsive to ICI suggest that blocking PD-1 increases 
the number and function of CD8 + T cells infiltrating 
the TME [22]. From another point of view, ICIs increase 
tumor vessel perfusion by promoting CD8 + T-cell accu-
mulation and IFN-γ production in treatment-sensitive 
breast and colon cancer cell lines, but not in treatment-
resistant models [23, 24]. Moreover, Ding et al. reported 
that combination therapy with nivolumab and IFN-γ 
shows a synergistic effect on PD-1 blockade compared 
with IFN-γ or nivolumab alone in pancreatic cancer 
[25]. These pieces of evidence emphasize the positive 
antitumor role of IFN, even in HNSCC. Furthermore, 
a stimulator of IFN genes (STING), has been shown to 
exhibit antitumor activity. STING is frequently inhibited 
in the TME, and this contributes to the escape of cancer 
cells from innate immune sensing. It is also expressed 
in endothelial cell vasculatures, suggesting that com-
bining STING agonists with anti-PD-1 or anti-PD-L1 
antibodies and anti-angiogenic agents could overcome 
primary or secondary resistance to ICI [26]. Thus, TME 
modulation after nivolumab administration is promis-
ing from the perspective of IFNs and STING dynamics. 
However, the prolonged, over-activation of STING may 
also induce negative situations for antitumor immunity 
(reviewed in [27]). Whereas STING facilitates antitumor 
immune response by promoting the infiltration of effec-
tor cells and eradication of tumor cells, constant STING 
activation may hamper immune response by inducing 
the infiltration of immune suppressive cells, such as Treg 
and MDSC, and upregulating the expression of PD-L1 
on tumor cells and PD-1 on T cells. Moreover, aberrant 
STING activation directly inhibits T cell proliferation 
and even promotes apoptosis of lymphocytes. To achieve 
the maximum antitumor effect using the STING ago-
nist, it is likely that the desired STING activation state 
must be maintained during the desired time period of 
administration.

MDSCs and anti‑PD‑1 therapy
Another strategy by which the tumor- and immune-
microenvironment can be modified using nivolumab is 
by interfering with MDSC function. Specifically, MDSCs 
exert their immunomodulatory effects via diverse 
mechanisms, including Arginase-1-mediated deple-
tion of l-arginine and nitric oxide (NO) production via 
NO synthase 2 (NOS2). It is reported that Arginase-1 
starves L-arginine in the TME; thus, it limits T-cell pro-
liferation [28]. In addition to L-arginine depletion, NO 
production transforms the TME to promote immune 
escape [29]. It has also been observed that short-term 
NO exposure reversibly inhibits T cells, while prolonged 
exposure leads to T cell apoptosis [30]. This MDSC-
related driven-immune escape cascade may contribute 

to developing the hyper progressive disease (HPD), 
implying that the appropriate control of MDSCs may 
improve the response rate of ICI treatment for such dis-
ease. Moreover, using pancreatic cancer cells, Thakur 
et  al. reported that reduced MDSC accumulation is 
accompanied by significantly lower levels of COX2 and 
PGE2, and their downstream effector molecule, Argin-
ase-1. It is also associated with significantly higher levels 
of tumor necrosis factor (TNF)-α, Interleukin (IL)-12, 
and the chemokines, CCL3, CCL4, CCL5, CXCL9, and 
CXCL10 in antibody-armed activated T-cells, thus, it 
brings about a Th1 cytokine-enriched microenviron-
ment. Some of the chemokines are also STING down-
stream effector cytokines and relate to the activation 
of STING/type I IFN signaling pathway. This activa-
tion then facilitates CD8 + T cells to infiltrate into the 
tumor. The results from their study indicated that anti-
body-armed activated T-cells can suppress MDSC dif-
ferentiation and attenuate their suppressive activity via 
the downregulation of COX2, PGE2, and Arginase-1 
pathways, which are potentiated in the presence of Th1 
cytokines, suggesting that Th1 enriching immunother-
apy may be beneficial in pancreatic cancer treatment 
[31]. Thus, MDSCs play important roles in cancer cell 
metabolism and TME dynamics, and their control might 
increase therapeutic potential with respect to the target-
ing of the tumor immune microenvironment.

Furthermore, immunogenic cell death is characterized 
by the release of danger-associated molecular patterns 
(DAMPs) by dying cells, activation of antigen-presenting 
cells (APCs) upon DAMP binding to specific receptors, 
tumor neoantigen uptake, subsequent activation of cyto-
toxic T lymphocyte (CTL)-based immune response, and 
the establishment of an immune memory, which elimi-
nates tumor cells [32]. It is also known that the secretion 
of type I IFNs from these cells acts as a DAMP and results 
in the production of CXCL10 chemokine which acts as a 
chemoattractant for CTL [33]. This immune modulation 
can also drive antitumor immunity.

Other biological modifications by anti‑PD‑1 therapy
Yue et  al. reported that BRAF and/or MEK inhibition 
on nivolumab-induced T cell activation is due to altera-
tions in the activation of AKT and T cell receptor (TCR) 
signaling pathways. They investigated the combinatorial 
effects of mitogen-activated protein kinase (MAPK) path-
way inhibitors on nivolumab-induced T cell responses 
by assessing cytokine production, the expression of T 
cell proliferation and activation markers, and functional 
markers, such as Granzyme B, as well as the activation of 
various signaling pathways in T cells. However, they con-
cluded that combination therapy using nivolumab with 
either a BRAF inhibitor, a MEK inhibitor, or both might 
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have a limited synergistic effect on nivolumab-induced 
T-cell activation. They further stated that these combi-
nation therapies might not be of benefit to most patients 
who are receiving ICI treatment [34]. In addition, Saloura 
et  al. reported that, while HNSCC, with a low CD8 + T 
cell-inflamed phenotype, shows enriched β-catenin and 
Hedgehog pathways, NSD1 mutations, and EGFR and 
YAP1 amplifications, a high CD8 + T cell-inflamed phe-
notype was found to be associated with MAPK/extra-
cellular signal-regulated kinases (ERK) and Janus kinase 
(JAK)/signal transducer and activator of transcription 
(STAT) pathways, CASP8 mutations, and CD274 amplifi-
cations (Fig. 1) [35]. Because of the complex confounding 
differences in gene expression, signaling, and activated 
enzymes in the TME, therefore, the number of T lym-
phocytes and the inflammation intensity in the tumor 
cannot simply predict the ICI treatment outcomes, and 
sticking to one biomarker or one therapy may result in a 
treatment failure.

Other, Lamichhane et al. observed elevated IL-10 lev-
els induced by anti-PD-1 antibody treatment in  vivo 
[36]. Moreover, Harper et  al. reported that nivolumab 
induces potent IL-10 secretion in T cells by activating the 
MAPK pathway [37], in  which T cells can then activate 
their growth and metabolism, possibly leading to T-cell 
immune superiority. Conversely, in an in  vitro study, 
Puntigam et al. reported that nivolumab treatment signif-
icantly reduced the level of the receptor, PD-1 in all ana-
lyzed T-cell populations. Their data suggested that IL-10 
may confer a heterogeneous T-cell response to nivolumab 
[28]. It is necessary to investigate whether the interest-
ing in  vitro result can be reproduced in  vivo to further 
clarify the mechanisms underlying the modulated anti-
tumor immunity observed after PD-1 blockade. Actually, 

IL-10 is one of the most important immunoregulatory 
cytokines that regulate T-cell responses by modulating 
multiple signaling pathways [36–39]. The engagement of 
IL-10 with its receptor also activates and expands multi-
ple signaling pathways, particularly the JAK-STAT3 path-
way [40–42].

Taken together, nivolumab administration can give T 
cells in the TME both immune superiority and inferior-
ity (Fig. 2). Considering a heterogeneous T-cell response 
to anti-PD-1 antibody treatment, it might be necessary to 
focus on a more individualized TME status and identify 
promising prognostic factors to arrange the order-made 
therapy targeting immunoregulatory cytokines. Such 
treatment strategies that involve adjunctive sensitization 
with anti-tumor drugs will be a future highlight, espe-
cially in immunotherapy.

Biological contribution of cetuximab other than EGFR 
blockade
EGFR pathway inhibition and immunomodulation
EGFR-activating mutations contribute to an immuno-
suppressive TME and patients with EGFR mutations 
may not respond favorably to anti-PD-1 or anti-PD-L1 
therapy [19]. Epidemiological studies have suggested the 
existence of an inverse relationship between oncogenic 
EGFR mutations and PD-L1 expression [43]. Further-
more, meta-analyses of multiple immunotherapy trials 
compared to standard chemotherapy demonstrated that 
only EGFR-wild-type patients benefit from anti-PD-1 
or anti-PD-L1 antibodies, while patients with EGFR-
mutated tumors did not achieve improved overall sur-
vival or longer progression-free survival in patients with 
advanced non-small cell lung carcinoma (NSCLC) while 
on ICI therapy [44]. Moreover, based on a large cohort 

Fig. 1 Differences in the responses of high- and low-CTL tumors to nivolumab administration



Page 5 of 14Okuyama et al. J Exp Clin Cancer Res          (2023) 42:114  

of head and neck cancer specimens, Concha-Benavente 
et al. reported that the overexpression of wild-type EGFR 
is significantly correlated with JAK2 and PD-L1 expres-
sion. They further showed that PD-L1 expression is 
induced in an EGFR- and JAK2/STAT1-dependent man-
ner. Specifically, they reported that JAK2 inhibition pre-
vents PD-L1 upregulation in tumor cells and enhances 
their immunogenicity [7]. Thus, to benefit from anti-
PD-1 antibody therapy, evaluating EGFR status (high/
low and wild-type/mutated) combined with PD-1 expres-
sion before the administration may be a more reliable 
biomarker.

In addition, another potential immunomodulator is 
IL-6, a tumor-suppressive cytokine that promotes tumor 
cell proliferation and survival in the TME [45]. Cetuxi-
mab repolarized tumor-associated macrophages (TAMs) 
from M2-like to M1-like phenotypes, mainly by sup-
pressing the IL-6 expression through NF-κB and STAT3 
pathways [46]. IL-6 stimulates the phosphorylation of 
STAT3 through JAK 1 and 2. Moreover, DC maturation 

is suppressed by tumoral secretion of STAT3-induced 
cytokines, in particular IL-6 [47]. A preclinical JAK 1/2 
inhibitor, AZD1480, abrogated IL-6-induced STAT3 
phosphorylation and suppressed the growth of human 
solid tumor xenografts with constitutive STAT3 activity 
[48]. Taken together, it is necessary to understand how 
this immunomodulation in the TME provided by cetuxi-
mab affects subsequent ICI treatment outcomes and fur-
ther investigation will be required to establish the most 
effective strategy for an individual patient with HNSCC.

Anti‑angiogenesis of cetuximab and its contribution 
to subsequent treatment
Cetuximab treatment typically results in reduced angio-
genesis or tumor vascularization. In general, anti-angi-
ogenic normalization is mediated by vessel pruning, 
which reduces interstitial pressure, increases pericyte 
coverage, and restores intratumoral perfusion [49, 50]. 
Reportedly, these changes improve tumor drug and 
oxygen penetration, thereby enhancing chemotherapy 

Fig. 2 Immune superiority and inferiority of T-cells in the TME following nivolumab administration. IL-10 is one of the most important 
immunoregulatory cytokines that regulate T-cell responses by modulating multiple signaling pathways. Nivolumab induces potent IL-10 
secretion in T cells via the activation of the MAPK pathway, in which T cells can activate T cell growth and metabolism, possibly leading to T-cell 
immune superiority. Based on an in vitro study, nivolumab treatment significantly reduces PD-1 levels in all T-cell populations, suggesting that 
IL-10 may confer a heterogeneous T-cell response to nivolumab. The engagement of IL-10 with its receptor also activates multiple signaling 
pathways, particularly the JAK-STAT3 pathway, indicating that nivolumab triggers several biological pathways in the TME. MDSCs exert their 
immunomodulatory effects via diverse mechanisms, including Arginase-1-mediated depletion of l-arginine and NO production via NOS2. 
Arginase-1 starves L-arginine in the TME, thus limiting T-cell proliferation. In addition to L-arginine depletion, NO production transforms the TME to 
promote immune evasion and prolonged NO exposure leads to T-cell apoptosis, causing T-cells to show TME immune inferiority
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and/or radiotherapy outcomes [51]. In the first detailed 
in vivo and in vitro study in this regard by Huang et al., 
the treatment of HNSCC with the anti-EGFR antibody, 
C225 reduced cell-to-cell interaction between human 
umbilical vascular endothelial cells, resulting in the dis-
ruption of tube formation. The effect of C225 was then 
further examined using an in  vivo tumor xenograft 
neovascularization model of angiogenesis. The results 
revealed that systemic treatment with C225 not only 
reduced tumor growth and the number of blood capil-
laries but also hindered the growth of established ves-
sels toward the tumor. These results provide evidence 
that treatment with anti-EGFR antibodies may sup-
press tumor-induced neovascularization and metastasis 
in HNSCC [52]. In a human HNSCC tissue microarray, 
increased EGFR expression was found to be correlated 
with increased hypoxia-inducible factor (HIF)-1α and 
microvessel density. Luwor et  al. previously demon-
strated that the inhibition of vascular endothelial growth 
factor (VEGF) by cetuximab occurs at the level of tran-
scription in response to a reduced level of HIF-1α. This 
observation was further confirmed by testing therapeu-
tic strategies that combine cetuximab with approaches 
that inhibit the function of VEGF or the VEGF recep-
tor [53]. Prince et al. reported adjuvant anti-angiogenic 
therapy, utilizing an anti-VEGFR2 and anti-VEGFR3 
antibody (co-administration) as a novel therapeutic 
method for enhancing cetuximab uptake compared 
with the control. These agents restore intratumoral fluid 
dynamics and improve drug perfusion [54]. Treatment 
for enhancing the anti-angiogenesis effect of cetuximab 
is still under development.

Accumulated evidence has revealed that anti-angi-
ogenic agents induce other signaling modulations in 
TME-related anti-angiogenesis. Wang et al. showed that 
cetuximab inhibits tumor-induced angiogenesis in  vitro 
and in  vivo by significantly downregulating HIF-1α and 
Notch1, resulting in reduced angiogenesis and tumor 
shrinkage [55]. Actually, Troy et al. reported that Notch 
signaling plays an important role in blood vessel forma-
tion and remodeling [56]. Some of the most intensely 
investigated Notch signaling pathway-related phenotypes 
observed in cancers are closely related to generating and 
modulating TME and intra-tumor heterogeneity. It was 
also reported that high expression levels of NOTCH1 
mRNA in the tumor tissues correlate with improved 
patient outcomes and longer survival [57], which seemed 
to contribute to a tumor-suppressor-like function of the 
Notch pathway, which is lost by alterations of this. More-
over, Kałafut et al. reported that the stemness and plas-
ticity of HNSCC cells are strongly promoted by Notch 
signaling [58]. Mao et  al. showed that the inhibition of 
the Notch signaling pathway is associated with reduced 

MDSCs, TAMs, and Tregs within emerging mouse tumor 
tissues, whereas the upregulation of the Notch1 down-
stream target, HES1, is significantly correlated with 
increased MDSCs, TAMs, and Tregs. In addition, the 
inhibition of Notch signaling significantly inhibits the 
mRNA and protein expression levels of the most relevant 
immune checkpoint molecules, PD-1, cytotoxic T lym-
phocyte-associated antigen-4 (CTLA-4), T-cell immuno-
globulin and mucin-domain containing-3 (TIM-3), and 
lymphocyte-activation gene-3 (LAG-3), all of which rep-
resent targets for approved or developmental ICIs (Fig. 3) 
[59]. The expression of CTLA-4 [60], TIM-3 [61], and 
LAG-3 [62] immune checkpoints are typically upregu-
lated in dysfunctional and/or exhausted T-cells. There-
fore, the inhibition of the Notch signaling pathway can 
largely modify TME and further research will be required 
to confirm whether this Notch inhibition by cetuximab 
can contribute to sensitizing subsequent ICI treatment.

Biological dynamics of cetuximab FOLLOWED BY anti‑PD‑1 
antibody therapy 
Indications from clinical trials 
The approval of pembrolizumab and nivolumab for 
patients with R/M HNSCC who progressed on or after 
platinum-containing treatment was based on the results 
from the KEYNOTE-012 [63] and CheckMate 141 [64] 
trials. Ferris et  al. reported that in the CheckMate 141 
trial, nivolumab appeared to improve efficacy compared 
to the investigator’s treatment choice, regardless of prior 
cetuximab use, supporting its use in patients with R/M 
HNSCC with or without prior cetuximab exposure. 
Importantly, the decrease in the risk of death associ-
ated with nivolumab administration compared with that 
associated with the investigator’s treatment choice was 
greater for patients without prior cetuximab exposure 
(OS, 8.2  months; HR, 0.52; 95% CI, 0.35–0.77) than for 
those with prior cetuximab exposure (OS, 7.1  months; 
HR, 0.84; 95% CI, 0.62–1.15) [64]. The timing of cetuxi-
mab treatment is important because, as summarized 
above, at first glance, it appears that cetuximab can 
modulate the TME to provide a suitable stage for sub-
sequent ICI treatment. However, the abovementioned 
clinical trial did not indicate this. Whereas cetuximab has 
been shown to significantly downregulate IFNγ-induced 
PD-L1 expression in head and neck tumor cell lines [7], 
tumor PD-L1 expression (< 1% versus ≥ 1%) was similar 
in patients with and without prior cetuximab exposure 
in CheckMate 141 trial [64], indicating that differences in 
response to nivolumab between these patient groups are 
not related to the effect of cetuximab on tumor PD-L1 
expression.
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ADCC activities of cetuximab and interaction with anti‑PD‑1 
therapy
Preclinical studies have demonstrated the ability of 
cetuximab to stimulate ADCC and affect antitumor 
immunity. In particular, in  vitro evidence shows that 
cetuximab can mobilize NK cells, activate neutrophils, 
and stimulate DC maturation [65–68]. Furthermore, 
enhanced cytotoxic activity has been documented based 
on ex  vivo ADCC assays involving patients with R/M 
HNSCC receiving cetuximab-based therapy, and specifi-
cally, induced ADCC was found to be associated with 
positive clinical outcomes [65]. It has also been pro-
posed that ADCC stimulation is an underlying mecha-
nism for the clinically meaningful activity of cetuximab 
and the comparatively notable response rates observed 
during first- and second-line treatments in patients 
with R/M HNSCC [69]. This is responsible for the extra 
antitumor effect other than simple EGFR inhibition. In 
addition, cetuximab treatment upregulates PD-1 expres-
sion in NK cells to maximize antitumor effects. On the 
other hand, it has also been observed that PD-1 block-
ade enhances cetuximab-mediated ADCC against PD-
L1-high HNSCC cells without EGFR amplification 
(Fig. 4). In this regard, Concha-Benavente et al. investi-
gated that combining anti-EGFR antibodies with an anti-
PD-1 inhibitor could enhance both innate and acquired 

antitumor immune responses against EGFR-amplified 
[70]. In clinical practice, phase II clinical trials involv-
ing patients with R/M HNSCC revealed that pembroli-
zumab in combination with cetuximab shows promising 
clinical activity for R/M HNSCC (NCT03082534) [71]. 
Highlighting ADCC activity, a phase I trial performed 
focusing TIGIT (T-cell immunoreceptor with immu-
noglobulin and immunoreceptor tyrosine-based inhibi-
tory motif domain), which is a co-inhibitory receptor 
of T-cell and NK cell activity, revealed that etigilimab 
(TIGIT inhibitor) has an acceptable safety profile and 
shows preliminary evidence of clinical benefits when 
administered alone or in combination with nivolumab 
[72]. Thus, it is expected to be a better course for further 
investigation in clinical trials. In the preclinical HNSCC 
model, Patin et  al. also reported that increased TIGIT 
expression on NK cells based on the inhibition of TIGIT 
signaling represents an effective treatment strategy to 
boost NK-cell activity and ADCC [73].

Antibody‑dependent cellular phagocytosis (ADCP) 
and macrophages
Liu et  al. reported that elevated PD-L1 levels in mac-
rophages, in both tumor and stromal compartments, 
are correlated with high PD-L1 levels in tumors, as well 
as high CD8 and CD68 levels. Moreover, a high PD-L1 

Fig. 3 Neovascularization suppression and TME modulation by cetuximab. Treatment with cetuximab suppresses tumor-induced 
neovascularization in HNSCC. Increased EGFR expression shows a correlation with increased HIF-1α level and microvessel density. The previously 
demonstrated inhibition of VEGF by cetuximab occurs at the transcriptional level in response to reduced levels of HIF-1α. Moreover, cetuximab 
has been shown to attenuate the secretion of proangiogenic factors in tumor cells, such as VEGF and IL-8. Cetuximab inhibits tumor-induced 
angiogenesis by downregulating HIF-1α and Notch1, resulting in reduced angiogenesis and tumor shrinkage. The Notch signaling pathway plays 
an important role in blood vessel formation and remodeling. The inhibition of Notch signaling also reduces the number of MDSCs, TAMs, and Tregs 
within the tumor and inhibits the mRNA and target protein expression of the most relevant immune checkpoint molecules: PD-1, CTLA4, TIM3, and 
LAG3
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expression level in macrophages shows a correlation 
with better overall survival, while a high PD-L1 expres-
sion level in tumor cells shows opposite results [74]. 
Importantly, most clinically used anticancer monoclo-
nal antibodies are of the IgG isotype, which can elimi-
nate tumor cells through NK cell-mediated ADCC and 
macrophage-mediated ADCP. IgG isotype, however, 
ineffectively recruits neutrophils as effector cells [75]. Su 
et al. reported that after ADCP, macrophages inhibit NK 
cell-mediated ADCC and T cell-mediated cytotoxicity in 
breast cancers and lymphomas. They showed the recruit-
ment of absent in melanoma 2 (AIM2), a DNA-sensing 
protein for the activation of the caspase-1 inflamma-
some, to the phagosomes following ADCP and activated 
by sensing the phagocytosed tumor DNAs, subsequently 
upregulating PD-L1 and indoleamine 2, 3-dioxygenase 
and causing immunosuppression in TME [76]. These var-
ied mechanisms ultimately result in more efficient acti-
vated tumor-specific T cell apoptosis and a decreased 
efficacy of T effector cell-mediated tumor cell apoptosis.

Tumor immune status after cetuximab treatment
Several studies have shown that inhibiting EGFR using 
anti-EGFR inhibitors modulates the tumor immune 
microenvironment, with the effects including the 
enhancement of MHC class I and II expression, a 

decrease in the suppressive function of Tregs, the promo-
tion of CTL activity, and reduced T cell apoptosis [77–
80]. Anti-EGFR inhibitor-induced upregulation of MHC 
class I/II expression as well as the inactivation of GSK-3β/
FoxP3 dampens Treg function and increases CTL activity 
is known as the main event that explains the modulation 
of the tumor immune microenvironment by cetuximab. 
Many tumors downregulate MHC expression to evade 
detection by the immune system. Particularly, in NSCLC, 
the expression level of PD-L1 is reduced by EGFR inhibi-
tors [81–83]; however, it is upregulated in some patients 
with acquired resistance to EGFR inhibitors [84–86]. 
Bhola et al. generated HNSCC models of acquired cetux-
imab resistance by isolating clones from HNSCC cell 
lines grown in a culture medium containing increasing 
concentrations of cetuximab and showing higher PD-L1 
expression levels than their isogenic parental controls 
[87]. Moreover, we previously summarized the mecha-
nisms in which cetuximab plays a potential role in the 
synthesis of PD-L1 via the inhibition of its ubiquitination 
in HNSCC [88]. Elucidating the mechanism for modulat-
ing antitumor immunity, such as PD-L1 upregulation via 
the ERK, AKT-mechanistic target of rapamycin (mTOR), 
and STAT3 pathways, should be needed. This investiga-
tion may be going to explain the biological efficacy of 
cetuximab followed by ICI treatment. Importantly, Kansy 

Fig. 4 ADCC activity of cetuximab treatment and the effect on nivolumab administration. Pre-clinical studies have demonstrated the ability of 
cetuximab to stimulate ADCC and affect antitumor immunity. In vitro, cetuximab can mobilize NK cells, activate neutrophils, and stimulate DC 
maturation. This contributes to an extra antitumor effect in addition to simple EGFR inhibition. NK cell activation then produces IFN-γ, which 
promotes PD-L1 expression in tumor cells and emits T cell-recruiting chemokines that activate a high density of CTL in the TME. Cetuximab 
treatment also upregulates PD-1 expression in NK cells and maximizes antitumor effects. Additionally, PD-1 blockade increases cetuximab-mediated 
ADCC against PD-L1-high HNSCC cells without EGFR amplification, indicating that the combination of anti-EGFR antibodies with ICIs can enhance 
both innate and acquired antitumor immune responses
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et al. investigated the TCR richness and clonality in sam-
ples pre- and post-treatment in a prospective clinical trial 
of neoadjuvant cetuximab for HNSCC and revealed that 
neoadjuvant cetuximab treatment significantly increased 
the number of unique TCR sequences in peripheral 
blood mononuclear cells, which was more prominent 
in the clinical responder patients compared to non-
responders. Moreover, a trend toward TCR gene focusing 
was observed in TILs in post-treatment samples. These 
data showed an influence of both peripheral quantity and 
intratumoral quality on adaptive immunity in cetuximab-
treated patients [89]. Taken together, cetuximab treat-
ment does not provide a negative factor that biologically 
reduces the effectiveness of subsequent ICI treatment.

Contribution of Extracellular matrix (ECM) to the treatment 
response of cetuximab and nivolumab
So far, there have demonstrated a lot of studies about 
cancer-associated fibroblasts (CAFs) as the main produc-
ers of ECM, which is directly involved in drug resistance 
mechanisms [90, 91], TME modulation [92, 93], ECM 
remodeling [94], and tumor aggressive behavior [95]. 
Galindo-Pumariño et  al. generated an ECM model by 
using normal fibroblast, CAFs, and cell lines (fibroblast 
and tumor cells) and identified its role in the cetuximab-
resistance processes of colorectal cancer (CRC) cells 
mediated by SNAI1-expressing fibroblasts in  vitro and 
also showed the matrices generated by Snai1-knockout 
mouse embryonic fibroblasts (MEF) confer less resist-
ance on cetuximab than wild-type MEF-derived matri-
ces in  vivo. They suggested the possible use of SNAI1 
expression in CAFs as a predictive biomarker of response 
to cetuximab treatments in patients with CRC [96]. 
Moreover, in head and neck cancer, Prieto-Fernández 
et  al. highlighted the drugs, specifically targeting EGF, 
Insulin-like growth factor, and Platelet-derived growth 
factor signaling pathways, emerge as excellent strate-
gies to block functionally CAF-enhanced stemness and 
tumor-sphere forming ability, to consequently reduce the 
stemness of cancer [94].

ECM, especially CAFs, have emerged as essential 
factors in the modulation of the immune system, sup-
porting the generation of an immunosuppressive envi-
ronment [97]. Studies are showing that a high abundance 
of CAFs correlates with immune exclusion and ICI fail-
ure [98], while others reported that the absence of CAFs 
is associated with lower immune infiltration [99]. This 
discrepancy might be explained by the different observa-
tions in CAF’s behavior that could be due to differences 
in their activation status and the presence of distinct 
CAF subpopulations coexisting in the TME as well as 
their interaction with the rest of the tumor-stroma com-
ponents. As one example, Obradovic et al. reported the 

existence of different CAF subpopulations and demon-
strated their functional importance in modulating the 
immunoregulatory milieu of cancer. They identified 
some CAFs subtypes as useful biomarkers to predict 
resistance to nivolumab. These identified actionable 
CAF subtypes can be used as a biomarker for treatment 
response and resistance [100]. Moreover, the ECM stiff-
ness developed by CAFs is one of the important factors 
in the response of nivolumab: the generation of fibrosis, 
characterized by a strong cross-linked ECM acting as a 
physical barrier, which impairs immune cell infiltration 
thereby facilitating immune escape [101]. This ECM 
stiffness could also be considered a potential therapeutic 
target to increase tissue permeability, and consequently, 
improve immune cell penetration, ultimately leading to 
cancer cell death [94].

Taken together, it is possible to predict the therapeu-
tic effect of cetuximab and nivolumab partly based on 
the status of the ECM especially focusing on CAFs. It is 
important to select the effective treatment individually 
based on the evidence.

Biological dynamics of cetuximab FOLLOWING anti‑PD‑1 
antibody treatment 
ICI treatment discontinuation is often due to tumor 
HPD, which cannot be controlled using ICIs (here, we do 
not consider the occurrence of severe immune-related 
adverse events as an exception). Thus, understand-
ing the status of antitumor immunity in the HPD TME 
is important. Several studies on NSCLC have suggested 
that salvage chemotherapy after ICI treatment is highly 
effective in treating the disease [102, 103]. Furthermore, 
Kamada et al. reported the presence of highly proliferat-
ing FoxP3 + effector Tregs in patients with gastric cancer 
having HPD tumors after treatment with an anti-PD-1 
antibody, in contrast to their absence in patients with 
non-HPD tumors. Functionally, highly activated circulat-
ing and tumor-infiltrating PD-1 + effector Treg cells show 
higher CTLA-4 expression levels than PD-1- effector 
Treg cells. As the PD-1 blockade significantly enhances 
Treg cell suppressive activity, PD-1 blockade may facili-
tate the proliferation of highly suppressive PD-1 + effec-
tor Treg cells expressing high CTLA-4 in HPDs, resulting 
in antitumor immunity inhibition. Thus, it could be 
considered that HPD occurs when PD-1 blockade acti-
vates and expands tumor-infiltrating PD-1 + effector 
Treg cells to overwhelm tumor-reactive PD-1 + effec-
tor T cells. Therefore, the presence of actively prolifer-
ating PD-1 + effector Treg cells in tumors is an indirect 
reliable marker for the progression to HPD, and target-
ing this may facilitate the treatment of HPD [104]. Actu-
ally, Matoba et  al. discovered that Treg cells expressing 
abundant CTLA-4 on the cell surface were expanded 
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in human HNSCC samples and suggested it as a new 
therapeutic target to evoke effective immune responses 
to HNSCC [105]. Moreover, Jie et  al. reported that in 
HNSCC, cetuximab treatment increases FoxP3 + intra-
tumoral effector Tregs expressing CTLA-4. Their inves-
tigation also revealed that ipilimumab (anti-CTLA-4 
antibody) targeting CTLA-4 + Tregs restores the cyto-
lytic functions of NK cells mediating ADCC. Treg-
mediated immune suppression contributes to clinical 
response to cetuximab treatment was also investigated by 
them [4]. This observation suggests that its improvement 
by adding ipilimumab or via other Treg ablation strate-
gies promotes antitumor immunity. Therefore, cetuximab 
treatment after anti-PD-1 treatment for R/M HNSCC, 
including rechallenge of cetuximab, might be modulated 
via combination treatment involving cetuximab and ipili-
mumab, may expect high response rates and improve 
survival for patients with HPD of HNSCC (Fig. 5). Thus, 
we hope the regimen of cetuximab plus ipilimumab is 
expected to be further examined basically and eventually 
proceed to clinical trials.

Human papillomavirus (HPV) status and differences 
in biological behavior following ICI therapy
HNSCC has two main subtypes, namely, the HPV-
related (HPV +) and HPV-unrelated (HPV −) sub-
types. In general, HPV + HNSCC is more sensitive to 
treatment and shows better survival. In particular, the 

EXTREME trial showed that patients with p16 positiv-
ity benefit more from cetuximab therapy [106]. It has 
also been observed in patients in the Checkmate-141 
subgroup with p16-positive tumors, the median overall 
survival was 9.1  months in the nivolumab group versus 
4.4  months in the standard therapy group (hazard ratio 
for death, 0.56; 95% CI, 0.32 to 0.99); among patients with 
p16-negative tumors, the median overall survival was 
7.5 versus 5.8 months (hazard ratio, 0.73; 95% CI, 0.42 to 
1.25; P = 0.55 for interaction) [10]. This is because HPV 
infection alters the immune cell population infiltrating 
HNSCC, establishing a diverse and heterogeneous land-
scape with more immune infiltration. In addition, HPV-
associated oncoproteins E5, E6, and E7 are key players 
in tumor cell metabolism. Specifically, E5 blocks HLA-C 
and HLA-E from the tumor stroma from interacting 
with MHC class I on cancer cells, thereby impairing T 
cell and NK cell activity [107]. Moreover, E5 attenuates 
MHC class II expression and stability by blocking pep-
tide loading and transportation, and by interfering with 
MHC, it severely impairs antigen processing and T-cell 
activation [108]. Conversely, E6 and E7 proteins alter the 
NF-kB pathway in tumor cells, impair the innate immune 
system, and evade supervision [109]. They also interact 
with keratinocytes and inhibit macrophage infiltration 
[110]. Moreover, Luo et al. identified NLRX1 as a critical 
intermediary partner to facilitate HPV16 E7-potentiated 
STING turnover and the depletion of NLRX1 resulted 

Fig. 5 TME modulation by cetuximab and nivolumab and the potential breakthrough treatment strategy using ipilimumab for HPD. Inhibiting 
EGFR modulates the tumor immune microenvironment in several ways, including enhancing MHC class I and II expression, decreasing the 
suppressive function of Tregs, promoting CTL activity, and reducing T cell apoptosis. PD-1 blockade may facilitate the proliferation of highly 
suppressive PD-1 + effector Treg cells in HPDs, resulting in the inhibition of antitumor immunity. Highly activated tumor-infiltrating PD-1 + effector 
Treg cells show higher CTLA-4 expression levels than PD-1- effector Treg cells. As the PD-1 blockade significantly enhances Treg cell suppressive 
activity, PD-1 blockade facilitates the proliferation of highly suppressive PD-1 + effector Treg cells expressing high CTLA-4 in HPDs, resulting in 
immunosuppression in HNSCC. Moreover, cetuximab treatment increases the FoxP3 + intratumoral effector Tregs expressing CTLA-4, suggesting 
the combination with ipilimumab restores the cytolytic functions of NK cells mediating ADCC. Targeting CTLA-4 high PD-1 effector Tregs for HNSCC 
may show a high response to the tumor and improve survival
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in significantly improved IFN-I-dependent T-cell infil-
tration profiles and tumor control [111]. Other, EGFR 
amplification and abnormal PI3K/AKT/mTOR pathway 
activation are frequently observed in HPV + HNSCC 
(80–90% of cases) [112–114]. This also contributes to the 
enhancement of anti-EGFR therapy using cetuximab.

Discussion
The biological background of cancer treatment remains 
unclear and reported trials in this regard lack prom-
ising background evidence. Moreover, it is expected 
that changes in the tumor immune microenviron-
ment owing to the administration of cetuximab and 
nivolumab (or pembrolizumab) would influence the 
effects of the chemotherapeutic agents used on immu-
nocompetent and immunosuppressive cells, with the 
said effects enhanced by interaction with the origi-
nal anti-tumor effect if it is biologically compatible. In 
this review, we summarized the potential of modulat-
ing the TME after the administration of these targeted 
agents, discuss subsequent therapies, and suggest a rea-
sonable combination therapy using cetuximab and an 
anti-CTLA-4 antibody that should be evaluated in the 
future as a breakthrough therapy for HPD of HNSCC 
including R/M diseases. However, further pre-clin-
ical research is still needed to optimize the treatment 
sequence in HNSCC in order to maximize therapy 
options and to understand the impact of prior treat-
ments on response to subsequent agents. Actually, the 
number of pre-clinical research models that are along 
with the aforementioned hypothesis is rare. This review 
objects primarily to presenting the hypotheses and per-
spectives obtained by combining the dispersed pieces 
of evidence. Given that the basic research on regimens 
involving the administration of an ICI followed by 
cetuximab treatment is limited, future research should 
include the evaluation of the biological efficacy of the 
regimen involving cetuximab administration follow-
ing ICI to determine the detailed-biological efficacy of 
cetuximab, also including the cetuximab  rechalleng-
ing. As our next concern, these targeted therapies need 
to be investigated given that they may promote the 
appearance of cancer stem cells in the TME as well as 
the circulation of these cells. This is also partly because, 
under such conditions, these cells may become resist-
ant to the drugs.
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