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Abstract 

Cancer stem cells (CSCs) are the key “seeds” for tumor initiation and development, metastasis, and recurrence. Because 
of the function of CSCs in tumor development and progression, research in this field has intensified and CSCs are 
viewed as a new therapeutic target. Exosomes carrying a wide range of DNA, RNA, lipids, metabolites, and cytosolic 
and cell-surface proteins are released outside of the originating cells through the fusion of multivesicular endosomes 
or multivesicular bodies with the plasma membrane. It has become evident that CSC‐derived exosomes play a 
significant role in almost all “hallmarks” of cancer. For example, exosomes from CSCs can maintain a steady state of 
self-renewal in the tumor microenvironment and regulate microenvironmental cells or distant cells to help cancer 
cells escape immune surveillance and induce immune tolerance. However, the function and therapeutic value of 
CSC‐derived exosomes and the underlying molecular mechanisms are still largely undefined. To provide an overview 
of the possible role of CSC‐derived exosomes and targeting strategies, we summarize relevant research progress, 
highlight the potential impact of detecting or targeting CSC‐derived exosomes on cancer treatment, and discuss 
opportunities and challenges based on our experience and insights in this research area. A more thorough under-
standing of the characteristics and function of CSC‐derived exosomes may open new avenues to the development of 
new clinical diagnostic/prognostic tools and therapies to prevent tumor resistance and relapse.
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Background
Cancer remains one of the leading causes of death glob-
ally. Whether in developed or developing countries, men, 
or women, multiple tumor types present major risk fac-
tors endangering human life and health. In 2019, there 
were an estimated approximately 23.6 million new can-
cer cases and 10.0 million cancer deaths globally [1]. 
In past years, there have been great advances in cancer 

treatment, including surgery, chemotherapy, radiother-
apy, targeted therapy, etc. Although the incidence and 
mortality of most cancer types have declined [2], improv-
ing the therapeutic effect of cancer treatments remains 
a challenge for clinicians and scientists. Recurrence, 
metastasis, and treatment resistance are three impor-
tant reasons for poor treatment outcomes [3], and can be 
explained at least partially by the presence of cancer stem 
cells (CSCs) [4, 5]. Accumulating studies have shown that 
CSCs are closely related to recurrence, metastasis, heter-
ogeneity, and resistance through their ability to arrest in 
the G0 phase and rapidly generate large numbers of new 
heterogeneous cancer cells [6]. It is of great significance 
to regard CSCs as a new therapeutic target. Understand-
ing how CSCs communicate with surrounding cells and 
distant organs is a prerequisite for clarifying the specific 
mechanism by which CSCs trigger tumor initiation and 
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development. The role of exosomes as carriers of this 
type of delivery is critical. Most of the current research 
focuses on cancer cell exosomes, but as an important 
“seed”, research on CSC-derived exosomes is still lim-
ited. Given that exosomes carry genetic material from 
parental cells, it is reasonable to believe that CSC-derived 
exosomes also have a specific function in cancer progres-
sion. This article will review the function of CSC-derived 
exosomes and provide a perspective on related research 
progress.

Characteristics, role and clinical implications of CSCs
The CSC hypothesis was first proposed by Mackillop in 
1983 and CSCs were identified in leukemia and subse-
quently isolated in 1997 by surface labeling expression of 
 CD34+ and  CD38− [7]. Whether CSCs represent a dis-
tinct cell type or a cell state within the tumor remains a 
matter of debate in the scientific community. While both 
models may be correct to some extent, recent studies 
suggest that CSCs possess unique stem cell-like proper-
ties and express distinct markers, suggesting that they 
represent a distinct cell type. However, CSCs can also 
arise from other cancer cells under certain conditions, 
suggesting that they may represent a phenotypic state.

Different surface markers may be expressed in differ-
ent cancers, such as  ALDH+,  CD44+,  CD133+ expressed 
in head and neck cancer [8] and  CD200+,  CD166+ 
expressed in colorectal cancer [9, 10]. According to 
these markers, specific separation of CSCs can be car-
ried out. In addition to maintaining self-renewal, CSCs 
have “plasticity,” which allows them to differentiate into 
subtype cancer cells under certain conditions, such as 
changes in the peripheral environment and regulation 
by various immune factors (Table  1) [11–13]. This phe-
nomenon is subject to certain spatiotemporal charac-
teristics and will produce cancer cell subtypes adapted 
to the environment with different external stimuli, thus 

providing a reliable seed for continuation. In contrast to 
normal adult stem cells, the differentiation of CSCs is 
disorderly, for the most part, uncontrolled, and it is for 
this reason that tumors develop [14]. CSCs are thought to 
be responsible not only for tumor growth, maintenance, 
and resistance to chemotherapy and radiotherapy, but 
also to be involved in cancer recurrence after treatment 
as they have the ability to regenerate the tumor (Table 1). 
Non-CSCs are thought to be more differentiated and less 
likely to drive tumor growth or recurrence. In addition, 
CSCs can evade the immune system through various 
mechanisms, such as downregulating the expression of 
surface antigens that would normally trigger an immune 
response or secreting factors that suppress immune cell 
activity. This allows CSCs to persist and proliferate even 
in the presence of an active immune system. Interest-
ingly, CSCs share some conserved signaling pathways 
with normal adult stem cells, including Wnt/β-catenin, 
Notch, PI3K/AKT/mTOR pathways, etc., and these 
signaling pathways also can be used as targets for CSCs. 
However, CSCs often exhibit a dysregulated regulatory 
mechanism compared to normal adult stem cells. While 
adult stem cells are tightly regulated by feedback mecha-
nisms that ensure proper differentiation and self-renewal, 
CSCs can exhibit uncontrolled self-renewal and differen-
tiation, leading to tumor formation and proliferation.

The proportion of CSCs in tumor tissues is very low 
and generally accounts for only 0.01–2% of the total 
tumor mass (Table 1). Therefore, it is very challenging to 
isolate CSCs. There are still some reliable isolation tech-
niques that have been widely used. At present, the main 
separation methods are as follows: through the identifi-
cation and combination of surface markers, separation is 
carried out by fluorescence-activated cell sorting (FACS) 
and magnetic-activated cell sorting (MACS). FACS is 
widely used since it can be used for sorting multiple bio-
markers at one time and has strong specificity. MACS is 

Table 1 Distinct characteristics between CSCs and non-CSCs

CSCs Non-CSCs

Small amount (0.01–2%), rare within tumors most of the time, but can increase to more than 30% in 
short time [15]

Large quantity, almost majority within tumors

Self-renewal, multipotency, and symmetric/asymmetric divisions Limited proliferation and symmetric divisions

Reside predominantly in hypoxic, low pH and low nutrient niches [16] Stochastic distribution

Dysregulated cell cycle, reversible cellular quiescence capability [17] None

High tumorigenic capacity low

Ability to induce therapeutic resistance [18] The main target of treatment until the emer-
gence of unresponsive cancer cells

Highly responsive to changes in the tumor microenvironment low

High heterogeneity than non-CSCs counterpart in tumors Low heterogeneity

Ability to arrange a hierarchy of daughter cells [19] None
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simpler but the technology is more complex. Both meth-
ods require a large number of cells to be isolated. More-
over, CSCs can be isolated as side population (SP) cells 
since they resist the nuclear dye Hoechst 33,342. ABCG2 
is highly expressed in SP cells, and studies have reported 
that ABCG2 is highly correlated with drug resistance, 
which indicates that it can be used as a marker of high 
resistance CSCs [20]. There is also a serum-free medium 
(SFM) sorting method, which utilizes the characteristic 
that CSCs can grow in a spherical suspension in SFM. By 
adding specific growth factors and additives, after sev-
eral generations of culture and proliferation, more CSC 
spheres can be obtained. These factors and additives 
include EGF, bFGF, heparin, etc. Researchers are increas-
ingly using more than two methods for extraction to 
obtain a larger number of CSCs of higher purity.

The properties of CSCs may allow the application of 
CSC-based approaches to develop personalized treat-
ments tailored to a patient’s particular cancer type and 
genetic profile. Through isolating CSCs of primary 
tumors, CSC models can be used to identify predictive 
biomarkers for cancer prognosis and evaluate the effec-
tiveness of therapeutic approaches. By identifying dif-
ferent markers, the origin of tumors can be determined, 
which provides an essential supplement for diagnosing 
unknown tumors. However, the relevant technologies are 
not yet mature due to the small number of CSCs typically 
isolated and the need to improve cultivation methods.

Exosomes and CSC-derived exosomes
Exosomes were first identified in sheep reticulocytes in 
1981 [21] and were at first thought to be a “trash” com-
partment containing discarded cellular components. In 
2007, Valadi et al. found that cells can exchange genetic 
material through exosomes and even transmit informa-
tion to tissues that are far away [22]. Exosomes are nano-
sized vesicles (about 30–150 nm) that have a lipid bilayer 
and carry various biomolecules, including proteins, 
glycans, lipids, metabolites, RNA, and DNA. They are 
secreted by almost all cells. In addition to exosomes, cells 
also produce other types of extracellular vesicles (EVs), 
including microvesicles (MVs), formed by direct plasma 
membrane budding, which are thought to be larger than 
exosomes, ranging in size from 100 to 1000  nm, apop-
totic bodies and oncosomes.

The mechanism of exosome formation is still not very 
clear, but the process may be similar in different types 
of cells. Exosome biogenesis involves double invagi-
nation of the plasma membrane and the formation of 
intracellular multivesicular bodies (MVBs) contain-
ing intraluminal vesicles (ILVs) through MVBs and cell 
membrane fusion and exocytosis. The first invagination 
of the plasma membrane forms a cup-shaped structure 

containing membrane surface proteins and extracellu-
lar soluble proteins, which form the early sorting endo-
some (ESE), and in some cases early endosomes may 
directly merge with pre-existing early endosomes and 
become late endosomes through the mediation of the 
endoplasmic reticulum and Golgi complex. The endoso-
mal sorting complexes required for transport (ESCRT) 
function in a certain order in this process. As the num-
ber of multi-luminal vesicles gradually accumulates in 
endosomes, MVBs are formed, which can either fuse 
with lysosomes or autophagosomes and be degraded or 
be pulled by intracellular molecular motors. MVBs fuse 
with the cell surface and secrete multi-luminal vesicles 
(including exosomes) outside the cell. Exosomes are 
taken up by other cells, and their cargoes are transferred 
and influence the recipient cells. As such, exosomes 
are appreciated to be essential mediators of cell–cell 
communication.

At present, three mechanisms of signal transduction 
between exosomes and recipient cells have been iden-
tified. Firstly, transmembrane proteins on exosomes 
directly act on signaling molecules on the surface of 
receptor cell membranes to activate intracellular sign-
aling cascades. Secondly, the exosome membrane fuses 
with the cell membrane, and the contents of the exo-
some are directly delivered into the recipient cell. 
Thirdly, exosomes enter cells through phagocytosis or 
endocytosis (Fig.  1). Exosomes can reflect the compo-
sition of the source cells, but, importantly, exosomes 
secreted by the same cell in different states are not 
consistent, and thus exosomes reflect the physiological 
status of cells under different conditions. For example, 
in a hypoxic environment, exosomes secreted by can-
cer cells are rich in a variety of hypoxia-regulated RNA 
and proteins. Recent studies indicate a functional, tar-
geted, and mechanistically driven accumulation of spe-
cific cellular components in exosomes, suggesting that 
they play a more important role in regulating intercel-
lular communication [23]. Cancer cells can release cor-
responding exosomes to find target organs and connect 
tumors with the microenvironment of target organs. 
Importantly, CSC-derived exosomes have been shown 
to contain higher levels of stemness markers and pro-
teins, such as CD133, CD44 and Notch1, which can be 
transferred to non-CSCs to enhance their stemness. In 
addition, CSC-derived exosomes can induce dynamic 
tumor heterogeneity in the tumor microenvironment 
(TME) by delivering specific proteins and transcrip-
tion factors compared to non-CSC-derived exosomes. 
Exosomes transfer information by releasing the lumi-
nal cargo of proteins, nucleic acids (DNA and RNA), 
lipids and metabolites (Fig.  1). Lipids form the bilayer 
of the exosome membrane, maintaining stability of 
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the structure, which is critical for the release of exo-
somal cargo. Exosomal proteins comprise surface and 
intracellular proteins. Surface proteins involved in the 
formation and release of exosomes include the tetras-
panins family (CD9, CD63, CD81 and CD82), flotillin, 
integrins and transmembrane proteins. Intracellular 
proteins include cytoskeletal proteins, cytokines, heat 
shock proteins and enzymes (Fig.  1). There are many 
nucleic acids in exosomes, including mRNA, tRNA and 
ncNA (Fig.  1). miRNA (miRNAs) are the most abun-
dant cargo molecules in exosomes and can be function-
ally delivered to target cells.

Recent research has focused on the role of exosomes 
secreted from CSCs in modulating CSC niches. Char-
acteristics of CSC-derived exosomes are distinct from 
those of non-CSC-derived exosomes (Table  2). It has 
been reported that CSCs release various cytokines and 
factors, including IL-6, TGF-β, CD44, and ALDH, to reg-
ulate immunomodulatory function, stemness and differ-
entiation among CSCs and the TME. For example, when 
breast CSCs were co-implanted with breast cancer cells, 
metastasis increased, and DKK1 was identified as a key 
factor secreted by breast CSCs that mediates these func-
tions [24]. Nevertheless, few reports have investigated the 
functional properties of CSC-derived exosomes. Given 

Fig. 1 Exosome biogenesis and internalization mechanisms. Exosomes are surrounded by a phospholipid bilayer comprising various cell surface 
proteins (including tetraspanins, flotillins, integrins and transmembrane proteins) that mediate the orientation and connection of exosomes. 
Exosomes carry various biological species, including intracellular proteins, nucleic acids (including DNA and RNA) lipids and metabolites, and 
regulate the function of target cells by releasing their cargo. Exosome biogenesis begins from the double invagination of the plasma membrane, 
forming an early endosome and subsequently mature to late endosome. Then, multivesicular bodies (MVBs) form, which contain intraluminal 
vesicles (ILVs). MVBs can be fated for lysosomal degradation or fusion with the plasma membrane as exocytic vesicle to release exosomes. Exosomes 
have mainly three ways to communicate with cells: (1) interact with protein or receptor on the membrane, (2) exosome membrane fuses with the 
cell membrane, and the contents of the exosome are directly delivered into the target cell, and (3) exosomes enter cells through phagocytosis or 
endocytosis
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the importance of CSCs, it is reasonable to believe that 
CSC-derived exosomes are essential in the communica-
tion among CSCs and other microenvironmental cells.

Role of CSC-derived exosomes in cancer progression
Exosomes maintain the stemness of CSCs
The molecular crosstalk between CSCs and their 
microenvironment plays an important role in main-
taining their stem cell phenotype and function, which 
is the so-called CSC niche. The CSC niche consists of 
cell types such as cancer cells, immune cells, endothe-
lial cells, mesenchymal stem cells (MSCs), and cancer 
associated fibroblasts (CAFs) as well as growth factors, 
chemokines, and cytokines [28]. For example, gastric 
cancer mesenchymal stem cells can enhance the prop-
erties of CSCs and tumorigenesis via PD-L1 signaling 
[29]. A study revealed that  CD10+GPR77+ CAFs sustain 
CSCs stemness, which is driven by persistent NF-κB 
activation via p65 phosphorylation and acetylation 
[30]. Accumulating studies have shown that the cross-
talk of CSC niches is delivered by exosomes [31–33]. 
Exosomes secreted by cancer cells can be taken up into 
CSCs involved in pathways related to tumor stemness, 
which further forms a positive promoting effect to 
maintain heterogeneity [34]. Studies have shown that 
Wnt, Notch and Hedgehog signaling pathways par-
ticipate in the regulation of tumor stemness [35], and 
non-coding RNA (ncRNA) contained in exosomes can 
participate in the Wnt or Notch signaling pathway 
to regulate the spheroid forming ability of CSCs and 
the tumorigenic size of cancer cells [36–39]. Under 
hypoxia, exosomes from CAFs transfer circHIF1A into 
breast cancer cells, which absorb miRNA-580-5p by 
regulating the expression of the surface marker mol-
ecule CD44 of breast CSCs [40]. It was reported that 
cancer cells isolated from colon cancers re-express CSC 
markers after co-culture with fibroblasts and restored 
tumorigenicity, suggesting that the stemness of can-
cer cells is not immutable and can be regulated [41]. 
On the other hand, CSC-derived exosomes carry stem 

related factors such as OCT-4, SOX-2, and NANOG, 
or lncRNA/microRNA mediated with surrounding cells 
to enhance the expression of stemness [42, 43]. Studies 
have shown that some CSC markers also affect the exo-
some release, migration, and invasion ability of cancer 
cells [44, 45]. DCLK1 is also considered a CSC marker 
and has been shown to affect exosome biogenesis in a 
kinase-dependent manner by inducing increased exo-
some release and reprogramming of contents to facili-
tate the acquisition of a migratory phenotype [46, 47].

Exosomes maintain the transformation of CSCs 
and non‑CSCs
As mentioned earlier, CSCs and non-CSCs are in a state 
of dynamic equilibrium in response to changes in the 
TME [48]. Similarly, exosomes are involved in the main-
tenance of this homeostasis [49]. Exosomal FMR1-AS1 
secreted from esophageal carcinoma CSCs can activate 
TLR7-NFκB signaling and increase the expression level 
of c-Myc, which results in esophageal squamous cell 
carcinoma (ESCC) cell proliferation, anti-apoptosis, 
and invasion [50]. The transformation can be explained 
in two ways. First, the transformation of cell entities: 
CSCs can differentiate into cancer cells as the supple-
ment in the pattern of asymmetric division. Cancer 
cells can be dedifferentiated and transformed into CSCs 
to maintain a stable number of CSCs. The reverse dif-
ferentiation of cancer cells to an immature state under 
the influence of their TME represents the first step 
towards epithelial-mesenchymal transition (EMT) and 
the acquisition of stemness characteristics. EMT causes 
cancer cells to lose polarity and acquire a more invasive 
interstitial phenotype. EMT also promotes the trans-
formation of epithelial non-CSCs into mesenchymal 
CSCs capable of generating cancer cells and promot-
ing cancer cell proliferation, in which the transcription 
and proteomics of cell genesis are very complex. Sec-
ond, and more complex, is the transformation of mol-
ecules: CSCs transmit regulatory signals and factors to 

Table 2 Distinct characteristics of CSC-derived exosomes vs non-CSC-derived exosomes

Exosomes derived from CSCs Exosomes 
derived from 
non-CSCs

Specific stem cell markers (e.g., CD133, CD44 and CD200) and stem cell-related cargoes None

Involvement in the initiation of tumorigenesis by altering the tumor microenvironment None

Involvement in tumor angiogenesis formation [25] Low

Involvement in the tumor immunosuppressive microenvironment [26] Low

Involvement in multiple signaling pathways to regulate treatment resistance Low

Critical for establishing premetastatic niche and colonizing metastatic site [27] Low
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the TME, playing a stimulatory role in the differentia-
tion and division of other cells [51]. Studies have shown 
that CSC-derived exosomes can induce the generation 
of CAFs, which may be related to TGF-β [52].

CSC‑derived exosomes promote neo‑angiogenesis 
and metastasis
Angiogenesis is recognized as the essential ability of 
cancers to form blood vessels, which supply cancer cells 
with nutrition and oxygen that support their survival and 
growth. Many studies have shown that angiogenesis is 
involved in cancer growth and metastasis [53–55]. CSCs 
are considered to facilitate angiogenesis by dedifferen-
tiating to endothelial cells as well as secreting proan-
giogenic and angiogenic factors, which are regarded as 
effective targets to block angiogenesis [56, 57]. Moreover, 
normal endothelial cells can activate angiogenic signal-
ing pathways to stimulate new vessel formation by the 
uptake of cancer cell released exosomes. A study showed 
that CSC-derived EVs can transform normal fibroblasts 
into CAFs with enhanced oncogenic potential through 
up-regulating the β-catenin/mTOR/STAT3 pathway 
and increasing mRNA and protein levels of TGF-β1 
[58]. Another study showed that the differentiation of 
endothelial precursor cells in angiogenesis can be traced 
back to CSCs. Exosomes facilitate cell communication by 
delivering miRNAs, which mediate an important aspect 
of the endothelial cell-to-cancer stem like cell crosstalk 

[59]. Many angiogenic factors such as VEGF, IL-8, and 
TNF-α are associated with CSCs in some types of cancer, 
and exosomes are still believed to be involved [25, 60–
67]. Glioblastoma has a high level of miR-21 that upregu-
lates VEGF expression. Sun and his colleagues found that 
exosomes released from glioma stem cells can promote 
the angiogenic ability of endothelial cells (ECs) by stim-
ulating the miR-21/VEGF/VEGFR2 signaling pathway 
[60]. It has been shown that exosomes containing miR-
155 secreted by gastric cancer cells significantly increase 
the rate of tumor angiogenesis by enhancing the expres-
sion of VEGF [65].

CSCs are believed to be responsible for the develop-
ment of metastasis, as they are more likely to survive in 
the process of metastasis and seed a new tumor in a dif-
ferent location (Fig.  2) [68]. EMT is an important step 
in metastasis, allowing cancer cells to detach from the 
primary tumor, migrate and invade other tissues. EMT 
has been implicated in carcinogenesis and confers met-
astatic properties, supporting the maintenance of CSCs 
by increasing their motility which enables these cells to 
move to more favorable environments in the body [69]. 
CSCs have been shown to promote EMT through ncRNA 
or proteins in several studies [70–75]. A study reported 
that cancer stem-like cells from thyroid cancer lines can 
transfer lncRNA-ROR to induce EMT and colonize the 
local TME and the distant metastatic niche [74]. Another 
study showed that exosomal lncRNA DOCK9-AS2 

Fig. 2 CSC-derived exosomes regulate the initial invasion and metastasis site of cancer cells. Establishment of distant metastasis may partially 
result from exosome-carried signals shared between adjacent cells and long-distance cells in the body. Step 1, invasion and intravasation: cancer 
cells in situ break through basement membrane with the infiltration of immune cells and enter the blood vessel through the endothelial cells. 
Exosomes regulate the surrounding cells to promote EMT and metastasis. Step 2, circulation: exosomes and cancer cells transport to the distant site 
with blood fluid. Step 3, extravasation: exosomes and cancer cells enter interstitial through the endothelial cells. Exosomes bind to specific tumor 
microenvironmental cytokines and are taken up in specific tissues, forming a pre-metastatic niche, which can recruit CSCs and cancer cells to reside. 
Step 4, colonization: exosomes and cancer cells colonize distant target organs to further facilitate neoplastic growth
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derived from PTC-CSCs can activate the Wnt/β-catenin 
pathway to aggravate stemness, proliferation, migration, 
and invasion in papillary thyroid carcinoma [75]. Res-
veratrol, an inhibitor of EMT, not only inhibits EMT and 
metastasis, but also suppresses stem cell-related mark-
ers and proliferation and induces cell apoptosis [76, 77]. 
A study from 2019 showed that  CD103+ acted to guide 
CSC-derived exosomes to target cancer cells and organs, 
and these exosomes transported miR-19b-3p into clear 
cell renal cell carcinoma cells and initiated EMT promot-
ing metastasis [78]. Since CSCs promote a pre-metastatic 
niche (PMN) over long distances, as an intercellular com-
munication media, CSC-derived exosomes can trans-
mit related signaling. A large volume of DNA, miRNAs, 
lncRNAs, lipids, proteins and other substances contained 
in exosomes reaches the recipient cell in the blood-
stream or in a paracrine form to achieve long-distance or 
intercellular communication to promote tumor growth, 
metastasis, and drug resistance. Wang et  al. found that 
lung CSC-derived exosomes promoted the migration and 
invasion of lung cancer cells, upregulated the expression 
levels of N-cadherin, vimentin, MMP-9 and MMP-1, and 
downregulated E-cadherin expression. Further, they veri-
fied that these exosomes contribute to a pro-metastatic 
phenotype in lung cancer cells via miR-210-3p transfer 
[27, 79]. Reduction of exosome secretion via depletion of 
Rab27a in cancer cells or pharmacological inhibition of 
exosomal uptake at sites of future metastases was suffi-
cient to impair PMN formation and decrease spontane-
ous metastasis in tumor bearing mice [80, 81]. Indeed, 
CSC-derived exosomes could promote intensive research 
given their ability to regulate metastasis. In fact, angio-
genesis is required for invasive tumor growth and metas-
tasis [82–85]. A study revealed that ovarian cancer 
cell-secreted exosomal miR-205 promotes metastasis by 
inducing angiogenesis [86].

CSC‑derived exosomes regulate autophagy of cancer cells
Autophagy is regarded as self-degradation processes that 
have pivotal roles in controlling the quality of cellular 
components and maintaining cellular homeostasis [87–
90]. Over the past decades, the mechanisms by which 
autophagy contributes to stemness and why stem cells are 
more dependent on autophagy than non-stem cells have 
been intensively studied. Autophagy is a double-edged 
sword in cancer, playing a dual role as a tumor suppressor 
and promoter, and dysregulation of autophagy has been 
implicated in the development and progression of vari-
ous types of cancer [91, 92]. The mechanisms underly-
ing the regulation of autophagy by exosomes are not fully 
understood, but several signaling pathways have been 
implicated. For example, exosomes can transfer miR-
NAs to cancer cells, which can target autophagy-related 

genes and modulate autophagy [89]. Additionally, 
exosomes can activate various signaling pathways, such 
as the PI3K/Akt/mTOR pathway, which is a key regula-
tor of autophagy [93, 94]. Autophagy is strongly asso-
ciated with CSC maintenance and aggressiveness and 
is an adaptive mechanism of CSCs in the TME, which 
indicates that inhibition of autophagy may be a strategy 
for the treatment of metastasis. Autophagy allows CSCs 
to survive despite hypoxia and low levels of nutrients 
in the TME and is considered a major cause of survival 
and chemotherapy resistance in CSCs. Few studies have 
been reported on the relationship between autophagy 
and CSC-derived exosomes. Rotenone is a naturally 
occurring chemical compound that induces autophagic 
vacuolation in CSCs, and this process is associated with 
mitochondrial damage. Kumar and colleagues found that 
exosomes released from rotenone-treated prostate and 
breast CSCs expressed higher levels of exosomal markers 
(such as CD9, CD63, CD81, Alix and TSG101) compared 
to untreated CSCs [95]. This study supports the notion 
that autophagosomes in CSCs may associate with the 
protein complexes, ribosomes, endoplasmic reticulum 
and peroxisomes to form multivesicular endosomes that 
release exosomes. Nonetheless, it is timely to determine 
if and how CSC-derived exosomes regulate autophagy in 
cancer cells.

CSC‑derived exosomes facilitate cancer cell immune evasion
Immune cells actively monitor and eliminate cells that 
undergo malignant transformation. However, some of 
the transformed cells can evade immune surveillance 
and eventually form a tumor. CSCs play a central role in 
immune evasion, which is a hallmark of malignancy. The 
interaction between CSCs and tumor-infiltrating immune 
cells is complex and not fully understood. Some studies 
have suggested that CSCs can evade the immune system 
by downregulating the expression of antigens that would 
normally be recognized by immune cells and by produc-
ing immunosuppressive factors that inhibit the function 
of immune cells. However, other studies have suggested 
that tumor-infiltrating immune cells can target and elimi-
nate CSCs, thereby preventing tumor progression and 
recurrence [96–98]. Colorectal CSCs can evade detec-
tion by the innate immune system and form the TME 
through exosomes, cytokines and chemokines to create 
an immunosuppressive environment that facilitates can-
cer progression [99]. Enriched PD-L1 expression in CSCs 
contributes to cancer cell immune evasion. Hsu et  al. 
showed that CSCs promote immune evasion by activat-
ing the EMT/β-catenin/STT3/PD-L1 signaling axis, but 
how CSCs communicate with cancer cells through this 
axis remains unclear [100]. In fact, this process is most 
likely mediated by exosomes. Another study showed that 
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PD-L1-expressing exosomes can inhibit antitumor T cell 
responses (Fig. 3). In patients with melanoma, exosomal 
PD-L1 is also a marker of immune activation early after 
initiation of therapy with PD1-blocking antibodies and 
predicts a clinical response to PD1 blockade [101]. How-
ever, the mechanisms underpinning how CSC-derived 
exosomes regulate surrounding immune cells or contrast 
with non-CSC-derived exosomes remain elusive.

Exosomes facilitate information exchange of CSCs in the TME
As the importance of CSCs in tumor development and 
metastasis has been elucidated, special attention must 
be paid to their microenvironment because the tumor 
niche has a strong influence on tumor behavior. The 
TME includes CSCs and differentiated cancer cells, the 
extracellular matrix (ECM), MSCs, CAFs, immune cells, 
cytokines and growth factors. Exosomes are deeply 

involved in mediating information exchange between 
cells and the TME, modifying physiological and patho-
logical processes by delivering specific molecules to their 
recipients [107]. Exosomes are also involved in the self-
regulation and microenvironmental regulation of CSCs, 
maintaining the steady state of the TME, adapting and 
responding to changes in the TME [102, 108]. CSCs 
secrete various factors through exosomes to recruit and 
activate stromal cells, which reorganize the ECM, pro-
mote metastasis, drug resistance and tumor progression. 
Some factors such as IL-6, IL-8, IL-1β and VEGF, which 
are involved in the communication of CSCs with their 
environment, can be encapsulated in exosomes and freely 
released into the extracellular space [109–111]. Other 
ncRNAs secreted by CSCs could also be potent regula-
tors involved in TME; glioma CSCs release exosomes 
carrying lncRNA MALAT1, which induces secretion of 

Fig. 3 CSC-derived exosomes regulate surrounding stromal cells in the complex TME. CSCs can regulate other microenvironmental cells 
through releasing exosomes carrying CSC-specific DNA, RNA, lipids, metabolites, and cytosolic and cell-surface proteins, which enhance cancer 
cell proliferation, modify endothelial cells to promote vascular leakiness, and regulate T cells, macrophages, and neutrophils to suppress cancer 
immunity and activate CAFs to promote EMT [60, 102–106]
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IL-6 and TNF-α from LPS-stimulated microglia cells. 
Oral squamous cell carcinoma (OSCC)-CSC-derived 
EVs transferred miR-134 and consequently promoted 
M2 macrophage polarization by targeting LAMC2 via 
the PI3K/AKT pathway in  vitro  and  in vivo [112]. M2 
macrophage-derived exosomal miR-31-5p can inhibit 
the tumor suppressor LATS2 gene and facilitate the 
progression of OSCC via inhibiting the Hippo signaling 
pathway [113]. Colorectal CSCs release miR-146a-loaded 
oncogenic exosomes to re-program non-CSCs and dem-
onstrate the clinical relevance of exosomal miR-146a 
in predicting the TME in CRC patients [114]. Ovarian 
cancer stem-like cells activate the NF-κB and STAT3 
signaling pathways through autocrine CCL5 signaling 
and mediate their own differentiation into endothelial 
cells [115]. On the other hand, other cells in the TME 
regulate CSCs via exosomes. Research has shown that 
CAF-derived exosomes can increase drug resistance to 
5-fluorouracil in colon CSCs by activating Wnt signaling 
[116]. In addition, similar studies have shown that CAF-
derived exosomes can activate STAT1 in breast cancer 
cells through the RIG-1 receptor. Subsequently, STAT1 
activation further activates NOTCH3, which in turn 
increases the drug resistance of CSCs [117]. Studies have 
shown that myeloid-derived suppressor cells (MDSCs) 
can secrete the exosome S100A9, which enhances the 
activity of signal transducer and activator of STAT3/
NF-κB signaling [118] and the production of prostaglan-
din E2 (PEG-E2) [119], promoting the stemness and sur-
vival of cervical cancer cells. Endothelial cells also induce 
NF-κB signaling in CSCs via secreted TNFα, creating a 
cytokine loop with immune cells and resulting in resist-
ance to doxorubicin and cyclophosphamide [120]. This 
suggests that exosomes and their cargoes secreted by key 
components of the TME may have an impact on tumor 
progression.

CSC‑derived exosomes enhance chemoresistance
CSCs are now considered to be a major cause of chemo-
therapy drug resistance. Existing studies have proposed 
various mechanisms of chemotherapy drug resistance 
of CSCs, such as drug outflows via ATP-binding cas-
sette (ABC) transporter [121, 122], overactivation of 
DNA damage response, apoptosis avoidance, activa-
tion of survival pathways, cell cycle promotion, and/
or changes in cell metabolism [123, 124]. CSC-derived 
exosomes can contribute to chemotherapeutic resistance 
by transferring miRNAs, proteins, and lipids to cancer 
cells, activating signaling pathways involved in cell sur-
vival and proliferation, inducing EMT, and modulating 
the TME [125]. It has been observed that the content 
of exosomes released by resistant cancer cells can cause 
sensitive cells to become resistant [126]. Exosomes from 

fibroblasts can induce the dedifferentiation of colorec-
tal cancer cells into CSCs with stemness phenotype and 
function, thus enhancing the chemotherapy resistance 
of colorectal cancer [127, 128]. In addition, chemother-
apy induces cancer cells to secrete exosomes containing 
drug-resistant miRNAs that act through the stem path-
way, leading to increased stemness and drug resistance 
of CSCs [129–131]. Understanding such mechanisms is 
critical for developing effective therapies that can target 
CSC-derived exosomes and overcome chemotherapeutic 
resistance.

Targeting CSC-derived exosomes in cancer progression
Given the crucial role of exosomes in cell communica-
tion, interfering with the interaction between CSCs and 
the TME by exosomes is an important direction for can-
cer therapy. Targeting CSC-derived exosomes to disrupt 
the signaling link between CSCs and TME or distant 
cells may provide a novel therapeutic strategy to impede 
the transmission of stemness characteristics and conse-
quently thwart treatment resistance. Inhibition of exo-
some biogenesis is an increasingly promising approach 
for the treatment of cancer, with the potential to increase 
the efficacy of chemotherapy. Several studies have found 
that knockout of HRS, STAM1, and TSG101 can reduce 
exosome release and inhibition of these ESCRT com-
ponents can alter vesicle properties and contents. In 
addition to the production of exosomes via an ESCRT-
dependent pathway, sphingolipid ceramide also mediates 
the production of exosomes and hydrochloride hydrate 
(GW4869) can induce the inactivation of the acid sphin-
gomyelinase. The Rab27 family is a class of small GTPase 
proteins that play an important regulatory role in the 
release of exosomes. Inhibition of Rab27a expression by 
RNAi can reduce the release of exosomes from cancer 
cells and inhibit the growth of tumors and the formation 
of metastatic clones [132, 133]. However, to date, there 
are no in vitro or in vivo research studies targeting CSC-
derived exosomes for cancer treatment. Given that CSC-
derived exosomes can reflect cellular content and carry 
specific markers, it is worth investigating the possibility 
of interfering with the synthesis or effect of exosomes by 
recognizing specific markers. On the other hand, studies 
have shown that the miRNA and protein content of CSC-
derived exosomes present in body fluids of patients with 
liver, lung, prostate, and breast cancer are different from 
those found in normal human fluids [19, 95]. Although 
the proportion of CSCs in tumor tissues and the number 
of exosomes produced are small, considering the impor-
tant role of CSCs in cancer progression and the "earlier" 
role of exosomes in metastasis and development, target-
ing exosomes from CSCs may also become an indicator 
for early diagnosis and prediction of metastasis for early 
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intervention. Moreover, based on the specific markers 
of exosomes from CSCs, the niche of the primary tumor 
and the pre-metastatic niche can be identified [134, 135].

Targeting CSCs with exosomal drug delivery
Since CSCs have unlimited proliferative potential that 
can drive tumorigenesis, the CSC theory may provide 
new insights into cancer therapy. In recent years, many 
efforts have been devoted to CSC-targeted therapies 
[136]. A number of promising new therapeutic strate-
gies are being developed and have achieved good results 
[137–139], including CSC biomarker-mediated targeting, 
CSC mitochondrial targeting, CSC pathway targeting 
[140]. Nevertheless, the therapeutic benefits for prac-
tical use are still far from ideal due to the complicated 
microenvironment, special biological characteristics of 
CSCs, and drug delivery methods. For example, nanopar-
ticles as a delivery vehicle deliver only 0.7% of the nano-
carrier dose to solid tumors [141]. Given that multiple 
physiological barriers exist before reaching CSCs, how to 
ensure the uptake of anti-CSC agents by the target CSCs 
remains a prominent issue. Drug-loaded exosomes may 
serve as a next generation drug delivery mechanism that 
combines nanoparticle size with non-cytotoxic effects, a 
high drug carrying capacity, and a low immunogenic pro-
file [142]. As exosomal carriers can provide advantages of 
both cell-based drug delivery and nanotechnology, inter-
est in using exosomes for therapeutic approaches has 
exploded in recent years. Noteworthy, exosomes possess 
an intrinsic ability to cross biological barriers, includ-
ing the most difficult to penetrate, the blood brain bar-
rier (BBB) [143]. The combination of targeting molecules 
contained in exosomes, such as miR-21 and lncRNA 
UCA1, shows encouraging results for the treatment of 
certain aggressive cancers [144]. Kaori et  al. used engi-
neered biological nanoparticles analogous to exosomes 
to treat hepatocellular carcinoma by targeting liver CSCs 
[145]. Another team explored a potential way to use EVs 
as therapeutic agents to reprogram CSCs and stimulate 
their differentiation [146]. Other research using in  vivo 
models has also explored the potential clinical applica-
tions of targeting exosomes. Tuying et al. developed bio-
compatible tumor cell-exocytosed exosome-biomimetic 
porous silicon nanoparticles (PSiNPs) as drug carriers 
for targeted cancer chemotherapy, and found that PSiNPs 
demonstrate significant cellular uptake and cytotoxicity 
in both bulk cancer cells and CSCs [147]. CSCs express 
specific surface markers, therefore, the binding between 
the biomarkers and the corresponding antibodies pro-
vides enhanced targeting through the permeability and 
retention effect, resulting in greater cellular uptake and 
higher drug concentration in CSCs and less damage to 
other cells [148]. Despite the advantages of CSC-derived 

exosomes for targeted drug delivery, there are several 
drawbacks. First, the size of exosomes is relatively small, 
which limits their ability to carry large therapeutic mol-
ecules. Second, exosomes are expensive and time-con-
suming to produce, making them costly for therapeutic 
use. Finally, the TME of the target cells can reduce the 
stability of the cargo inside the exosomes. These limita-
tions can reduce the efficacy of the drug, resulting in sub-
optimal therapeutic outcomes. For example, despite their 
unique lipid and protein composition, exosomes have a 
very short half-life and are rapidly cleared from the cir-
culation after in vivo administration, with less than 5% of 
the injected dose of exosomes remaining in the circula-
tion after 3 h [149].

Current challenges and perspectives
In summary, CSCs are highly tumorigenic, significantly 
resistant to traditional cancer therapies, and a cause of 
local tumor recurrence and distal metastasis. Selective 
targeting of CSCs is a promising therapeutic strategy to 
eliminate the development of human cancer and reduce 
the risk of recurrence [150]. To date, only a few stud-
ies have focused on CSC-derived exosomes. However, a 
growing body of evidence has confirmed that exosomes 
from complex tumor tissue samples are composed of 
multiple cell subsets and have potent immunomodula-
tory properties that promote tumor progression. Clearly, 
it is important to distinguish whether these exosomes are 
derived from CSCs or simply from non-CSCs to deter-
mine the underlying mechanisms, which may provide 
promising options in the search for novel diagnostic and 
therapeutic approaches targeting CSCs. For example, 
further study of CSC-derived exosomes and their effects 
on the immune system may reveal previously undiscov-
ered mechanisms that inhibit anti-tumor immunity and 
thereby shed light on new therapeutic targets for drug 
immunotherapy. Some of the mechanisms, including 
exosomes, that allow CSCs to evade the immune system 
are also being targeted in immunotherapy approaches 
that aim to activate the immune system and specifically 
target cancer cells.

Despite this potential, it remains technically chal-
lenging to effectively isolate CSCs and their exosomes. 
First, studies performed only in  vitro or in immuno-
deficient mouse models cannot simulate the complex 
immune characteristics of CSCs in  vivo. In addition, 
the small number of CSCs makes in  vivo immune 
mouse experiments very challenging. CSCs require 
a specific niche for survival in  vivo, and most current 
studies use isolated CSCs that lack the TME, mak-
ing it difficult to define the relationships between dif-
ferent cell types [151]. Second, because CSCs share 
some signaling pathways with normal stem cells, not 
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all regulatory factors that contribute to CSCs are suit-
able as therapeutic targets for cancer therapy, and some 
targets that have proven useful so far may be unusable 
in application. How to make specific exosomes target 
and bind to CSCs without causing potential damage 
to other stem cells or somatic cells has always been a 
challenge in this field, and new methods for developing 
exosomes that target the microenvironment of CSCs 
are very promising.
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