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Abstract 

Pancreatic cancer (PC) is one of the most aggressive malignancies worldwide. Increasing evidence suggests that the 
capacity for self-renewal, proliferation, and differentiation of pancreatic cancer stem cells (PCSCs) contribute to major 
challenges with current PC therapies, causing metastasis and therapeutic resistance, leading to recurrence and death 
in patients. The concept that PCSCs are characterized by their high plasticity and self-renewal capacities is central to 
this review. We focused specifically on the regulation of PCSCs, such as stemness-related signaling pathways, stimuli 
in tumor cells and the tumor microenvironment (TME), as well as the development of innovative stemness-targeted 
therapies. Understanding the biological behavior of PCSCs with plasticity and the molecular mechanisms regulating 
PC stemness will help to identify new treatment strategies to treat this horrible disease.
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Introduction & background
Pancreatic cancer (PC) represents a major cause of can-
cer-related death worldwide and differs from other can-
cers, the incidence rate of PC patients has continued to 
increase over the past few years, with little improvement 
in survival rates [1]. Alarmingly, PC has a poor 5-year 
survival rate, less than 11% in the US [2], and it has been 
projected that the mortality of PC will become the sec-
ond leading cause of cancer-related deaths in the US by 
2030 [3].

Many tumor entities have made considerable advances 
in the diagnosis and treatment during the past decade; 
however, this is not the case for PC. From a clinical point 
of view, the comparatively low success rate of therapy for 
PC compared with other cancers is attributable to the 
deep location of the pancreas causing a lack of appropri-
ate screening and diagnostic modalities and challenges 
in performing a tissue biopsy, aggressive clinical course, 
and low response rate of PC to chemo- and radiotherapy 
[4]. From the characteristics of the PC itself, in addition 
to the highly heterogeneous tumor immunosuppressive 
microenvironment, PC stem cells (PCSCs) are also func-
tionally important in tumor progression and therapeutic 
resistance [5]. Tumors are comprised of a limited num-
ber of distinct cells known as cancer stem cells (CSCs), 
also referred to as tumor-initiating cells (TICs). They 
possess the ability of tumorigenesis reconstitution with 
unlimited proliferative potential and inherently higher 
chemo- and radioresistance, have increased metastatic 
and invasive potential and show higher disease recur-
rence compared with their differentiated cancer cell 
counterparts [5, 6]. Therefore, a deeper understanding of 
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CSCs is necessary for the improved management of can-
cer patients.

The presence of CSCs was first demonstrated in acute 
myelogenous leukemia in 1994 [7, 8] and subsequently 
confirmed in breast [9] and brain tumors [10]. Three dif-
ferent studies using mouse models of the brain, skin, and 
intestine gave the first convincing data to demonstrate 
the involvement of CSCs in malignancies progression 
[11–13]. PCSCs were first identified in 2007 and repre-
sent less than 1% of all PC cells [14]. These cells were first 
discovered as CD44 + CD24 + ESA + cells with the ability 
to develop tumors at a significantly higher frequency than 
the bulk tumor [14]. However, later studies have shown 
that PCSCs can express multiple markers, including CD9, 
CD24, CD34, CD44, CD133, ABCB1, ABCG2, ALDH1, 
CXCR4, DCLK-1, ESA, EZH2, GLRX3, NANOG, OCT4, 
SOX2, NOTCH-1, c-MET, LGR5, alpha6beta4,  tetras-
panin-8 and nestin [15–20]. The expression of these 
factors reprograms cells to CSCs and promotes plastic-
ity, thereby allowing tumor cells to adapt to changes in 
their environment and survive. Furthermore, the inter-
actions and connections among CSC markers in PC are 
quite complicated. Specifically, these markers are poor 
prognostic indicators linked to tumor clinical progres-
sion and recurrence. CSCs promote tumorigenesis, 
chemical resistance and metastasis. Theoretically, elimi-
nating CSCs may be a promising approach for PC treat-
ment. However, an increasing number of studies have 
shown that CSCs exhibit strong plasticity and this plas-
ticity allows them to be successfully adapted to targeted 
therapies [21, 22]. In 2008, Patrick C. Hermann et al. first 
proposed that PCSCs are in a plastic state rather than a 
hardwired defined state [23]. In general, the plasticity of 
CSCs can be defined as the ability of cells to differentiate 
across lineages and hierarchies and refers to the ability of 
cancer cells to generate more differentiated bulk tumor 
cells, as well as cells’ phenotypic potential——the capac-
ity of cells to adopt a new identity or fate in response to 
changing circumstances and environmental factors, lead-
ing to increased tumor heterogeneity and promoting 
tumor progression [23, 24].

Herein,  we summarize current knowledge of PCSCs 
from an oncology perspective, discuss developments in 
the field of PCSCs and, more importantly, focus on elu-
cidating that PCSCs exist as a plastic state, influenced by 
multiple factors inside and outside the tumor cell, influ-
enced by multiple factors inside and outside the tumor 
cell and, highlight the role of PCSCs in contributing to 
the malignant behavior of tumor and their potential clini-
cal applications, which provide a comprehensive under-
standing of the plasticity of PCSCs and its roles in cancer 
progression. Figure 1 shows the milestones and discovery 
timeline related to PCSCs.

Classical markers and signaling pathways of PCSCs
Markers
Early research on PCSCs mainly focused on iden-
tifying their markers through flow cytometry and 
xenotransplantation assays in immunocompromised 
mice. Although it is not completely convincing to rely 
only on markers to identify PCSCs, these early studies 
have laid a solid foundation for later research on PC 
stemness. These markers do not exist independently, 
instead, interacting with each other and with stemness-
related pathways to promote tumor progression. The 
triplet combination of CD24 + CD44 + ESA + and the 
binary CD133 + CXCR4 + combination represent the 
earliest identified PCSC surface markers [25, 26]. In 
addition to classical cell surface markers, side popu-
lation and drug efflux markers, as well as intracellu-
lar markers have also attracted researchers’ attention. 
High expression of ATP-binding cassette (ABC) trans-
porters was found on the plasma membrane of many 
CSCs, which is responsible for transporting small mol-
ecules from the cytoplasm to the extracellular using 
the energy generated by ATP hydrolysis. It has been 
proved that the expression of ABCB1 and ABCG2 in 
PCSCs is increased [27].  The increase of ABC trans-
porters in CSCs enhances their ability to excrete dyes 
and drugs. With this characteristic, PCSCs in large 
tumor samples can be identified by Hoechst 33,342 
and flow cytometry. In addition, the enhanced efflux 
ability of drugs also increases chemotherapy resist-
ance. Different ABC transporters exhibit different 
efflux abilities for different compounds. For example, 
ABCG2 mediates resistance to 5-flurorouracil and iri-
notecan—chemotherapeutic agents for PC [28]. PCSC 
markers, the associated pathways and their effect on 
tumor progression are summarized in Table 1.

Signaling pathways and targeted therapy
Major signaling pathways
Developmental pathways including Sonic Hedgehog 
(SHH), NOTCH and WNT signaling are the most acti-
vated pathways in PC cells, which have been experi-
mentally demonstrated to be mechanistically connected 
with the cancer stemness features of PC and promote PC 
invasion, metastasis, and drug resistance [29]. Embry-
onic development and stemness regulation are two fun-
damental mechanisms regulated by the SHH signaling 
pathway [30]. SHH signaling usually ceases after embry-
ogenesis; however, the signaling pathway is reactivated 
during the initial progression phase of PC [31]. Addi-
tionally, studies based on RNA sequencing data sug-
gested that compared with pancreatic ductal epithelial 
cells and normal pancreatic stemness, SHH and other 
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SHH components are significantly overexpressed in 
CD44 + CD24 + ESA + cells, further supporting the key 
role of SHH in PCSCs [14]. Moreover, signal transduc-
tion of the NOTCH signaling pathway is independent 
of the second messenger and only occurs between cells 
that are in contact with each other [32]. NOTCH is acti-
vated when NOTCH receptors bind to NOTCH ligands 
of adjacent cells, which transmits the signals from the 
neighboring cell to the nucleus, starting the expression 
of downstream transcription factors. There are four dif-
ferent types of NOTCH receptors (NOTCH-1, NOTCH-
2, NOTCH-3, and NOTCH-4) [33] and five kinds of 
NOTCH ligands (DLL-1, DLL-3, DLL-4, Jagged-1, and 
Jagged-2) [34]. Upregulation of several NOTCH pathway 
components in PCSCs has been demonstrated previ-
ously. For instance, the overexpression of Hes1 promotes 
PCSC self-renewal and tumorigenicity [35], and NOTCH 

promotes apoptotic resistance in PCSCs potentially 
through activation of the nuclear factor of NF-κB [36].
In addition, in the TME, NOTCH signaling cascades 
interact with fibroblast growth factor and WNT signal-
ing cascades to maintain cancer stemness and reshape 
TME [37]. WNT signaling is also essential for the main-
tenance of cancer stemness [38]. Aberrant activation of 
the canonical WNT/β-catenin signaling pathway facili-
tates cancer stemness renewal, thus playing vital roles 
in tumorigenesis and the therapeutic response of a wide 
range of malignancies, including PC [39]. Figures  2 and 
3 shows the specific regulatory mechanisms of the three 
classic pathways on PCSCs.

In addition, JAK/STAT3, TGF-β, PI3K/Akt/mTOR, and 
Hippo signaling are also involved in the maintenance of 
PC stemness [40–44]. Together, these signaling path-
ways interact with each other and with other oncogenic 

Fig. 1 Early studies using FACs and xenotransplantation techniques identified markers of pancreatic cancer stem cells, which laid an important 
foundation for further research. Following the identification of these markers, a great deal of work has been devoted to exploring the intrinsic and 
extrinsic regulators of pancreatic cancer stemness
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signaling pathways, which provides evidence for the 
molecular mechanism of the PC stemness and suggests 
a potential approach for targeting the cancer stemness in 
patients with PC.

Targeting stemness‑related pathways in PC
A promising method for targeting PCSCs is to inhibit the 
developmental pathways, including SHH, NOTCH, and 
WNT pathways, which play significant roles in main-
taining and promoting PC progression by regulating PC 
stemness signaling [45–47].

Both SMO and the GLI family of zinc finger transcrip-
tion factors in the SHH signaling pathway are regarded 
as important targets for cancer therapy. Cyclopamine 
was the first SMO inhibitor to be discovered and it can 
induce gemcitabine sensitivity [48, 49]. Sonidegib is a 
highly effective SMO inhibitor, and it has been utilized as 
an SHH pathway antagonist, acting by binding to SMO 
and inhibiting the activation of downstream hedgehog 
target genes [50]. α‐Mangostin has been shown to inhibit 
the expression of stemness-related genes CD24, CD44, 
CD133, NANOG, OCT4, c‐Myc, SOX2, and KLF4 by 
inhibiting the GLI transcription, indicating that it can 
regulate cancer growth by inhibiting cancer stemness 
population [51]. Another GLI transcription factor inhibi-
tor GANT-61 is able to block DNA binding of GLI and 
decreases transcriptional activity of pluripotency-pro-
moting factors in PCSCs, thereby reducing cancer cell 
growth and proliferation [52, 53].

NOTCH signaling is triggered by γ-secretase-mediated 
cleavage of the NOTCH receptor, and thus γ-secretase is 
a central player in the NOTCH signaling pathway. Stud-
ies have shown that γ- secretase inhibitors (GSI), such as 
MK0752, PF-03084014, and MRK-003 induce cancer cell 
apoptosis and interfere with cancer cell proliferation and 

Table 1 Pancreatic cancer stem cell markers, the associated 
pathways and their effect on tumor progression

Name Functions on PC and major associated 
signaling pathways

Cell surface markers

 CD24 JADE dependent AKT/mTOR pathway; 
SHH pathway

 CD44 JADE dependent AKT/mTOR pathway; 
SHH pathway; SPP1/CD44 pathway; 
CD44/ITGB1 pathway; Wnt pathway;

 ESA/EpCAM SHH pathway; Wnt pathway

 CD133 CCL21/CCR7 axis

 CXCR4 SDF-1/CXCR4 axis

 nestin TGFβ/SMAD4 pathway

 c-MET YAP/HIF-1α axis

 NANOG Wnt pathway; NOTCH pathway; SHH 
pathway

 OCT4 SHH pathway; Wnt pathway; NOTCH 
pathway

 NOTCH1 NOTCH1/Jagged1/Hes1 axis

 SOX2 FGFR/AKT/SOX2 axis

 Tspan8 SHH pathway

 α6β4 Form hemidesmosomes

 DCLK1 Regulate miRNAs; Histone modification

 CD9 Modulate glutamin metabolism

 GLRX3 Met/PI3K/AKT; Combine with CA19-9 
increase the sensitivity of diagnosis

Side population and drug efflux markers

 ABCB1 Not reported

 ABCG2 ERK1/2/HIF-1α axis

 CD31 Not reported

 CD45 Not reported

Intracellular markers

 ALDH1 Wnt

 LGR5 Not reported

(See figure on next page.)
Fig. 2 In the absence of ligands, the SHH signaling pathway is inactive. When hedgehog ligands activate the SHH pathway, these hedgehog 
ligands bind to PTCH and relieve the repressive effects on SMO, a seven-transmembrane protein, resulting in the translocation of the full length 
activated forms of GLI  (GLIA) into the nucleus and activation of the expression of target genes, including PTCH and GLI themselves and many other 
cancer stemness-related genes. When the receptor activates the NOTCH pathway by binding with its ligand, the protein of the receptor is cleaved 
by a disintegrin and metalloproteinases (ADAMs) that mediate the cleavage of the NOTCH extracellular domain and γ-secretase, which mediates 
the cleavage of the NOTCH intracellular domain (NICD), which is then released. NICD is further translocated to the nucleus as a transcriptional 
effector and displaces the corepressor protein from CSL (CBF1, Suppressor of Hairless, LAG1)/RBPJ transcription factors, which leads to the activation 
of downstream signaling cascades to regulate target genes, including Hes1, Hey1, cyclinD1, c-myc, p21/Waf1 and nuclear factor-κB(NF- κB). WNT 
ligands are responsible for activating the WNT/β-catenin signaling pathway. In the absence of WNT ligands, β-catenin is phosphorylated by the 
destruction complex of β-catenin, which is a tertiary complex formed by the scaffolding proteins Axin and adenomatous polyposis coli (APC), the 
kinase proteins glycogen synthase kinase-3β (GSK-3β) and casein kinase 1α (Ck1α). This leads to β-catenin degradation via β-TrCP200 ubiquitination; 
therefore, β-catenin is failed to translocate from the cytoplasm to the nucleus. Contrastingly, in the presence of WNT ligands, the ligands bind to the 
FZD and the LRP receptor complex. Then the cytoplasmic domain of the LRP receptor is phosphorylated by GSK3β and CK1α, and the scaffolding 
protein Disheveled (Dvl) is recruited. The unphosphorylated β-catenin is released from the complex and enters the nucleus. In the cytoplasm, TAZ/
YAP directly interacts with β-catenin and restricts its degradation. In the nucleus, β-catenin binds to TCF/LEF and enhances the recruitment of 
histone-modifying coactivators, such as BCL9, CBP/p300, and BRG1, to induce the transcription of WNT target genes. Many of these genes encode 
gene products capable of broadly upregulating cancer cell stemness, including CCND1, AXIN2, and the oncogene MYC
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invasion in several human cancers including PC [54–58]. 
In conclusion, GSI has exhibited antitumor effects in 
human cancer in many preclinical models; however, GSI 
shows a variety of side effects, such as goblet cell meta-
plasia  of the small intestine and diarrhea [59]. Some 
studies have used less toxic alternative therapies, such as 
quinomycin, to avoid the limitations of GSIs [60]. Some 
natural compounds inhibiting the NOTCH signaling 
pathway that are non-toxic to human cells have also been 

identified, such as genistein, curcumin (diferuloylmeth-
ane), sulforaphane, quercetin and cimigenoside [61–66], 
which are expected to become therapeutic agents target-
ing PCSCs.

Besides, there is substantial evidence that target-
ing WNT/β-catenin signaling pathway enhances the 
sensitivity of PC to chemotherapeutic agents [67]. As 
previously mentioned, the WNT pathway cannot be 
activated in the absence of WNT ligands. WNT ligands 

Fig. 2 (See legend on previous page.)



Page 6 of 19Zhao et al. J Exp Clin Cancer Res          (2023) 42:122 

can be palmitoylated by Porcupine (PORCN), a mem-
brane-bound member of the o-acyltransferase family 
of proteins, allowing them to secret and initiate cellular 
reactions [68]. Several inhibitors that target PORCN pre-
vent WNT ligand proteins from being palmitoylated in 
the endoplasmic reticulum, which restricts their secre-
tion subsequently. Thus, an effective treatment strategy is 
to abolish WNT secretion by blocking its acylation with a 
PORCN inhibitor. The small molecule inhibitor WNT974 
(LGK974), which is accessible orally, inhibits tumor 
development in vivo and decreases the viability of epithe-
lial ovarian cancer (EOC) cells in vitro. In EOC preclinical 
mouse models, WNT974 exhibits improved anticancer 
activity in combination with paclitaxel. Currently, there 
is a phase I clinical trial evaluating WNT974 monother-
apy for patients with PC (NCT01351103). Vantictumab 
(OMP-18R5), a monoclonal antibody, can specifically 

target FZD. Further, OMP-18R5 inhibits tumor growth 
in xenograft mouse models of PC and many other malig-
nancies and is now being investigated in a phase I trial for 
PC (NCT02005315) [69]. There are also some agents that 
target the β-catenin-destruction complex. For example, 
an existing FDA-approved medicine, pyrvinium, can bind 
all CK1 family members in vitro, and selectively enhance 
CK1α kinase activity. By decreasing β-catenin levels and 
blocking the transcription of β-catenin targeted genes, 
pyrvinium inhibits the WNT signal. Pyrvinium reduces 
the development of platinum-resistant tumor and pro-
motes apoptosis in vitro and in vivo, and when combined 
with paclitaxel, these effects are strengthened. However, 
pyrvinium no longer has an effect on cancer cells with 
rising levels of β-catenin [70]. A phase 1 clinical trial 
investigating pyrvinium for PC that cannot be removed 
surgically is underway (NCT05055323). In addition, 

Fig. 3 The extracellular matrix, cancer-associated fibroblasts, and immune cells are critical components in the regulation of pancreatic cancer 
stemness, influencing pancreatic cancer stemness-related pathways and stemness molecules through secretory factors, extracellular matrix and 
intercellular interactions
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many potential compounds targeting PCSCs through 
inhibiting the WNT/β-catenin signaling pathway have 
been investigated in preclinical evaluations. For example, 
a preclinical evaluation revealed that FH535 inhibited 
β-catenin transcriptional activity [71] and suppressed 
the expression of stemness markers CD24 and CD44 
[72]. Salinomycin showed a significant inhibitory effect 
on increasing the cytotoxic effects of traditional therapy 
of gemcitabine in PCSCs [73] and inhibiting tumor cell 
growth and migration by interfering with LPR phospho-
rylation and inducing its degradation in the xenograft 
model in vivo [74]. Besides, some studies have also dem-
onstrated that some natural dietary compounds, includ-
ing curcumin, sulforaphane, genistein, lycopene, and 
piperine, can inhibit the WNT/β-catenin signaling path-
way, thus inhibiting cancer stemness [75, 76] A summary 
of drugs targeting these pathways is provided in Table 2.

Intracellular elements of tumor cells participate in the 
regulation of PCSC plasticity.

Many intrinsic regulators regulating PC stemness are 
converge into the above-mentioned stemness-related 
signaling pathways (WNT/β-catenin, NOTCH, SHH, 
JAK/STAT3, TGF-β, and Hippo). In addition, there are 
still many independent factors involved in the regulation 
of PC stemness. These factors can be categorized into 
several subclasses as listed in Table 3.

Transcription factors
In recent years, an increasing number of transcription 
factors that bind to the promoters of genes regulating 
PC stemness have been identified. RNA polymerase II-
associated factor 1 (PAF1) promotes the expression of 
the stemness-associated genes CD44, NANOG, ABCG2, 
and ALDH1 [19]. ETS-homologous factor (EHF) binds 
to the promoter of CXCR4, thereby obstructing its tran-
scription and resulting in altered crosstalk between PC 
cells and pancreatic stellate cells (PSCs) [77]. Snail fam-
ily transcriptional repressor 2 (SNAI2) has been proved 
to promote the expression of CD44, while SNAI2 gene 
knockout significantly reduced the number of PCSCs, 
thus reducing the tumorigenicity and chemotherapy 
resistance of PC [78].

Epigenetic regulators
Fat mass and obesity-associated protein (FTO) is an RNA 
N6-methyladenosine demethylase. FTO depletion was 
shown to inhibit the spheroid formation in PC cells [79], 
and the absence of FTO in vitro significantly reduced the 
mRNA and protein expression of PCSC markers includ-
ing CD44, ALDH1, SOX2, NANOG, and CD133 [79]. 
Overall, these results suggest that FTO is essential for 
spheroid formation, the maintenance of stemness marker 
expression, and the self-renewal potential of PC. Sirtuin 

1 (SIRT1) and cullin 4B-ring E3 ligase (CRL4B) interact 
and cooperate as a functional unit, contributing to the 
epigenetic silencing of tumor suppressors, and playing 
an important role in regulating PCSC properties [80]. 
Methyl CpG binding domain 3 (MBD3) protein exhibits 
oncogenic effects in PC. MBD3 was proved to increase 
stemness markers level of OCT4, NANOG and SOX2 
[81]. In addition, MBD3 binds to YAP to significantly 
inhibit stemness maintenance in PC cells via Hippo sign-
aling. Ubiquitin carboxyl-terminal hydrolase isozyme L5 
(UCHL5) directly deubiquitinates and stabilizes ELK3 
protein to activate NOTCH-1 expression and signaling, 
enhancing self-renewal during PC development [82]. 
O-glycosyltransferases GALNT3 and B3GNT3 can pro-
mote the self-renewal of PCSCs [83]. Epigenetic regula-
tion mediated by polycomb group (PcG) proteins, such as 
EZH2 and BMI-1, is also a major driver in PCSC patho-
genesis [84, 85].

Metabolic regulators
There is growing evidence that CSC metabolism has 
unique characteristics. The maintenance of the PCSC 
phenotype is mainly related to the mitochondrial regu-
lation of redox homeostasis and energy metabolism. 
Firstly, mitochondrial fusion and fission represent the 
main events involved in mitochondrial dynamics, and 
both processes are mainly controlled by different mem-
bers of the dynamin family, together with several bridg-
ing proteins [86, 87]. Optic atrophy 1 (OPA1) regulates 
mitochondrial function and stabilizes the respiratory 
chain supercomplex by participating in the formation 
of mitochondrial cristae junctions and driving mito-
chondrial fusion, controlling mitochondrial respiratory 
activity and thereby promoting PC stemness [88]. Mito-
fusin-1 and mitofusin-2 are also involved in mitochon-
drial fusion, but the specific mechanism of their role in 
PCSCs has not been elucidated [86]. Besides, emerging 
evidence indicates that mitochondrial fission enhances 
uncoupled respiration to avoid excessive ROS produc-
tion, thereby preventing oxidative damage. Maintaining 
low mitochondrial ROS levels is essential for maintain-
ing PCSC self-renewal and function. The GTPase of the 
kinesin superfamily of proteins, dynamin-related pro-
tein 1 (DRP1), is the primary enforcer of mitochondrial 
fission [89], and PCSCs exhibit increased DRP1 expres-
sion, which is positively correlated with the expression 
of PC stemness-related genes such as NANOG, OCT4 
and SOX2 [86]. Inhibition of mitochondrial division by 
inhibition of DRP1 induces the accumulation of dys-
functional mitochondria, limiting the ability of PCSCs to 
activate alternative pathways of energy production [86]. 
In addition, peroxisome proliferator-activated receptor 
gamma co-activator 1 (PGC-1) is the pivotal regulator of 
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mitochondrial activity. MYC binds to the PGC-1α pro-
moter to directly inhibit PGC-1α, thereby suppressing 
mitochondrial respiration and reducing PC stemness. 
When MYC is inhibited, the subsequent increase in 
PGC-1α is critical for oxidative phosphorylation in 
PCSCs [90]. Liver kinase B1 (LKB1) is highly expressed 

in CD44 + PC cells [91]. It promotes the expression of 
PGC-1β, which further promotes the expression of pyru-
vate dehydrogenase (PDH), a key enzyme linking gly-
colysis and the tricarboxylic acid (TCA) cycle, as well 
as increasing the rate of mitochondrial fusion, thereby 
promoting PC stemness [91, 92]. Nutrient-deprivation 

Table 2 Summary of drugs targeting pancreatic cancer stemness related signaling pathways

Category Drug Drug development stage Treatment

Sonic Hedgehog (SHH) pathway 
inhibitor

Smo inhibitor

Cyclopamine Preclinical

Sonidegib Phase 2 (NCT02358161) Sonidegib + Gemcitabine + Nab-
paclitaxel

Gli inhibitor

α‐Mangostin Preclinical

GANT-61 Preclinical

Notch pathway inhibitor γ- secretase inhibitors (GSI)

MK0752 Phase 1 (NCT01098344) Gemcitabine Hydrochloride + MK0752

PF-0308401 Phase 2 (NCT02109445) Gemcitabine + Nab-Pacli-
taxel + PF-03084014

MRK-003 Preclinical

Quinomycin Preclinical

Genistein Phase 2 (NCT00376948) Gemcitabine + Erlotinib + Genistein

Curcumin (Diferuloylmethane) Phase 1 (NCT02336087) Gemcitabine Hydrochloride + Paclitaxel 
Albumin + Metformin Hydrochloride + a 
Standardized Dietary Supplement 
(including curcumin)

Curcumin

Gemcitabine + Curcumin

Gemcitabine + Curcumin + Celebrex

Phase 2 (NCT00094445)

Phase 2 (NCT00192842)

Phase 3 (NCT00486460)

Quercetin Preclinical

Cimigenoside Preclinical WNT974 (LGK974) + PDR001

Salinomycin Preclinical

PORCN inhibitor OMP-18R5 + Nab-Paclitaxel + Gemcit-
abine

Wnt/β-catenin pathway inhibitor WNT974 (LGK974) Phase 1 (NCT01351103)

FZD antagonist

OMP-18R5 Phase 1 (NCT02005315)

LRP inhibitor pyrvinium

Salinomycin Preclinical

β-catenin-destruction complex 
antagonist

pyrvinium Phase 1 (NCT05055323) Genistein + Gemcitabine + Erlotinib

β-catenin transcriptional activity 
inhibitor

FH535 Preclinical

Genistein Phase 2 (NCT00376948)

Lycopene Preclinical

Piperine Preclinical
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autophagy factor-1 (NAF-1) is highly expressed in the 
endoplasmic reticulum and outer mitochondrial mem-
brane of PCSCs, and is involved in maintaining mito-
chondrial homeostasis to promote mitochondrial 
respiration, thus promoting PC stemness [93].

Signaling pathway regulators
In addition to ligands of the stemness-related signaling 
pathways in PC, some intracellular and membrane pro-
teins are also involved in the regulation of these path-
ways. Tetraspanin-8 expression enhances SHH signaling 
[94]. Tetraspanin-8 directly interacts with PTCH, and 
ATXN3 is subsequently recruited into the SHH-PTCH 
complex, which reduce ubiquitination of PTCH and 
inhibits the degradation of SHH-PTCH complex medi-
ated by proteasome. Stable SHH and PTCH promotes the 
binding of GRK2 protein kinase to SMO, allowing GRK2 
to enhance SMO phosphorylation, relieving the repres-
sive effects of PTCH on SMO, and leading to the activa-
tion of GLI and subsequent downstream gene expression 
[94]. In addition, family with sequence similarity 83 
member A (FAM83A) promotes the activation of WNT/
β-catenin signaling [95, 96]. In the nucleus, FAM83A 
binds to TCF, which in turn promotes the transcription 
of WNT target genes [96]. Meanwhile, FAM83A tyros-
ine 138 phosphorylation promoted β-catenin binding to 
TCF, inhibited TCF recruitment to histone deacetylases 
and enhanced WNT/β-catenin-mediated transcrip-
tional and oncogenic effects [96]. In the cytoplasm, the 
DUF1669 structural domain of FAM83A mediated the 
interaction between FAM83A and AXIN1, GSK3β, and 
β-catenin, which in turn inhibited the phosphorylation 
and degradation of β-catenin protein [96]. In vivo experi-
ments further demonstrated that FAM83A overexpres-
sion enhances tumor-initiating capacity [95]. Retention 
in endoplasmic reticulum 1 (RER1) has been previously 
shown to promote the activation of the NOTCH signal-
ing pathway by increasing the activity of the γ-secretase 
complex in the brain [97]. In PC, in  vitro experiments 

have demonstrated that RER1 promotes stemness in a 
hypoxic environment, including enhancing tumorsphere 
formation ability and stemness markers expression such 
as CD133, SOX2, BMI-1, Lin28, and NANOG, but the 
specific effect of RER1 on NOTCH signaling in PC still 
needs to be further explored [98].

Noncoding RNAs
Noncoding RNAs (ncRNAs) represent a class of RNA 
molecules that do not encode proteins, including from 
long noncoding RNAs (lncRNAs) with more than 200 
nucleotides to piwi-interacting RNAs (piRNAs) with only 
20 nucleotides in terms of length [99]. This type of RNA 
can regulate the expression of protein-coding genes; 
therefore, it is essential to control cell function and iden-
tity, and is related to many pathological diseases, particu-
larly cancer [100]. Recently, ncRNAs have been shown 
to be involved in the regulation of stemness in different 
types of cancers, including PC [101].

MicroRNAs (miRNAs) regulate gene expression and 
maintain cell homeostasis via recognizing cognate 
sequences and interfering with transcriptional, trans-
lational, or epigenetic processes, and their dysregula-
tion is associated with the regulation of PC stemness 
features [102, 103]. Several PC stemness factors, 
including NANOG, SOX2, OCT4, and ALDH1, are 
critical for the maintenance of PC stemness pluripo-
tency, and miRNAs control their expression. Differ-
ent types of miRNAs play different roles in regulating 
PC stemness.  Here,  we divide the regulation modes 
of these miRNAs on PC stemness into two catego-
ries—the enrichment of oncomiRNAs that promote PC 
stemness and the down-regulation of tumor suppres-
sor miRNAs. OncomiRNAs including miR-10b [104], 
miR-17-5p [105], miR-21 [106, 107], miR-27a [108], 
miR-221 [107, 109], miR-338-5p [110], miR-520  h 
[111], and miR-1246 [112] have been documented. 
Many of these miRNA dysregulations converge on reg-
ulating stemness-related signaling pathways and the 

Table 3 Classification of intracellular elements of tumor cells that influence pancreatic cancer stemness plasticity

Transcription factors PAF1, EHF, SNAI2

Epigenetic regulators FTO, SIRT1, CRL4B, MBD3, UCHL5, GALNT3, B3GNT3, EZH2, BMI-1

Metabolic regulators OPA1, DRP1, MYC, PGC-1α, LKB1, PGC-1β, NAF-1

Signaling pathway regulators Tetraspanin-8, FAM83A, RER1

MicroRNAs (miRNAs) OncomiRNAs:
miR-10b, miR-17-5p, miR-21, miR-27a, miR-221, miR-338-5p, 
miR-520 h, miR-1246
Tumor suppressor miRNAs:
miR-34a, miR-101, miR-145, miR-146a, miR-146b-3p, miR-183, 
miR-200a/c, miR-203, miR-429

Long non-coding RNAs (lncRNAs) GAS5, HOTAIR, XIST, DYNC2H1-4
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expression of cancer-relating genes. For example, miR-
10b facilitates EGF-TGF-β cross-talk and enhances the 
expression of EMT-promoting genes, whereas decreas-
ing the expression of several metastasis-suppressing 
genes [104].  MiR-17-5p can reduce the expression of 
tumor suppressor gene PTEN [105]. MiR-338-5p is 
involved in promoting WNT/β-catenin signaling pat-
whway [110]. Tumor suppressor miRNAs that have 
been reported include miR-34a [113], miR-101 [114], 
miR-145 [115], miR-146a [116], miR-146b-3p [117], 
miR-183 [118],miR-200a/c [118], miR-203 [118], miR-
429 [119]. The miR-34 and miR-200 families are two 
main tumor-suppressive miRNA families related to 
regulating cancer stemness. The miR-34 family can 
inhibit the expression of stemness-related pathways 
such as NOTCH, WNT/β-catenin, TGF/SMAD and 
EMT-related genes such as Snail, Slug, and ZEB [120]. 
CD44 + and CD133 + PCSC subsets show a decrease 
in miR-34a expression. Restoring miR-34a expression 
inhibits CD44 and CD133 expression in vitro and sup-
presses tumor formation in  vivo. In addition, miR-34a 
sensitizes PC cells to 5-fluorouracil (5-FU), docetaxel, 
and gemcitabine treatment by inhibiting NOTCH sign-
aling [121, 122]. The miR-200 family comprises five 
members, including miR-200a, miR-200b, miR-200c, 
miR-141, and miR-429. MiR-200a overexpression was 
reported to reduce the expression of CD24, CD44, and 
ESA [123]. It was also reported that miR-200c over-
expression decreases colony formation, invasion, and 
chemoresistance of PCSCs [124]. Treatment of PCSCs 
with metformin could induce the re-expression of miR-
200c which is frequently lost in PC and reduce the 
expression of the PC stemness factors CD44, EpCAM, 
EZH2, NOTCH-1, NANOG, and OCT4 [125]. The 
reexpression of miR-101 was sufficient to limit the 
expression of EZH2 and EpCAM [114].

Furthermore, by competitively sequestering miR-
NAs, lncRNAs can act as competing endogenous RNAs 
(ceRNAs) together with miRNAs and mRNAs to form 
ceRNA networks, which can modulate the expression 
levels of their downstream stemness-related target genes. 
The overexpression of Growth arrest‐specific 5 (GAS5) 
which was identified as a tumor suppressor repressed the 
stemness features of PC cells through directly binding the 
3’UTR of miR‐221 to repress its expression and increas-
ing the expression of suppressor of cytokine signaling 3 
[126]. LncRNA HOTAIR sequesters miR-34a, activat-
ing the JAK2/STAT3 signaling pathway to promote PC 
stemness [127]. LncRNA XIST modulates PC stemness 
by acting as a sponge of miR-429 [119]. Lnc-DYNC2H1-4 
promotes PCSC phenotypes by sponging miR-145 [115].

These findings provide new insights for targeting 
PCSCs. A brief summary of these intracellular regulators 
is tabulated in Table 3.

Stimuli in the TME participate in the regulation of PCSC 
plasticity
A growing number of studies have shown that the com-
plex pancreatic TME is vital in supporting stemness phe-
notype. The TME comprises various components. The 
extracellular matrix (ECM), composed of collagen, prote-
oglycans and glycosaminoglycans, is a major component 
of the TME and mediates the interaction between tumor 
cells and stromal cells. Cancer-associated fibroblasts 
(CAFs) mediate the proliferation, angiogenesis, invasion 
and metastasis of tumor cells. Migration and prolifera-
tion of endothelial cells lead primarily to the formation 
of new capillaries that support tumor progression, inva-
sion and metastasis. Immune cells can regulate tumor 
activity. A classic histological feature of PC is the tumor 
cell-induced pro-fibrous connective tissue microenviron-
ment, which intertwines with the ECM to provide a dense 
physical protective barrier for PC cells. Activation of the 
PSCs to an activated CAFs phenotype is accompanied by 
increased production of ECM components, cumulatively 
termed as fibrosis. In this section, we discuss the emerg-
ing knowledge about the impact of the TME on PCSCs.

ECM
ECM is a highly dynamic structural component. In 
PC models, abnormal collagen cross-linking generates 
mechanical stress and increases ECM stiffness, which 
can create a favorable environment for PCSC survival 
and thus enhance their viability.

LOXL2 promotes collagen fibril cross-linking leading 
to ECM remodeling, thereby promoting PC stemness 
[128]. CD44 interacts with ezrin in the TME to regu-
late actin cytoskeletal rearrangements to promote PC 
stemness, and small molecule inhibitors of ezrin have 
been shown to reduce the self-renewal capacity of PCSCs 
[129]. The hyaluronic acid (HA)/CD44 axis creates a 
suitable ecological niche for PCSC survival by increas-
ing centrosome abnormalities and micronucleation, 
as evidenced by increased expression of NANOG and 
SOX2 [130]. HA can also bind toll-like receptor 2 and 4 
to promote inflammatory gene expression and exacer-
bate the inflammatory response at the tumor site. Subse-
quently, cytokines and inflammatory mediators secreted 
by tumor-associated immunosuppressive cells contribute 
to PC stemness [131, 132]. The most plentiful ECM pro-
tein, type I collagen, is the main scaffold for CD133 + and 
ALDH + PCSCs and increases PCSC enrichment by acti-
vating β-integrin and FAK [133]. Type I collagen activates 
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β-integrin, which is required for FAK activation [133, 
134]. The tyrosine protein kinase FAK is recruited by the 
activated β1-integrin to initiate signal transduction after 
activation [134]. The FAK domain autophosphorylates 
the Tyr 397 residue in response to integrin engagement, 
enlisting SRC family kinases, and then phosphoryl-
ates the Y576 and Y577 residues in the catalytic domain 
[134]. This represents the initial and major step in FAK 
activation, which further promotes ALDH1 expression. 
ECM can regulate the PCSC niche by creating a hypoxic 
environment that directly activates HIF and target genes, 
as well as regulate the cascade of stemness factors and 
pathways, such as OCT4 and NOTCH, and enhance the 
expression of stemness markers [135, 136]. Proteoglycans 
combine with various cytokines and chemokines in the 
TME to activate various signaling pathways in PCSCs, 
such as SHH, WNT/β-catenin, and NOTCH. For exam-
ple, glypican-4 (GPC4) is a member of proteoglycans, 
which enhances stem cell–like properties via promotion 
of WNT/β-catenin pathway and decrease the sensitivity 
of PC cells to 5-FU [137].

CAFs
In the pancreatic TME, cancer-associated fibroblasts 
(CAFs) are abundant stromal-activated fibroblast cell 
types that can regulate PC stemness and are functionally 
important in tumor development and metastasis [138]. 
PC cells are capable of secreting different levels of sign-
aling molecules, such as TGF-β, SHH, IL-6, and TNF-
α, and then activating CAFs [139]. Activated CAFs, in 
return, release growth factors, chemokines or cytokines 
to directly affect cancer cells. CAFs form a paracrine 
niche for PCSCs, wherein paracrine signaling enhances 
PC stemness-like properties at the tumor-stroma inter-
face [140]. In this section, we illustrate the effect of some 
cytokines secreted by CAFs on PC stemness.

A recent report suggested that the osteopontin (OPN) 
released by CAFs was regarded as a crucial driver of PC 
development by upregulating the plasticity of PCSCs 
[141]. OPN, a multifunctional secreted integrin-bind-
ing glycoprotein, is overexpressed in numerous cancers 
and can be identified as a prognostic factor clinically 
[142, 143]. OPN in the tumor microenvironment binds 
to CD44 expressed on PCSC properties, which subse-
quently promotes clonal growth, invasion, and metas-
tasis. These effects require CD44 to bind to the protein 
encoded by the oncogene TIAM1, which activates Rac1 
to induce membrane cytoskeleton-mediated cell adhe-
sion, proliferation, and migration. Previous studies 
have shown that ovarian cancer cells stimulated meso-
thelial cells to promote OPN expression and release 
through TGF-β signaling. OPN promoted ovarian cancer 
stemness and chemoresistance via PI3K/AKT signaling, 

CD44 receptor activation, and ABC drug efflux trans-
porter activity [144]. In addition, the glioma perivascular 
niche facilitates stemness characteristics via the OPN–
CD44 signaling pathway was also demonstrated [145]. 
CAFs promotes PC stemness through the interaction 
between OPN–CD44 axis and tumor cells has also been 
confirmed [141]. The OPN secreted by CAFs acts on the 
CD44 receptor of PCSCs and promotes the stemness 
characteristics of PC by promoting the expression of 
stemness markers NANOG, OCT4, and ABCG2 [141].

Furthermore, hepatocyte growth factor (HGF), which 
is associated with the regulation of PC stemness, is 
also secreted by CAFs. When HGF binds to c-MET in 
cancer cells, they are stimulated to produce uPA, caus-
ing more pro-HGF to become active HGF, which then 
binds to c-MET in PC cells. Paracrine HGF induces 
YAP nuclear translocation by binding c-MET, result-
ing in the crosstalk between CAFs and cancer cells 
that HGF/c-MET-mediated induces the expression 
of stemness pluripotency markers such as NANOG, 
OCT4, and SOX2 in PC cells, as well as increased self-
renewal ability [146]. In addition, YAP nuclear translo-
cation is followed by binding to HIF-1α in the nucleus 
and maintains the stability of HIF-1α to promote gly-
colysis [147]. Glycolysis is a key characteristic of both 
normal stemness and cancer stemness, forming a novel 
metabostem property [148]. Even under aerobic condi-
tions, tumor cells favor a metabolic transition to glyco-
lysis, and this metabolic reprogramming is crucial in 
the development, maintenance, and differentiation of 
cancer stemness and is a hallmark of cancer stemness 
[148]. Cancer stemness is more dependent on glycoly-
sis for bioenergy during the metabolic shift. Increased 
expression and stability of HIF-1α promote this meta-
bolic reprogramming process [149]. Therefore, HIF is 
critical for promoting the stemness of PC. On the one 
hand, HIF-1α enhances the expression of hexokinase 2 
(HK2), one of the rate-limiting enzymes in the glyco-
lytic pathway [150]. On the other hand, HIF-1 directly 
stimulates the expression of c-MET. HIF-1α promotes 
c-MET signaling by inducing  c-MET  gene expression 
in response to metabolic stress, such as nutrient defi-
ciency or hypoxia, thereby promoting PC stemness 
[151].

In addition, CAFs secrete the ligands of WNT and pro-
motes PC stemness through the WNT/β- catenin linked 
protein pathway [152, 153]. IL-6 secreted by CAFs upreg-
ulates the expression of PCSC genes, including SOX2, 
NANOG, and OCT4 by activating the JAK2/STAT3 
pathway [154]. CAFs also produce SDF-1, the ligand 
for CXCR4, to attract CXCR4 + PCSCs, causing micro-
metastases [155]. Nodal/Activin secreted by CAFs acts 
on Alk4/7 receptors on PCSCs to promote self-renewal 
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[156]. Thus, CAFs play an important role in propagating 
PC stemness phenotype.

Immune cells and extracellular vesicles
The enhanced ability of PCSCs to promote tumor devel-
opment suggests that these cells have an innate advan-
tage for immune escape. The role of immune cells against 
tumors is two-fold, with both tumor-promoting and 
tumor-suppressing activities. Evidence is accumulating 
that several immune cell types have an important role in 
regulating PCSC properties. For example, in the context 
of PC cells, monocytes acquire an immunosuppressive 
phenotype by activating STAT3 and become myeloid-
derived suppressor cells, while this STAT3 activation 
promotes ALDH1 + stem cell frequency in PC [157]. 
MiR-21a-5p is upregulation in M2 macrophage-derived 
extracellular vesicles (EVs), which promotes NANOG 
and OCT4 expression and sphere-forming, colony-
forming, invasion, migration, and anti-apoptosis abilities 
of PCSCs in  vitro and tumorigenic ability in  vivo [158]. 
Targeting tumor-infiltrating macrophages decreased 
the number of PCSCs, relieved immunosuppression 
and improved chemotherapeutic responses in PC [159]. 
Circ_0030167 loaded in EVs derived from bone mar-
row mesenchymal stem cells inhibits the stemness of PC 
cells by sponging miR-338-5p and further regulating the 
WNT/β-catenin axis [110].

Metabolic plasticity of PCSCs and the impact of epigenetic 
regulation on it
Besides RNAs, cytokines, morphogens and growth fac-
tors, various metabolic pathways are also involved in 
stemness destiny control. Metabolic pathways can also 
transmit changing signals in the extrinsic environment 
to alter intrinsic cell fate. PCSC metabolism represents a 
combination and balance of intrinsic metabolic demands 
and extrinsic metabolic alterations. In this section, we 
describe the metabolic plasticity of PCSCs.

PCSCs are metabolised in a different way to other PC 
cells. For example, non-PCSCs are highly dependent 
on glycolytic metabolism, whereas PCSCs are strongly 
dependent on the mitochondrial oxidative phosphoryla-
tion (OXPHOS) pathway. This metabolic reprogramming 
of PCSCs is also plastic and can be regulated by the envi-
ronment in which they are located. The use of the more 
energetically efficient metabolic pathway—OXPHOS 
in the presence of sufficient oxygen results in a higher 
number of ATP molecules per glucose molecule. Under 
hypoxia or stress, these stemness can revert to a glycolytic 
program, even in some cases using mitochondrial fatty 
acid oxidation. For example, when the mitochondrial 
inhibitor metformin was used in PC, metformin-resistant 

PCSCs reversed towards a non-stemness metabolic phe-
notype by increasing MYC expression to enhance gly-
colytic capacity [90]. Thus, disruption of mitochondrial 
metabolic dynamics is likely to attenuate the stemness 
phenotype of PC. Besides, in the process of dedifferen-
tiation of PC cells, cells increase their oxidative metabo-
lism by promoting pyruvate to enter the TCA cycle and 
improving the expression levels of citrate and citrate 
lyase in cells. The rapid transformation of this metabolic 
change indicates that it is closely related to epigenetics.

Mitochondrial dynamics and metabolism are mainly 
controlled by post-translational modifications (PTMs) of 
proteins, among which ubiquitination (Ub) and Ub-like 
(UbL) modifiers plays a major role in the regulation of PC 
stemness. This is very similar to the regulatory mecha-
nism in normal stemness, where the ubiquitination and 
deubiquitination activities of the stemness pathways 
NOTCH, WNT, and SHH proteins are precisely regu-
lated by ubiquitinating and deubiquitinating enzymes, 
resulting in the reprogramming of PC stemness metab-
olism. Among the UbL modifiers, the expression of 
interferon-stimulated gene 15 (ISG15), small ubiquitin-
related modifier (SUMO), neural precursor cell expressed 
developmentally downregulated protein 8 (NEDD8), 
and human leukocyte antigen-F adjacent transcript 10 
(FAT10) are significantly higher in CD133 + cells than in 
CD133- cells. A recent study showed that ISG15 and pro-
tein ISGylation are specifically enriched in PCSCs com-
pared with non-PCSCs. Loss of ISG15/ISGylation alters 
the mitochondrial state and metabolism—manifested by 
an increase in the number of mitochondria but a severely 
impaired optical character recognition, that is, the accu-
mulation of dysfunctional mitochondria. In addition, the 
glycolytic capacity of PCSCs is also significantly impaired 
in the absence of ISG15, indicating that the overall met-
abolic plasticity of PCSCs (aerobic and anaerobic res-
piration) is affected by the loss of ISG15/ISGylation. 
However, the regulation of OXPHOS by SUMO, NEDD8, 
and FAT10 in PCSCs has not been reported yet.

Besides, glutamine is a major mitochondrial reaction 
substrate and is also required for the maintenance of 
mitochondrial membrane potential and integrity. In the 
CD9 + PC stemness subpopulation, CD9 increases glu-
tamine uptake and promotes mitochondrial OXPHOS by 
interacting with the glutamine transporter ASCT2 [160].

PCSCs and malignant phenotype
PCSCs and EMT promote each other significantrelationship
A crucial developmental program called EMT is fre-
quently engaged during the invasion and metastasis of 
cancer.  It is of fundamental importance in biology that 
the activation of the EMT process is related to the char-
acteristics of stemness in neoplastic cells [161, 162]. 
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During the shifts towards the mesenchymal phenotype, 
which represents a more invasive and aggressive disease 
phenotype, levels of non-invasive epithelial cell markers, 
including E-cadherin, α-catenin, and γ-catenin decrease, 
while the expression of vimentin, metalloproteinases 
MMP-2, MMP-9, fibronectin, and N-cadherin which are 
typically expressed on invasive epithelial cells increase 
[163]. A group of transcription factors called EMT-acti-
vating transcription factors, including Snail, Slug, Twist1, 
NF-κB, ZEB1, and ZEB2 control EMT by suppressing 
the expression of genes that code for epithelial markers, 
such as E-cadherin. ZEB1 is the most crucial promoter 
of EMT and links EMT with stemness-maintenance in 
PC as shown in the K-rasLSLG12D/+;  Trp53R172H/+; Pdx-
1-Cre (KPC) mouse models [164]. As a transcriptional 
repressor, ZEB1 binds to the E-box motif in the promoter 
regions of downstream target genes, such as E-cad-
herin and members of the miR-200 family, to decrease 
their production. It is also demonstrated that ZEB1 and 
stemness marker CD44 are mutually regulated. ZEB1 
suppresses the epithelial splicing regulator ESRP1 in PC 
to promote CD44 isoforms (CD44s) splicing, causing 
the expression to change from the variant CD44v to the 
standard CD44s subtype. CD44 contains two isoforms, 
each with a distinct function: standard isoform (CD44s) 
and variant isoforms (CD44v). CD44s has been proven to 
be positively related with stemness gene features, whereas 
CD44v exhibits an inverse association [165]. Addition-
ally, CD44s also contributes to PC lymph node and liver 
metastasis and advanced TNM staging [166]. An increase 
in CD44s level was shown to increase the expression of 
ZEB1, thus forming a positive feedback loop, leading to 
a self-sustaining ZEB1 and CD44s expression. The feed-
back loop between CD44s and ZEB1 influences the abil-
ity of cancer cells, including the increase of tumorsphere 
initiation and metastasis ability [167]. In addition, nestin, 
one of the PC stemness markers is also vital in PC cell 
metastasis, and the administration of nestin  siRNA  was 
reported to provide a novel therapeutic strategy for PC 
[168]. Nestin, NANOG, Slug, and MMP2 mRNA levels 
decreased, and E-cadherin expression levels increased in 
nestin shRNA-transfected PC cells [169]. An orthotopic 
implantation model using mice also showed that nestin 
knockdown significantly reduced primary and metastatic 
tumor development by human PC cells [168]. Besides, 
the expression of PC stemness marker CD133 report-
edly induces EMT via the transcription factor NF-κB 
[170, 171]. Compared with CD133- cells, CD133 + cells 
showed increased NF-κB expression [172]. Mechanically, 
the overexpression of CD133 increases both mRNA and 
protein levels of IL-1β gene expression, and then IL-1β 
activates NF-κB, thus driving EMT and cell invasion 
[173].

Therapeutic resistance
Recently, a growing number of studies have revealed 
that the potential etiology of therapeutic resistance 
is related to stemness markers of PC. Herman et  al. 
found that CD133 + cells were more resistant to gem-
citabine  than CD133 − cells isolated from PC patients, 
and prolonged exposure resulted in the selection of 
CD133 + cells [26]. Furthermore, they demonstrated in 
a xenograft model that animals given gemcitabine expe-
rienced a reduction in tumor size but an increase in the 
percentage of CD133 + cells. Several research exploring 
the molecular interaction between therapeutic resist-
ance and CD133 + PC cells have highlighted the critical 
role of its metabolic plasticity, which is related to reac-
tive oxygen species (ROS) [174]. Low levels of ROS are 
critical for maintaining cancer stemness and their resist-
ance to therapy; however, the ROS regulating mecha-
nisms in cancer stemness remain to be explored [175]. 
Studies have shown that ROS production is indeed 
lower in CD133 + cells compared with CD133- cells. 
When drugs typically associated with ROS production, 
such as gemcitabine, 5FU, and paclitaxel, were applied 
to CD133 + and CD133- cells, CD133 + stemness did 
not exhibit any increase of ROS, while CD133- cells 
had enhanced ROS generation [174]. These treatments 
further caused CD133- cancer cells to die whereas 
CD133 + cells were unaffected, which seems to provide 
CD133 + stemness a survival advantage [174]. In addi-
tion, although gemcitabine, a cytotoxic agent, can inhibit 
CD133 + stemness proliferation, it has little effect on the 
apoptosis of cancer stemness, allowing them to return to 
the stemness pool upon gemcitabine withdrawal [176]. In 
contrast, under gemcitabine treatment, the vast majority 
of the tumor cells — more differentiated cells — became 
apoptotic [177]. It is clear that traditional therapy can 
only target highly differentiated tumor cells, leaving 
undifferentiated cancer stemness resistant to therapy.

Other stemness markers are also associated with thera-
peutic resistance. It is reported that CD44 + PC stemness 
properties show higher malignancy and stronger resist-
ance to chemotherapy and radiotherapy than CD44- cells 
[178–180]. Studies have also shown that PC with high 
CD44 expression is resistant to gemcitabine.  Knock-
ing out CD44 also leads to decreased invasiveness and 
increased sensitivity to gemcitabine [178, 181]. The 
influence of CD44 + stemness on therapeutic-resistance 
is mainly attributed to the ABC superfamily of trans-
porter proteins in PC [182]. The overexpression of ABC 
superfamily of transporter proteins in PC limits the 
exposure to anticancer drugs. CD44 is also associated 
with the increased protein expression of the ABC trans-
porter genes MDR1 and MRP1 [183–185]. Verapamil, 
an ABC transporter inhibitor, resensitized resistant cells 
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to gemcitabine in a dose-dependent manner, and CD44 
RNA interference inhibited the clonogenic activity of 
resistant cells [181].

Clinical perspective—Detection and prediction of prognosis 
in patients with PC via stemness properties
The analysis of PC stemness in surgical tissue specimens 
is anticipated to discover meaningful and reliable prog-
nostic indicators and evaluate the effectiveness of anti-
cancer therapy. Recently, agrin, an extracellular matrix 
protein, was reported to be enriched in the extracellular 
vesicles of PC stemness and act as a marker of poor prog-
nosis in patients with PC [186]. In hepatocellular carci-
noma, agrin promotes hepatocarcinogenesis by binding 
to the LRP-4 receptor and activating the YAP transcrip-
tion factor [187]. Researchers have also verified the exist-
ence of this pathway in PC cells, proving that agrin in 
cancer stemness extracellular vesicles promotes YAP 
activation and cancer cell proliferation and inventory. It 
can translocate YAP, the core participant of the Hippo 
pathway, to the nucleus in order to alter the transcrip-
tional program of cells, thus promoting tumor prolifera-
tion and metastasis [186]. In addition, researchers found 
that circulating agrin + extracellular vesicles (EVs) can 
be used as specific and sensitive biomarkers of disease 
progression in patients with PC, who did not undergo 
surgery, through the ROC curve analysis, and combina-
tion with CD133 + EVs improves the accuracy of disease 
progression prediction [186]. In addition, the expression 
of  cancer stemness markers such as CD24, CD44, and 
CD133 has been linked to decreased survival in PC. For 
example, CD24 is overexpressed in high-grade tumors 
and more advanced PC stages, and lymphatic invasion 
and venous invasion are observed more frequently in 
the CD24 + PC, suggesting its role in the progression of 
PC [188]. CD24 is related to the recurrence of resectable 
PC and is an important factor that leads to a low survival 
rate in patients with PC [189]. Overexpression of CD44 
or CD133 is significantly associated with clinical TNM 
stage, tumor differentiation, lymph node metastasis, and 
a decreased 5-year overall survival rate [190, 191].

Discussion
PC is a highly malignant tumor with a poor progno-
sis. Despite advancements in the treatment, late-stage 
diagnosis and other reasons result in poor prognosis, 
recurrence, and metastasis. Cancer stemness refers to 
the ability of a pool of self-sustaining cells in generating 
differentiated cancer cells and initiating tumor growth 
[176]. The term cancer stemness does not denote the ori-
gin, but rather the plasticity state of cancer cells. Increas-
ing evidence supports the idea that cancer stemness 
exists in a highly plastic state rather than an absolute 

entity [192–194]. Cancer stemness have the ability to 
self-renew and regenerate, therefore, these cells are sig-
nificantly resistant to chemo- and radiotherapy.

On the one hand, investigating cancer stemness from 
the standpoint of fundamental science helps improve 
the comprehension of tumor heterogeneity. On the 
other hand, refining our understanding of the plasticity 
of PCSCs may eventually lead to a better understand-
ing of the clinical prospects of targeting PC stemness. In 
particular, targeting PC stemness has potential benefits 
for patients with PC. PC stemness heavily contributes 
to therapeutic resistance [195]. Accumulating evidence 
suggests that the combination of chemotherapy drugs 
and PC stemness inhibitors is more effective than mon-
otherapy in vitro and in vivo [53, 196]. The relationship 
between PC stemness and tumor malignant phenotype 
demonstrates a new possibility of PC treatment based 
on PC stemness-targeting since PC stemness promotes 
tumor growth and metastasis [180]. Referring to the cur-
rent state of research on PC stemness, there are several 
aspects in oncology that deserve further study. It is obvi-
ous that targeting PC stemness should be an integral part 
of the entire treatment scheme. Targeting PC stemness, 
however, provides substantial hurdles since therapy regi-
mens may damage normal stemness in the human body. 
The challenge ahead is to specifically target PC stemness 
without unnecessarily affecting normal stemness. Thus, 
identifying of cancer stemness-specific signaling net-
works is critical for the improvement of anti-stemness 
cancer therapy [197]. Moreover,  some studies have 
shown that the metabolism of cancer stemness rapidly 
transit under heterogeneous environmental circum-
stances. Identifying specific metabolic pathways, such 
as hypoxia, nutrient deficiency, and the low pH of can-
cer stemness may also be beneficial [198]. Another aspect 
worth exploring further is the characterization of mark-
ers that can identify circulating PCSCs in liquid biopsies 
for PC diagnosis, prediction of prognosis and assessment 
of treatment response.

In conclusion, a better understanding of PC stemness 
and its plasticity may provide crucial insights into novel 
and effective treatments and improve the prognosis of 
patients with PC.
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