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Abstract 

AXL is a member of the TAM (TYRO3, AXL, and MERTK) receptor tyrosine kinases family (RTKs), and its abnormal 
expression has been linked to clinicopathological features and poor prognosis of cancer patients. There is mounting 
evidence supporting AXL’s role in the occurrence and progression of cancer, as well as drug resistance and treatment 
tolerance. Recent studies revealed that reducing AXL expression can weaken cancer cells’ drug resistance, indicating 
that AXL may be a promising target for anti-cancer drug treatment. This review aims to summarize the AXL’s structure, 
the mechanisms regulating and activating it, and its expression pattern, especially in drug-resistant cancers. Addition-
ally, we will discuss the diverse functions of AXL in mediating cancer drug resistance and the potential of AXL inhibi-
tors in cancer treatment.
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Background
Cancer remains a leading cause of death worldwide, with 
its incidence and mortality burden continuing to rise 
rapidly [1]. Despite significant progress in research and 
the development of cancer treatment strategies such as 
targeted therapy and immunotherapy, drug resistance 
remains a major obstacle to effective therapeutic inter-
ventions against cancer [2, 3]. The drug resistance can be 
intrinsic or acquired and reflects the result of multiple 
genetic and epigenetic alterations in cancer cells [4, 5]. 
Therefore, urgent measures must be taken to identify 
new therapeutic strategies that can target intrinsic and 
acquired resistance mechanisms.

AXL is a member of the TAM (TYRO3, AXL, and 
MERTK) receptor tyrosine kinases (RTKs) family [6]. By 
binding to its primary ligand, the growth arrest-specific 

protein 6 (GAS6), AXL participates in various signal 
transduction cascades and plays a critical role in various 
biological processes including cell proliferation, survival, 
migration, efferocytosis, angiogenesis, platelet aggrega-
tion and fibrosis, and regulation of natural killer (NK) 
cell development [7, 8]. Multiple lines of evidence indi-
cate that AXL is also involved in cancer progression and 
treatment tolerance. For example, in lung cancers, AXL 
interacts with epidermal growth factor receptor (EGFR) 
and human epidermal growth factor receptor 3 (ERBB3, 
also known as HER3) to maintain the activation status 
of downstream signal pathway, which confers intrinsic 
resistance to osimertinib in non-small cell lung cancer 
(NSCLC) cells [9]. AXL also promotes the transcription 
level of MYC, which leads to the imbalance of purine 
metabolism and accelerates the emergence of drug-
resistant mutations in NSCLC [10]. In colorectal cancers, 
AXL induces the expression of Twist family BHLH tran-
scription factor 1 (TWIST1) and mediates resistance to 
polo-like kinase 1 (PLK1) inhibitor [11]. Overexpression 
of AXL has also been found in a variety of other can-
cers, including clear cell renal cell carcinoma (ccRCC) 
[12], hepatocellular carcinoma (HCC) [13], and cholan-
giocarcinoma (CCA) [14], which is associated with poor 
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prognosis of these cancer patients [12–14]. These find-
ings suggest that AXL could be a useful therapeutic tar-
get to address the issue of cancer drug resistance.

This review aims to describe the structure of AXL and 
its expression regulation, summarize the expression pat-
tern of AXL in cancers, and further discuss the role of 
AXL plays in cancer occurrence development, particu-
larly in anti-cancer drug resistance. Additionally, we will 
explore the potential of AXL as a therapeutic target to 
overcome tumor chemoresistance.

Structure and activation of AXL
The AXL gene is located on chromosome 19q13.2, it 
includes 20 exons and encodes an 894-amino acid poly-
peptide with multiple domains, which can be divided into 
three parts (Fig. 1A) [15]. Exons 1–10 mainly encode two 
fibronectin type III (FNIII) domains and two immuno-
globulin (IG)-like domains constituting the extracellular 
part, which is involved in binding with ligands (Fig.  1B 
and C). Exon 11 encodes extracellular proteolytic cleav-
age sites and a transmembrane domain, and exons 12–20 
encode intracellular domain with tyrosine kinase activity 
[15, 16].

The main ligand of AXL [17] is GAS6, which consists of 
a γ-carboxyglutamic acid (GLA) domain at N-terminus, a 
loop region, four EGF-like repeats in the middle, and two 
globular laminin G like (LG) domains at C-terminus [18]. 
When AXL binds to GAS6, the complex dimerizes with 
another GAS6-AXL complex to form a 2:2 homodimerized 

complex with no direct AXL/AXL or GAS6/GAS6 con-
tact, followed by trans-autophosphorylation of the tyros-
ine residues in the intracellular domain of AXL [19–21]. 
AXL phosphorylation is required for recruitment of cor-
responding adaptor molecules and effector proteins 
and ultimately to activate downstream signal pathways 
[19–21]. Six phosphorylation sites have been found in the 
AXL kinase domain, of which three (Tyr698, Tyr702 and 
Tyr703) are considered to be related to autophosphoryla-
tion and AXL activation, while the other three (Tyr779, 
Tyr821 and Tyr866) are involved in the docking and signal 
transduction of adaptor proteins [22].

In addition to GAS6, protein S (PROS1) has also 
been identified as a ligand of AXL. By phosphorylating 
AXL and activating downstream NF-κB signal pathway, 
PROS1 promotes Glioblastoma (GBM) tumor growth 
[23]. Besides AXL’s ligands, other TAM family members 
[24] or non-TAM proteins also affect AXL activation. For 
instance, co-immunoprecipitation experiments suggest 
that the AXL and TYRO3 receptors are closely associ-
ated, which significantly enhance GAS6 mediated AXL 
phosphorylation [24, 25].

Furthermore, AXL can be activated by interacting 
with several other non-TAM family member proteins 
via GAS6 independent mechanisms. For instance, it 
has been found that AXL heterodimerize with ERBB 
receptor family members, platelet-derived growth fac-
tor receptor (PDGFR), and mesenchymal to epithelial 
transition factor (MET) and is activated without GAS6 

Fig. 1 The structure of AXL and GAS6. A The AXL protein comprises an intracellular domain, single helix transmembrane region, two fibronectin 
type III (FNIII) domains, and two immunoglobulin (IG)-like domains. On the other hand, GAS6 consists of a γ-carboxyglutamic acid (GLA) domain, a 
loop region, four epidermal growth factor (EGF)-like repeats, and two globular laminin G like (LG) domains. In Figure B and C, we can observe the 
interaction between AXL and GAS6, front both the front and top sides respectively, as visualized in the Protein Data Bank (PDB) with the identifier 
2C5D
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participation [26–28]. In addition, activated EGFR phos-
phorylates AXL Tyr779, leading to ligand-independent 
AXL activity and  activation of more diversified down-
stream signaling pathways than those triggered by EGFR 
alone [26, 29]. Similarly, the activated HER2 forms a 
complex with AXL and activates AXL in a GAS6-inde-
pendent manner, which accelerates epithelial-mes-
enchymal transition (EMT) and metastasis of breast 
cancer cells [30]. AXL is required for vascular endothe-
lial growth factor-A (VEGF-A) dependent activation of 
PI3K (phosphoinositide 3-kinase)/AKT (protein kinase 
B) in endothelial cells. Under the stimulation of VEGF-
A, VEGF receptor-2 (VEGFR-2) activates the Src family 
kinase (SFK), and then promotes the GAS6-independent 
activation of AXL, which is necessary for vascular per-
meability and corneal neovascularization [31].

Regulation of AXL
In recent years, AXL has emerged as a key player in vari-
ous biological processes, including immune regulation, 
cellular signaling, and cancer progression [7, 8]. Con-
sequently, the regulation of AXL has become an area of 
intense research interest. Several mechanisms have been 
identified that regulate AXL expression and function, 
including transcriptional, post-transcriptional, and post-
translational regulation (Fig. 2).

Transcriptional regulation of AXL is achieved through 
the binding of various transcription factors to the AXL 
promoter region, such as TEA domain (TEAD), activa-
tion protein-1 (AP-1), and hypoxia-inducible transcrip-
tion factor-1α (HIF-1α) [32–34]. TEAD combines with 
AXL promoter to enhance its promoter activity, in turn 
mediating the resistance of colorectal cancer to 5-FU 

[34]. AP-1 can bind to AP-1 motif of Axl promoter [32]. 
Blocking JNK (c-Jun N-terminal kinase)/AP-1 inhib-
its AXL transcription and attenuates drug resistance to 
PI3Kα therapy in esophagus cancer and head and neck 
squamous cell carcinoma [35]. Additionally, epigenetic 
modifications have been shown to modulate AXL expres-
sion. Some studies have found that methylation in the 
GC rich region of AXL promoter can restrict AXL gene 
expression [36].

Post-transcriptional regulation of AXL involves non-
coding RNAs. Various micro-RNAs (miRNAs), such 
as miR-34a, miR-432, and miR-202-5p, can negatively 
regulate AXL expression by binding to the 3’UTR 
of the AXL mRNA and promoting its degradation 
[37–39]. LncTASR, a long noncoding RNA (lncRNA), 
can directly bind to 5′ UTR of AXL mRNA to stabi-
lize AXL mRNA [40]. Additionally, alternative splicing 
of the AXL transcript can result in the production of 
different AXL isoforms, which may have distinct func-
tions and regulation [41].

Finally, post-translational regulation plays a critical role 
in maintaining protein stability and activity. For instance, 
by mediating AXL sialylation, ST3 β-Galactoside α-2,3-
Sialyltransferase 1 (ST3GAL1) can increase the affinity 
between AXL and GAS6, and induces activation of AXL 
[42]. Heat shock protein 90 (HSP90), a molecular chap-
erone, can correctly fold proteins and be required to sta-
bilize AXL [43], while other molecules, such as carboxy 
terminus of HSP70 interacting protein (CHIP) and E3 
ubiquitin ligase CBL-b (casitas B lymphoma-b), can ubiq-
uitinate AXL protein and induce its proteasome degra-
dation [44–46]. Additionally, AXL can be cleaved by the 
A disintegrin and metalloproteinases (ADAM) 10 and 

Fig. 2 The regulation of AXL. A Expression of AXL is regulated by various transcription factors. B AXL undergoes post-transcriptional regulation. C 
The protein level of AXL is regulated in the post-translation stage
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ADAM17 to generate soluble AXL (sAXL), which inhibit 
AXL function and could be a promising biomarker for 
predicting cancer progression [47].

In summary, the regulation of AXL is a complex pro-
cess that involves various mechanisms, including tran-
scriptional, post-transcriptional, and post-translational 
regulation. A better understanding of these mechanisms 
is crucial for the development of novel therapeutic strate-
gies targeting AXL in cancer and other diseases.

Expression of AXL in cancers
The receptor tyrosine kinase AXL has been shown to be 
highly expressed in several major types of cancers and is 
closely associated with tumor progression [48]. In par-
ticular, upregulated AXL mRNA expression has been 
observed in ccRCC, where it is associated with worse 
overall survival (OS) and can serve as an independent 
predictor of prognosis in ccRCC patients [12]. Moreover, 
high AXL expression has been reported in CCA com-
pared to the adjacent normal tissue, the patients with 

high AXL levels have a higher risk of developing metas-
tasis and a shorter OS [14]. Similarly, in HCC patients, 
high AXL expression could serve as a biomarker of 
higher recurrence and lower OS after hepatectomy [13]. 
Notably, higher AXL expression is a potent independent 
predictor of poor progression-free survival (PFS) or OS 
in patients with HPV-negative tumors treated by surgery 
alone [49] and patients with lung adenocarcinoma [50].

Furthermore, increased AXL mRNA and/or protein 
has been observed in other cancers, such as papillary 
thyroid carcinoma [51] and pancreatic ductal adenocar-
cinoma (PDAC) [52]. The enzymatic processing of AXL 
leads to the production of sAXL, and plasma sAXL is 
significantly increased in HCC and PDAC, making it a 
candidate biomarker for early diagnosis of these cancers 
[52–55], thus highlighting the potential value of sAXL in 
cancer diagnosis and prognosis prediction.

In recent years, studies have shown that high AXL 
expression is closely associated with treatment-
resistant cancers (Table  1). For instance, high AXL 

Table 1 The expression of AXL in drug-resistant cancers

Type of resistance Drug Cancer type Model Significance Reference

Chemotherapy Paclitaxel, carboplatin Ovarian cancer Human AXL expression was higher in tumors with a poor 
response to chemotherapy

[59]

Paclitaxel Endometrial Cancer Human AXL level was lower in tumors with good chemore-
sponse than in those with a poor response

[58]

Targeted therapy Osimertinib NSCLC Human The response rate of patients with low AXL expression 
for osimertinib was higher than that with high AXL 
expression

[19]

Cell expression of AXL protein was also higher in osimer-
tinib-resistant cells (H1975 OR1 and H1975 OR2) than 
sensitive cell lines (H1975)

[56]

Erlotinib NSCLC Human AXL significantly increased in NSCLC patients with 
erlotinib resistance

[57]

Cell Compared with sensitive cell lines (HCC827 and 
HCC4006), the mRNA and protein of AXL in erlotinib-
resistant cells (HCC8267 ER and HCC4006 ER) were 
significantly up-regulated

Cetuximab/panitumumab Colorectal cancer Human Progression-free survival was significantly lower in 
RAS-WT patients with high-AXL undergoing anti-EGFR 
therapy

[61]

Trastuzumab Breast cancer Cell AXL was up-regulated in resistant cell lines (AU565R, 
BT474R, and SKBR3R) compared to corresponding sen-
sitive cell lines (AU565, BT474, and SKBR3)

[62]

Mouse AXL mRNA level is significantly higher in vivo PDX–
resistant model

Human Patients who later experienced tumor recurrence have 
higher expression of AXL in the initial diagnosis

AZD1775 Small Cell Lung Cancer Cell Compared with sensitive cell lines (H1836, H82, 
H1048), the AXL expression of resistant cell lines 
(H1417, H865, H1930) was significantly higher

[63]

Immunotherapy Nivolumab ccRCC Human The objective response rate was significantly lower in 
patients with high AXL level. Survival rate of patients 
with AXL-high and PD-1-positive undergoing PD-1 
block therapy was significantly lower

[60]
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expression has been found in NSCLC patients with 
low response to EGFR tyrosine kinase inhibitor (TKI) 
[9], as well as in erlotinib or osimertinib resistant can-
cer cell lines [56, 57]. Similarly, in patients with ovar-
ian cancer or endometrial cancer, high AXL expression 
is associated with poor chemoresponse [58, 59] and 
patients with ccRCC who have high AXL expression 
shows lower objective response rate to PD-1 inhibi-
tion therapy [60]. In patients with colorectal cancer 
who received anti-EGFR treatments, those with high 
AXL expression show lower PFS rates than those with 
low AXL [61]. In addition, cell line expression data also 
reveal that high AXL expression is found in drug-resist-
ant breast cancer cells and small-cell lung cancer cells 
(SCLC), but not in drug-sensitive cells [62, 63]. Over-
all, these findings suggest that AXL may play a critical 
role in promoting resistance to cancer treatments and 
further highlight the potential of AXL as a therapeutic 
target for cancer treatment.

Functions of AXL in drug‑resistant cancer
Multiple studies have demonstrated that AXL is involved 
in various signaling pathways that are critical for cancer 
initiation and progression (Fig.  3). However, the precise 
mechanisms underlying AXL-mediated drug resistance 
in cancer cells remain largely unclear. Here, we will spe-
cifically discuss the role AXL in promoting drug toler-
ance of cancer cells to treatment.

EMT
EMT is a critical process by which epithelial cells acquire 
a mesenchymal phenotype, which enables them to invade 
and metastasize to distant organs. This mechanism has 

been shown to contribute to drug resistance in cancer 
cells [64–66]. A growing body of evidence suggests that 
AXL is closely associated with EMT (Fig.  4), and can 
be used as an EMT marker in several types of cancer, 
including esophageal squamous cell carcinoma (ESCC) 
[67]. In oral squamous cell carcinoma (OSCC), AXL 
upregulates Snail expression and promotes EMT via 
AKT/GSK-3β (Glycogen Synthase Kinase 3β)/β-catenin 
signaling pathway [68]. AXL also induces the upregula-
tion of ZEB1 (zinc finger E-box binding homeobox  1) 
transcription and mediates the drug resistance of breast 
cancer to doxorubicin through the same pathway [69]. 
In colorectal cancer, increased AXL contributes to the 
upregulation of TWIST1, which is directly related to 
EMT and mediates resistance to PLK1 inhibitors [11]. 
Previous studies have confirmed that TGF-β (transform-
ing growth factor-β)/SMAD3 (SMAD family member 3) 
participates in EMT of lung adenocarcinoma cells [70]. 
In HCC, the interaction between AXL and 14–3-3ζ leads 
to phosphorylation of Ser213 in SMAD3, inducing the 
upregulation of TGF-β target genes such as Snail and 
autocrine TGF-β secretion [71].

On the other hand, inhibition of GAS6/AXL axis 
reduces Snail and N-cadherin but upregulates E-cad-
herin, inhibiting EMT in esophageal cancer cells [72]. 
Similarly, miR-625-3p can directly target AXL and 
reverse TGF-β1 induced EMT, enhancing sensitivity to 
gefitinib in NSCLC [73]. Hypoxia has been shown to 
increased activity of HIFs and promote tumor progres-
sion by inducing EMT [74]. Interference with AXL leads 
to downregulation of HIF-1α, which, in turn, reduces 
EMT induced by hypoxia and enhances the immuno-
therapeutic responses in HER2 breast cancer [75].

Fig. 3 Signal pathways mediated by AXL in the occurrence and development of cancer. AXL play a crucial role in the occurrence and development 
of cancer through various signal pathways
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DNA damage and DNA damage response (DDR)
Stimulation such as ultraviolet light can cause DNA rep-
lication stress (RS), leading to stalled replication forks 
and DNA damage that introduces genomic instabil-
ity [76]. Genomic instability is a key hallmark of cancer 
and is closely linked to drug-resistance [77]. Cancer cells 
respond to DNA damage through various ways, col-
lectively known as DDR (Fig.  5). These responses can 
be summarized into four aspects: activation of various 
repair pathways, metabolic reprogramming, blocking 
cell cycle process, and inducing cell death in the cases of 
irreparable damage [78–80]. It has been well established 
that aberrant DDR contributes to cancer progression and 
resistance to DNA-damaging drugs.

Several studies have revealed that AXL is associated 
with DNA damage. AXL has been found to attenuate 
reactive oxygen species (ROS) production and inhibit 
DNA double-strand breaks (DSB) [10], on the other 
hand, inhibition of AXL leads to enhanced RS and 
increased DNA damage [59]. Additionally, when com-
bined with other drugs, AXL can interfere with replica-
tion fork progression. Although carboplatin and GAS6 
inhibitor AVB500 alone shows no effect on replication 
forks, the combination of the two significantly hinder the 
progress of replication forks in ovarian cancer cells [59]. 
Similarly, use of AXL inhibitor BGB324 with ATR inhibi-
tors can cause collapse of replication fork in NSCLC [81]. 
It is worth noting that the combination of PARP inhibitor 

and AVB-500 increases DNA damage and genomic insta-
bility by increasing replication fork speed rather than 
stalling the fork. In addition, to affecting DNA replication 
process, AXL is also involved in multiple repair path-
ways of DDR [59]. Inhibition of GAS6/AXL axis reduces 
RAD51 foci and increase 53BP1 foci, inhibiting homolo-
gous recombination (HR) and increasing the sensitivity 
of ovarian cancer to carboplatin [59]. Translesion synthe-
sis (TLS) is a basic pathway for repairing DNA damage 
caused by replication arrest, but it also serves as the main 
source of cell mutation [82]. Mono-ubiquitination of pro-
liferating cell nuclear antigen (PCNA) induced by RAD18 
is critical for TLS [83]. A recent study found that AXL 
neddylates and activates RAD18 to enhance TLS and 
accelerate the emergence of T790M in resistant NSCLC 
cells [10].

Furthermore, AXL is involved in upregulation and 
activation of MYC, leading to an imbalance in purine 
metabolism and increased adaptive mutability [10]. 
C-ABL and p73 play important roles in the process of 
cellular apoptosis caused by DNA damage [84], and both 
are interfered with by AXL to enhance cisplatin resist-
ance in esophageal cancer [85] through impeding nuclear 
aggregation of c-ABL and impairing p73 protein stability. 
The effect of AXL on cell cycle progression is still under 
debate. One study found that AXL inhibition activates 
ATR/CHK1 (checkpoint kinase 1) and sensitizes NSCLC 
cells to ATR inhibitors. The combination of AXL and 

Fig. 4 AXL-mediated epithelial–mesenchymal transition (EMT) in drug-resistant cancer. AXL is known to activate EMT transcription factors through 
three pathways to promote EMT transformation and drug resistance of cancer cells. These pathways include AKT/GSK-3β/β-catenin, TGF-β/Smad3, 
and PI3K/AKT/HIF-1α
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ATR inhibitors can prematurely activate cyclin depend-
ent kinase 1 (CDC2) and induce mitotic catastrophes 
[81]. However, other have reported AXL overexpression 
activates the ERK/p90RSK and mTOR pathways, thereby 
activating CHK1 to promote cell survival and mediate 
primary and acquired resistance to WEE1 inhibition in 
SCLC [63]. In summary, AXL has been demonstrated to 
mediate drug resistance by influencing DNA damage and 
repair, but its intrinsic mechanism for DDR remains to be 
specifically explored.

Immunosuppression
Although significant progress has been made in immu-
notherapy by activating the immune system to eliminate 
tumors in recent years, drug resistance remains a major 
obstacle to its application in clinical practice [86]. AXL 
plays an essential role in shaping the process of tumor 

immune tolerance (Fig. 6) [87]. AXL endows cancer cells 
with resistance to treatment through activation of PI3K/
AKT pathway and up-regulation of programmed cell 
death ligand 1 (PD-L1) transcription in head and neck 
cancer cells, thereby inhibiting the immune killing effect 
of the body [88].

In the case of GBM, immune-related cells in tumor 
microenvironment, such as tumor- associated microglia 
and macrophages, secrete PROS1 to promote the growth 
of glioma cells, which phosphorylates and activates AXL 
in glioma stem cells, thus inhibition of AXL could sig-
nificantly improve the efficacy of Navurizumab [23]. 
Additionally, tumor-related macrophages secrete 14–3-
3ζ, which interacts and phosphorylates AXL to acti-
vate downstream pathways to promote the tolerance of 
PDAC cells to chemotherapy [89]. AXL could affect cyto-
toxic immune response against tumors by reducing the 

Fig. 5 AXL affect DNA damage and DNA damage response (DDR) in drug-resistant cancer. DNA damage and repair are dynamic processes that 
require a delicate balance. AXL plays a crucial role in maintaining this balance by not only inhibiting DNA damage but also participating in multiple 
processes of DNA repair, such as DNA damage response (DDR), metabolic reprogramming, cell cycle arrest, and apoptosis
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expression of intercellular adhesion molecule 1 (ICAM1) 
and UL16 binding protein 1 (ULBP1) in mesenchymal 
human lung cancer cells. Both of these contribute to the 
immune resistance to NK and cytotoxic T lymphocytes 
(CTL) cells [90]. Since ULBP1 plays a role in the recogni-
tion of target cells [91] and the combination of ICAM1 
and lymphocyte function-associated antigen 1 (LFA-1) 
enhances immune cells to kill the target cells [92], tar-
geting AXL is beneficial to the formation of anti-tumor 
microenvironment and enhances the treatment response. 
Indeed, depletion of AXL facilitates expression of MHC-
I, infiltration of dendritic cells and CD8 + T cells, and 
T-cell-mediated immune response [93]. Particularly, 
inhibiting AXL in dendritic cells can induce the secretion 
of type I interferon, promote the expansion of CD8 + T 
cells, and sensitize NSCLC carrying serine/threonine 
kinase 11 (STK11/LKB1) mutant to pabolizumab [94]. 
Recent study in leukemia cells has found GAS6/AXL axis 
is required to skew macrophages toward a tumor-pro-
moting tissue repair phenotype to establish a suppressive 
environment to prevent immune attacks [95]. It has been 
proposed that AXL inhibition can be achieved by block-
ing TBK1 (TANK binding kinase 1)/NF-κB pathway, a 
key signal pathway of immune cells, changes the compo-
sition of chemokines and cytokines in tumor microenvi-
ronment, making tumor sensitive to treatment [96].

Activation of oncogenic bypass pathway
Ample evidence suggests AXL mediates resistance to 
multiple anti-cancer drugs. In NSCLC with EGFR muta-
tion, the activation of several signal pathways, such as 
MAPK/ERK and PI3K/AKT, is considered to be one of 
the major mechanisms responsible for acquiring drug 
resistance against EGFR TKIs [97]. In the case of resist-
ance to osimertinib, multiple pathways seem to be 
involved, including the MAPK/ERK pathway, SRC and 
its downstream AKT signal pathway, and EGFR-induced 
signal transduction triggered by AXL [9, 56, 98–100]. In 
breast cancers, the heterodimerization of AXL and HER2 
leads to the acquired resistance to anti-HER2 drug tras-
tuzumab by activating AKT and ERK pathways [62].

Other functions
AXL can contribute to drug tolerance, and its inhibi-
tion has been shown to reduce drug resistance in sev-
eral types of cancer. For instance, inhibition of AXL 
reduces the phosphorylation of M2 isoform of pyru-
vate kinase (PKM2) at Y105, which decreases glycolysis 
and enhances chemosensitivity of human ovarian can-
cer cells to cisplatin [101]. In endometrial cancer cells, 
inhibition of AXL down-regulates various glycolytic 
metabolites, leading to increased sensitivity to paclitaxel 
[58]. AXL has also been found to activate Akt/β-catenin 

Fig. 6 AXL-mediated immunosuppression in drug-resistant cancer. AXL plays a key role in mediating immunosuppression through both intrinsic 
shaping of cancer cells and extrinsic modification of microenvironment surrounding tumors
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Table 2 AXL-targeted drugs in clinical trials

Drug Cancer Combination with Clinical Trial No Phase

Bemcentinib (BGB324, R428) Advanced Adenocarcinoma of the Lung Pembrolizumab NCT03184571 Phase 2

Triple Negative Breast Cancer Pembrolizumab NCT03184558 Phase 2

Stage IIIb or Stage IV non-small cell lung 
cancer (NSCLC)

Erlotinib NCT02424617 Phase 1/2

Advanced or metastatic non-squamous 
NSCLC

Pembrolizumab/ Pemetrexed/ Carboplatin NCT05469178 Phase 1/2

Acute Myeloid Leukemia (AML) Cytarabine/ Decitabine NCT02488408 Phase 1/2

Dubermatinib (TP-0903) FLT3 gene mutated AML Azacitidine NCT04518345 Phase 1/2

DS-1205c Metastatic or Unresectable Epidermal 
Growth Factor Receptor (EGFR)-Mutant 
NSCLC

Osimertinib NCT03255083 Phase 1

Metastatic or Unresectable EGFR-Mutant 
NSCLC

Gefitinib NCT03599518 Phase 1

BA3011 (CAB-AXL-ADC) Metastatic NSCLC PD-1 inhibitor NCT04681131 Phase 2

Solid tumors PD-1 inhibitor NCT03425279 Phase 1/2

AVB-S6-500 (batiraxcept) Advanced Urothelial Carcinoma Avelumab NCT04004442 Phase 1

Advanced Pancreatic Adenocarcinoma Nab paclitaxel/ Gemcitabine NCT04983407 Phase 1/2

Platinum-Resistant Recurrent Ovarian 
Cancer (OC)

Paclitaxel/ Pegylated liposomal doxoru-
bicin

NCT03639246 Phase 1

Platinum-Resistant Recurrent OC Paclitaxel NCT04729608 Phase 3

Platinum-Resistant or Recurrent Ovarian, Fal-
lopian Tube, or Primary Peritoneal Cancer

Durvalumab NCT04019288 Phase 1/2

Advanced or Metastatic Clear Cell Renal 
Cell Carcinoma (ccRCC)

Cabozantinib/ Nivolumab NCT04300140 Phase 1/2

ONO-7475 Acute Leukemias Venetoclax NCT03176277 Phase 1/2

Merestinib (LY2801653) Relapsed or Refractory AML LY2874455 NCT03125239 Phase 1

Advanced or Metastatic Cancer Cisplatin/ Gemcitabine NCT03027284 Phase 1

Advanced Refractory Solid Tumors LY3300054 NCT02791334 Phase 1

Advanced Cancers Ramucirumab (LY3009806) NCT02745769 Phase 1

Advanced or Metastatic Biliary Tract Cancer cisplatin and gemcitabine NCT02711553 Phase 2

Sitravatinib (MGCD516) Recurrent/Metastatic Cervical Cancer After 
Platinum-Based Chemotherapy

Tislelizumab NCT05614453 Phase 2

hepatocellular carcinoma (HCC) at high risk 
of recurrence after curative resection

Tislelizumab NCT05407519 Phase 2

HCC at high risk of recurrence after cura-
tive resection

Tislelizumab NCT05564338 Phase 3

ccRCC Nivolumab NCT03680521 Phase 2

Recurrent Endometrial Cancer and Other 
Solid Tumors with Deficient Mismatch 
Repair System

Pembrolizumab NCT05419817 Phase 2

Advanced Non-Squamous NSCLC Nivolumab NCT03906071 Phase 3

Metastatic or Advanced ccRCC Nivolumab NCT04904302 Phase 2

Advanced Treatment-Naïve PD-L1 + Non-
Squamous NSCLC

Pembrolizumab NCT04925986 Phase 2

Advanced, Unresectable NSCLC Tislelizumab NCT05176925 Phase 2

Extensive stage small cell lung cancer Tislelizumab NCT05228496 Phase 2

Advanced or Metastatic NSCLC Tislelizumab NCT04921358 Phase 3

Unresectable or Metastatic Melanoma Tislelizumab NCT05104801 Phase 2

Esophageal Squamous Cell Carcinoma Tislelizumab NCT05461794 Phase 2

Recurrent or Metastatic TNBC Tislelizumab NCT04734262 Phase 2

Metastatic Uveal Melanoma with Liver 
Metastases

Tislelizumab NCT05542342 Phase 2

NSCLC Nivolumab NCT02954991 Phase 2
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pathway which up-regulates the transcription level of 
c-MYC and promotes resistance of esophageal ade-
nocarcinoma to epirubicin [102]. Furthermore, AXL 
can mediate the resistance of head and neck cancer to 
cetuximab through two mechanisms: (1) Activation of 
HER3 via up-regulation of HER3 ligand neuromodulator 
1 (NRG1) [103]; and (2) Activation of c-ABL kinase via 
Tyr821 of AXL [104].

Targeting AXL to surmount drug resistance 
in cancer therapy
There is ample evidence supporting the important role 
of AXL in drug resistance across various types of can-
cers. Therefore, targeting AXL is a promising strategy 
for addressing drug resistance. Drugs that inhibit AXL 
can be grouped based on their mechanisms of action, 
including small molecule selective inhibitors (such as 
BGB324 and TP-0903), antibody–drug conjugates (such 
as BA3011), anti-AXL Fc fusion protein AVB-S6-500, and 
multitargeted inhibitors (such as ONO-7475, Merestinib 
and Sitravatinib) [105]. Experimental data from both 
in vivo and in vitro studies suggest that carboplatin/pacli-
taxel combined with AVB-S6-500 is more effective than 
chemotherapy alone [59]. Additionally, the combination 
of nivolumab and BGB324 prolongs the survival period 
of mice with GBM [23], and the combination of TP0903 
and WEE1 inhibitor can overcome the resistance of 
SCLC to WEE1 inhibitor [63]. Table 2 listed AXL inhibi-
tors that have entered clinical trials, some of which may 
help to overcome drug resistance and enhance treatment 
sensitivity when combined with other therapies.

In addition to the AXL-targeted drugs mentioned 
above, many monoclonal antibodies specific to AXL 
have been shown to inhibit the growth of cancer cells, 
including YW327.6S2, 20G7-D9, Mab173 and DAXL-
88 [106]. However, most of these drugs are still in pre-
clinical trial stage and there is no available data regarding 
the efficacy [106]. Anti-AXL chimeric antigen receptor 
(CAR)-T-cell therapy is a new precise targeted immuno-
therapy for cancer, which is currently under clinical trials 

(NCT05128786 and NCT03393936). Due to its signifi-
cant effect on AXL-positive osteomyeloid leukemia cells 
and TNBC cell models [107, 108], it could be a promising 
regime for cancer treatment. Another strategy targeting 
AXL is nucleic acid aptamers, a short stretch of nucleo-
tide that can bind to specific target molecules with high 
affinity, low toxicity and are easy to synthesize [109]. 
The aptamer GL21.T fulfils these criteria, preliminary 
data show it binds AXL with high affinity, blocks AXL-
dependent signal transduction pathway, and inhibits 
tumor migration and invasion [110]. However, more evi-
dence is needed to support the application of these drugs 
in cancer treatment.

Discussion and future perspectives
Drug resistance remains a significant challenge in can-
cer treatment, but recent studies suggest that AXL may 
be a promising target to address this issue. In addition 
to GAS6-dependent activation, AXL can be activated by 
interacting with various partners, such as PROS1 and 
EGFR, which are overexpressed in many cancers, particu-
larly those that are drug-resistant. Because AXL plays a 
role in cancer resistance through multiple mechanisms, 
AXL-target drugs could be an effective strategy to alle-
viate drug resistance by inhibiting EMT transformation, 
interfering with DNA damage and DDR, inhibiting anti-
tumor immune microenvironment, attenuating reactiva-
tion of oncogenic bypass, metabolic disorder and so on. 
Numerous ongoing clinical trials are targeting AXL alone 
or in combination with other drugs, demonstrating sig-
nificant clinical therapeutic effect. However, several issues 
need to be considered when using combination therapy 
with AXL inhibitors. AXL activity is potent and extensive 
in many biological processes, and the side effects resulting 
from AXL targeting treatment should be carefully evalu-
ated in clinical application. Since combination therapy 
does not always generate curative effect, it may inhibit 
immunity and metabolic remodeling at some point, and 
this needs to be further clarified to provide clear guidance 
for combined immunosuppressive therapy.

Table 2 (continued)

Drug Cancer Combination with Clinical Trial No Phase

Urothelial Carcinoma Nivolumab/ Pembrolizumab/ Enfortumab 
vedotin

NCT03606174 Phase 2

Advanced Solid Tumors Tislelizumab NCT03666143 Phase 1

Advanced or Metastatic HCC or Gastric/
Gastroesophageal Junction Cancer (GC/
GEJC)

Tislelizumab NCT03941873 Phase 1/2
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With the development of nanomedicine, the drug 
delivery system based on nanocarriers (NDDS) shows 
a good application prospect in cancer treatment [111]. 
NDDS can not only improve the solubility of chemo-
therapy drugs and deliver higher doses of drugs, but also 
reduce the toxicity of systemic chemotherapy to normal 
tissues [112, 113]. Based on this, the use of nanocarriers 
to deliver AXL inhibitors may be an effective strategy to 
reduce their toxic side effects and enhance their efficacy. 
However, there are still many challenges that need to 
be addressed before nanotechnology can achieve wide-
spread clinical application.

In short, targeting AXL is a promising new strategy to 
delay or even eliminate the development of drug resist-
ance due to its extensive biological effects and functional 
diversity. As AXL-targeted drug improve and the under-
lying mechanism of AXL-drug resistance is better under-
stood, AXL inhibition is expected to provide promising 
strategies for the treatment of cancer patients.
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