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Abstract 

Colorectal cancer liver metastasis (CRLM) is one of the leading causes of death among patients with colorectal 
cancer (CRC). Although immunotherapy has demonstrated encouraging outcomes in CRC, its benefits are minimal 
in CRLM. The complex immune landscape of the hepatic tumour microenvironment is essential for the develop-
ment of a premetastatic niche and for the colonisation and metastasis of CRC cells; thus, an in-depth understanding 
of these mechanisms can provide effective immunotherapeutic targets for CRLM. This review summarises recent 
studies on the immune landscape of the tumour microenvironment of CRLM and highlights therapeutic prospects 
for targeting the suppressive immune microenvironment of CRLM.
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Introduction
Colorectal cancer (CRC) is the third most common can-
cer and the second leading cause of cancer-related mor-
tality worldwide [1]. Although colonoscopy screening has 
become popularised, the morbidity and mortality of CRC 
remain high among men [2]. Early-stage CRC is eligible 
for curative treatment [3]; however, 25–50% of patients 
with early-stage disease progress to metastatic disease 
[4]. The liver is the most frequent site of metastasis in 
patients with CRC [5]. Blood draining from the gastro-
intestinal tract enters the liver through the portal vein, 
which promotes the dissemination of CRC into the liver 
[6, 7]. Approximately 15–25% of patients with CRC have 
synchronous liver metastasis (LM) [8, 9], and 18–25% of 
patients with CRC may eventually develop metachronous 
LM within 5 years of the initial diagnosis [10]. The 5-year 
survival rate dramatically declines when the local disease 
develops into metastasis [11, 12]. Therefore, LM has been 
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used as a prognostic marker for CRC. Despite the devel-
opment of surgical techniques and targeted therapy, the 
prognosis of colorectal liver metastasis (CRLM) remains 
poor [13].

The tumour microenvironment (TME) is composed of 
cancerous and noncancerous cells, including fibroblasts, 
endothelial cells and immune cells, as well as noncellu-
lar components such as the extracellular matrix (ECM), 
cytokines, growth factors and extracellular vesicles (EVs) 
[14, 15]. The immune landscape of the TME is intrinsi-
cally correlated with the progression and metastasis of 
cancer [16, 17]. Immunosuppressive cells mediate sup-
pressive immune activities against effector lymphocytes, 
thus leading to the formation of an immunosuppressive 
TME [18–20]. To adapt to various antigens from the gut, 
the liver performs unique immunoregulatory functions, 
which are mainly determined by antigen-presenting cells 
(APCs) with tolerogenic capabilities to maintain immune 
system homeostasis [21–23]. In addition, resident cells 
in the liver play a critical role in the invasion of CRC by 
interacting with metastatic CRC cells. The TME of LM 
has a highly immunosuppressive phenotype, which is 
indicated by the loss of antigen-specific  CD8+ T cells; 
thus, this TME promotes the invasive and metastatic 
capabilities of primary cancer cells [24, 25]. Due to the 
fact that the immune landscape of the TME is associated 
with the response to immunotherapy, a better under-
standing of the immune landscape of the TME in CRLM 
may help to manage patients with LM.

In this review, we described the pathogenetic develop-
ment of CRLM and the immune landscape of the TME 
in CRLM and discussed various therapies for CRLM. 
In addition, we highlighted possible approaches for tar-
geting the immune microenvironment to open new 
immune–oncology avenues that will promote future 
research.

Liver metastasis from colorectal cancer
Hepatotropism of cancer metastasis
Upon encountering a unique organ microenvironment, 
disseminated cancer cells exhibit site-specific tropism to 
help themselves adapt and survive [26, 27], which is also 
described as possessing a high affinity for certain organs. 
After its implantation into compatible ‘soil’, the ‘seed’ can 
easily colonise and grow. Numerous studies have demon-
strated the mechanisms that drive the metastasis of pri-
mary cancer to specific organs in a manner that cannot 
be solely explained by circulatory patterns [28–36]. Solid 
malignancies exhibit unique and recurrent organ tro-
pism to specific secondary sites, including the liver, lung, 
bones and pleura [37].

As an immunological organ and central metabolic 
organ, the liver is a highly metastasis-compatible organ 

that can be colonised by multiple primary cancers, 
including CRC, pancreatic cancer, gastric cancer, lung 
cancer, breast cancer and melanoma [38–40]. The inci-
dence rate of LM has been reported to be higher than 
that of primary liver cancer [41]. Moreover, the unique 
structure and following characteristics of the liver make 
it intrinsically susceptible to bloodborne metastasis. (1) 
The dual blood supply through the hepatic portal vein 
and hepatic artery provides more chances for circulat-
ing cancer cells to invade the liver. This phenomenon 
underlies the development of most metastases from pri-
mary cancer to specific secondary organs [42, 43]. (2) The 
slow blood flow and high permeability of fenestrated liver 
sinusoidal endothelial cells (LSECs) promote the invasive 
capability of disseminated cancer cells [44, 45]. (3) The 
immune-tolerance ability of the liver shapes the immu-
nosuppressive microenvironment, which prevents dam-
age caused by overreactions to antigens entering the liver 
[21–23, 46] (Fig. 1).

The liver is the most popular site for the metastasis of 
CRC [47]. The rich and slow portal venous supply from 
the gut to the liver and the immune-tolerance ability of 
the liver can partly explain the frequency of CRLM [38]. 
The right side (especially the hepatic flexure of the colon) 
is adjacent to the liver, which can cause the direct spread 
of CRC into the liver [48]. Additionally, the expression of 
chemokines on CRC cells is responsible for liver-specific 
metastasis [49]. The high expression of CXCL12 in the 
liver delivers specific homing signals for CRC cells that 
have a high expression of CXCR4 receptors, thus con-
tributing to liver-specific metastasis in CRC [50]. Fur-
thermore, the CCR6–CCL20 signalling pathway between 
CRC and the liver is independently implicated in the 
occurrence of CRLM [51]. Altogether, the liver repre-
sents a fertile ‘soil’ for circulating CRC cells (‘seeds’) to 
spread and grow.

Pathogenetic development of CRLM
The pathogenetic development of CRLM is mainly 
divided into four overlapping phases [47, 52, 53]. (1) 
Microvascular phase: Liver-infiltrating CRC cells that 
are trapped in sinusoidal vessels are killed via phago-
cytosis by Kupffer cells (KCs) and natural killer (NK) 
cell-mediated antitumour cytotoxicity [54, 55]; they 
may also remain alive by escaping cytotoxic effects and 
adhering to LSECs [53], which facilitates CRC migra-
tion into the space of Disse to avoid immune killing. (2) 
Extravasation and preangiogenic phase: CRC cells relo-
cate to the space of Disse, thus recruiting stromal cells, 
including hepatic stellate cells (HSCs) that are responsi-
ble for the secretion of fibronectin and collagen to form 
a framework for neovascularization [56, 57] and portal 
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tract fibroblasts, which generate IL-8 to promote inva-
sion and angiogenesis [58]. (3) Angiogenic phase: After 
LSECs are activated and co-opted to the tumour–liver 
interface, activated HSC-derived vascular endothelial 
growth factor (VEGF) induces the formation of intram-
etastatic vessels, which appear to be continuous with 
sinusoidal vessels [59]. Various immunosuppressive 
cells, such as immunosuppressive regulatory T  (Treg) 
cells, myeloid-derived suppressor cells (MDSCs) and 
macrophages, are activated to form an immunosup-
pressive microenvironment, which promotes the devel-
opment of CRLM. (4) Growth phase: CRC cells acquire 
adequate blood supply and proliferate rapidly under the 
‘protection’ of intrinsic hepatic immune tolerance and 
the immunosuppressive microenvironment, eventually 
forming a detectable metastatic tumour in clinical set-
tings [47]. Therefore, the targeting of angiogenesis and 
the transformation of the immunosuppressive micro-
environment into an immune-effective microenviron-
ment are prospective therapeutic strategies for CRLM. 
Moreover, an understanding of the immune microen-
vironment of the liver may help to develop effective 
immunotherapeutic approaches.

Immune landscape of the TME in CRLM
The homeostasis maintained by organ innate resistance 
in the liver is attributed to various highly specialised 
resident cells and all types of immune cells [21, 60–62]. 
Each of these cells not only helps to balance protein, lipid 
and glucose metabolism but also orchestrates immune 
responses and oncogenesis [63–68]. The considerable 
inflow of antigens shapes the unique immune microenvi-
ronment of the liver to harmonise immune activation and 
immune tolerance [69, 70]. In the early stage of CRLM, 
the abovementioned cells act as defenders to destroy dis-
seminated cancer cells. Specifically, LSECs arrest cancer 
cells, whereas KCs phagocytose and release tumour-kill-
ing cytokines. Additionally, APCs present antigens to 
T cells and transform them to effector T cells, which is 
strengthened by  CD4+ T cells. Cytokines released from 
natural killer T (NKT) cells and M1 macrophages protect 
against cancer cells. However, when cancer cells escape 
the immune system, effector T cells are rendered dys-
functional by immune checkpoints, whereas cancer cells 
migrate into the space of Disse by adhering to LSECs. 
Treg cells impair the antigen-presenting activity of den-
dritic cells (DCs). Moreover, HSCs are activated to pro-
mote ECM remodelling, and M2 macrophages produce 

Fig. 1 Hepatotropism of cancer metastasis to liver
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MMPs to regulate this process. Tumour-associated neu-
trophils (TANs) extrude chromatin fibres and form neu-
trophil extracellular traps (NETs), which trap CRC cells 
in the liver and eventually promote their invasive and 
metastatic capabilities. Furthermore, CRC cells adhere 
to hepatocytes and induce the release of serum amyloid 
A1 and A2 (SAA) and insulin-like growth factor-I (IGF-
I) from hepatocytes, thereby making the liver a primary 
target for CRC metastasis (Fig. 2).

Interaction of resident liver cells with cancer cells
Liver sinusoidal endothelial cells
LSECs perform important physiological and immuno-
logical functions, including filtration, endocytosis and 
antigen presentation [71–73]. As a selective barrier, 
LSECs allow for the entry of molecules such as plasma 
proteins, drugs, small chylomicron remnants, exosomes 
and smaller viruses (< 200  nm) into the space of Disse; 
however, they do not allow the entry of cells [74–76]. The 
mannose receptor, scavenger receptor and Fc-γ receptor 
IIb2 efficiently facilitate the clearance and degradation 
of blood-borne macromolecules by LSECs to perform 
endocytosis and scavenging functions [77, 78]. Addition-
ally, LSECs exert antigen-presenting functions mediated 
by the mannose receptor and scavenger receptor, which 
mainly reshape the immunosuppressive microenviron-
ment in the liver. However, LSECs can dampen effector 
immune responses. Specifically,, antigen presentation 
by LSECs mainly induces the differentiation of  CD4+ 
T cells into  Treg cells to promote the development of an 
immune-tolerant TME in the liver [44, 79]. In contrast, 
LSECs mainly drive a tolerogenic response mediated by 
an increase in the levels of coinhibitory PD-L1 that inter-
acts with PD-1 to induce  CD8+ T-cell dysfunction [80].

LSECs play a dual role in advancing tumorigenesis. 
When disseminated CRC cells enter the sinusoids, they 
are entrapped by LSECs and are either destroyed due 
to mechanical stress, phagocytosed by KCs or killed by 
perforin (PRF)/granzyme (GZM) from NK cells. LSECs 
and NK cells release interferon-gamma (IFNγ) and nitric 
oxide (NO) to upregulate Fas and induce apoptosis of 
cancer cells via the Fas–FasL pathway [81]. Recent stud-
ies have highlighted the fact that LSECs are influenced by 
gut microbiota-modified bile acids to secrete CXCL16, 
which recruits NKT cells to fight primary and metastatic 
liver tumours [82]. However, the anticancer proinflam-
matory response results in the high expression of vas-
cular adhesion factors such as E-selectin, VCAM-1 and 
ICAM-1 on LSECs, thus leading to the susceptibility of 
LSECs to adhesion by cancer cells with the help of sia-
lyl Lewis-x, PSGL-1 and ESL-1 [83–85]. Cancer cells can 
escape from the destruction of the initial assault through 
counterreceptor communication, after which they 

migrate into the space of Disse, where they are protected 
from the cytotoxic effects of KCs and NK cells [86]. A 
novel adhesion molecule known as LSECtin mediates the 
communication between activated T cells and LSECs [87, 
88] to inhibit the tumour-killing effects of T cells; in addi-
tion, it facilitates adhesion and migration of CRC cells 
to the liver [89]. In multiple experimental LM models, 
melittin nanoparticles have been demonstrated to induce 
the activation of LSECs to reverse the hepatic immuno-
logical environment to the activated state, which recruits 
NK and  CD8+ T cells and suppresses LM [90].

Due to the fact that LSECs induce a suppressive 
immune microenvironment in the liver and assist in the 
growth of disseminated cancer cells, the targeting of 
LSECs to modulate the hepatic immune microenviron-
ment may be a novel approach to the management of 
LM in the future. For example, the abundance of ben-
eficial gut organisms that optimise the metabolism and 
immunity of the liver can be enhanced by modulating the 
action of LSECs for the effective treatment of CRLM.

Kupffer cells
KCs, which are the resident macrophages in the liver, 
serve as a crucial part of the innate immune response, 
which is the first line of defence of the liver [91]. Local-
ised in the hepatic sinusoid, KCs can recognise all types 
of antigens (such as immune complexes, senescent cells 
and cancer cells) from the portal or arterial circulation 
and exert anti-inflammatory effects to prevent the entry 
of gut-derived substances into the hepatic sinusoid [92, 
93]. In the early stage of CRLM, the adherence of dis-
seminated cancer cells to KCs prompts KCs to capture 
and phagocytose the cancer cells and release TNF-α, 
interleukin-1α (IL-1α) and IL-1β, thus reducing the 
metastasis of colon cancer cells to the liver [94, 95]. The 
innate receptor Dectin-2 on KCs promotes the phagocy-
tosis and elimination of disseminated CRC cells to resist 
metastasis [96].

Although KCs mainly play a tumoricidal role in the 
early stages of metastasis, they also play a vital role in 
hepatic carcinogenesis [97]. KCs activate and expand 
 FOXP3+CD4+  Treg cells through antigen presenta-
tion and induce tolerance by upregulating the inhibi-
tory marker PD-L1, thereby resulting in the formation 
of an immune-tolerant environment to achieve homeo-
stasis [23]. Moreover, HSCs are activated and produce 
fibronectin induced by KC-derived TGF-β, thus recruit-
ing bone marrow-derived macrophages and neutrophils 
to form a favourable environment [53]. The corelease 
of TGF-β, fibronectin, EGF, VEGF and matrix metal-
loproteinases (MMP-2, MMP-9 and MMP-13) from 
KCs and HSCs leads to ECM remodelling, angiogen-
esis and cancer progression [98], which is augmented 
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Fig. 2 A schematic representation of the immune landscape of the TME in CRLM. GZM, granzyme; PRF, perforin; CTL, cytotoxic T lymphocyte; 
BA, bile acid; ex  CD8+ T cell, exhausted  CD8+ T cell; NET, neutrophil extracellular trap; CCRK, cell cycle-related kinase; sLewis-x, sialyl Lewis-x; 
CTLA-4, cytotoxic T lymphocyte antigen-4; SAA, serum amyloid A1 and A2; IGF-I, insulin-like growth factor-I. ① LSECs and NK cells produce IFNγ 
to upregulate functional Fas and induce apoptosis of cancer cells; PRF and GZM released from NK cells kill cancer cells. ② Disseminated CRC cells 
are phagocytosed by KCs along with the release of TNF-α, IL-1α and IL-1β. ③ APCs present neoantigens to  CD8+ T cells, thus inducing the rapid 
proliferation of  CD8+ T cells and their differentiation into CTLs. ④ CTLs secrete PRF and GZM, as assisted by IFNγ and TNF-α produced by Th1 cells 
to kill cancer cells. ⑤ LSECs are regulated by gut microbiota-modified bile acids to secret CXCL16, thus recruiting NKT cells to fight cancer cells. 
⑥ M1 macrophages directly kill cancer cells by releasing cytotoxic ROS, NO and IL-12. ⑦ The function of cytotoxic  CD8+ T cells is impeded due 
to the interplay between PD-L1 and PD-1. ⑧ The interaction between E-selectin and sialyl Lewis-x promotes the adhesion of CRC cells to LSECs. 
⑨ Treg cells bind to APCs via the interaction between CTLA-4 and CD80/86 and produce TGF-β and IL-10 to suppress the activation of CTLs. ⑩ 
MDSCs, which are recruited by CXCL1 secreted from CRC cells, induce the activation of  Treg cells to impair the antigen-presenting activity of DC 
cells. ⑪ M2 macrophages produce IL-10, TGF-β and MMP to regulate matrix remodelling. ⑫ As induced by TGF-β secreted from KCs, HSCs are 
transformed to aHSCs and release TGF-β to promote ECM remodelling. ⑬ Lactic acid causes NK cell apoptosis by downregulating their intracellular 
pH. ⑭ TANs release CCL2 and CCL17 to recruit  CCR2+ M2 macrophages and  CCR4+ Treg cells. ⑮ As induced by IL-8, NETs trap CRC cells in the liver. 
⑯ Hepatocyte-derived CCRK increases CXCL1 production to recruit PMN-MDSCs, thereby impairing NKT cell-mediated immunosurveillance. ⑰ As 
mediated by integrins and desmosomes, CRC cells adhere to hepatocytes, thus inducing the release of SAA and IGF-I from hepatocytes
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by the absorption of pancreatic ductal adenocarcinoma 
(PDAC)-derived exosomes by KCs in a PDAC model 
[99]. However, CRC-derived exosomal angiopoietin-
like protein 1 (ANGPTL1) shuttles to KCs to decrease 
the expression of MMP-9, which subsequently reduces 
LM and inhibits vascular leakage mediated via the sup-
pression of the JAK2-STAT3 signalling pathway [100]. 
In addition, KCs can phagocytose EV-packaged miR-
135a-5p, thus mediating immunosuppression and facili-
tating the development of a premetastatic niche (PMN) 
in patients with CRLM [101].

It has been reported that a novel immunotherapy strat-
egy by using bacterial genetic modification induces the 
reprogramming of KCs, which augments the phagocytic 
ability of cancer cells and strengthens the cytotoxic kill-
ing capacity of T cells to suppress LM [102]. An under-
standing of the functional role of KCs in CRLM may help 
to identify potential therapeutic targets and to develop 
novel therapeutic strategies, such as nanoparticle-medi-
ated noncoding RNA-based therapy and bacterial treat-
ment to reprogram the function of KCs. However, further 
research is required to identify the underlying mecha-
nism and potential for application.

Hepatic stellate cells
As a resident nonparenchymal liver cell population, 
HSCs contribute to liver fibrosis and cancer develop-
ment [67, 103]. HSCs maintain homeostasis in the liver 
by regulating the ECM, immune tolerance and inflamma-
tory responses; additionally, they play a significant role in 
the colonisation and metastasis of cancer cells [104–106].

TGF-β is an important regulator of HSCs in the 
hepatic microenvironment. Its high expression blocks 
the initiation of  CD4+ Th1 cells and weakens cytotoxic 
responses, thus facilitating LM and leading to a poor 
prognosis [107, 108]. TGF-β can induce the transfor-
mation of HSCs into a fibroblast-like (spindle-like and 
spread) phenotype (known as activated HSCs [aHSCs]) 
to promote ECM remodelling [98]. In addition, aHSCs 
play a vital role in secondary or primary hepatocellular 
carcinoma [109–111]. aHSCs can lead to hepatic fibrosis 
and portal hypertension, thus contributing to hepatocar-
cinogenesis and metastasis [109]. In a previous study, we 
demonstrated that CRC-derived exosomal miR-181a-5p 
facilitates CRLM by activating HSCs [112]. In addition, 
aHSCs engulf disease-associated lymphocytes, includ-
ing  CD8+ T,  CD4+ T and NK cells, through cell adhesion 
[113]. As key cells involved in pro-tumour angiogenesis, 
HSCs have been demonstrated to upregulate fibroblast 
activation protein alpha (FAPα) and increase CXCL5 
secretion, as regulated by cancer cell-secreted fibroblast 
growth factor-binding protein 1 (FGFBP1). This mecha-
nism stimulates epithelial–mesenchymal transition 

(EMT) and induces vessel co-option that results in beva-
cizumab resistance in CRLM models [114]. Therefore, 
HSCs play an important role in shaping the immune 
microenvironment of the liver and in inducing resistance 
to antiangiogenic therapy. The targeting of HSCs express-
ing specific molecules (such as FAPα) to modulate the 
immune microenvironment of CRLM represents a ben-
eficial strategy for strengthening the antitumour effects 
of immune cells and for effectively overcoming drug 
resistance.

Hepatocytes
Hepatocytes play an essential role in inducing an 
immune-tolerant TME, which is required for the implan-
tation of disseminated cancer cells. Hepatocyte-medi-
ated cross-presentation of soluble antigens can induce 
tolerance of antigen-specific  CD8+ T cells [115]. After 
extravasation, disseminated CRC cells can deeply pen-
etrate into the hepatocyte plate, where they proliferate 
and form metastatic foci. The adhesion of CRC cells to 
hepatocytes is considered an essential step in the forma-
tion of LM [116], which is mediated by integrins [116] or 
desmosomes [117]. The strongly expressed integrin sub-
unit αvβ5 mediates cell migration and LM in CRC, and 
its effects are enhanced by hepatocyte-derived heregulin 
[118]. Hepatocyte-derived SAA can facilitate the devel-
opment of LM and is highly expressed in patients with 
CRC. Mechanistically, hepatocytes promote LM by acti-
vating IL-6–STAT3 signalling and inducing SAA overex-
pression, thereby reshaping the hepatic TME to facilitate 
the formation of a PMN in the liver [119]. Moreover, 
IGF-I can affect cancer growth and metastasis. The inhi-
bition of IGF-1 released from hepatocytes reduces 
CRLM in mice [120]. A novel IGF-targeting protein (IGF-
Trap) has been demonstrated to markedly block CRLM 
in experimental models to compensate for the function 
of the impaired insulin receptor system, thus inducing 
tumour cell apoptosis and reducing angiogenesis [121].

Altogether, the interplay between resident liver cells 
and cancer cells contributes to the progression and 
spread of CRC (Table  1). A better understanding of the 
communication between CRC cells and the hepatic TME 
may facilitate the development of new combination ther-
apies for the efficient management of CRLM.

Immune cells contributing to the hepatic immune 
microenvironment of CRLM
CD4+ T cells
CD4+ T cells are essential in the defence against tumours 
because they regulate the activity of  CD8+ T cells and 
influence the outcome of antitumour responses [122]. 
The classical effector  CD4+ T helper 1 (Th1) and T helper 
2 (Th2) subsets elicit important antitumour immune 
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responses. Specifically, Th1 cells produce cytokines such 
as IFNγ and TNF-α, thus leading to cell-mediated kill-
ing, whereas Th2 cells secrete IL-4, which assists in the 
activation of humoral immunity [123]. In addition,  CD4+ 
T cells can differentiate into new subsets, such as Th9 
cells, Th17 cells and  FOXP3+  Treg cells. Moreover, the 
role of Th17 cells in cancer is controversial [124, 125]. 
The low proportion of Th1 cells and high proportion of 
Th17 cells in liver metastatic tissue indicate a poor prog-
nosis in patients with CRLM [126], which is consistent 
with the condition of patients with CRC [127]. Given the 
immunosuppressive activity of  CD4+ T cells, we mainly 
focused on  FOXP3+CD4+  Treg cells in this review.

One of the characteristics of LM progression is the 
high infiltration of  FOXP3+  Treg cells [128]. The expres-
sion of PD-1 on  Treg cells is higher in highly glycolytic 
LM tissue than in primary cancer tissue; however, it is 
lower in  CD8+ T cells, which contributes to resistance to 
anti-PD-1 treatment [129]. The enrichment of  Treg cells 
in the TME is responsible for cancer immune evasion 
[130], which can partly explain the worse prognosis of 
CRLM. The immunosuppressive mechanism of action of 
 Treg cells occurs in the following way. (1) Interaction with 
APCs: Compared with CD28 expressed by naïve T cells, 
cytotoxic T lymphocyte antigen-4 (CTLA-4) expressed 
by activated Treg cells has a higher affinity for CD80/86 

found on APCs [131, 132]. (2) The use of immune-sup-
pressive metabolites:  Treg cells metabolise ATP to aden-
osine through CD39 and CD73, and the adenosine–A2A 
receptor  (A2AR) interaction inhibits effector T cells [133]. 
(3) Involvement of cytokines:  Treg cells produce high 
amounts of CD25 by using IL-2, thus leading to the avail-
ability of a low level of IL-2 for activating effector T cells. 
Additionally, the high levels of TGF-β, IL-10 and IL-35 
released from  Treg cells inhibit the activation of effector 
T cells [134–136]. Moreover, TGF-β mediates EMT to 
promote the metastasis of disseminated CRC cells [137, 
138]. Therefore, the elimination of the suppressive TME 
induced by  Treg cells may be a beneficial approach to 
reviving effector antitumour responses.

CD8+ T cells
CD8+ T cells contribute to the clearance of intracel-
lular pathogens and malignant cells and support long-
term protective immunity [139, 140]. Based on distinct 
immune profiles,  CD8+ T cells can be classified as 
exhausted (ex)  CD8+ T cells, effector  CD8+ T cells (which 
are also known as cytotoxic T lymphocytes [CTLs]) and 
memory  CD8+ T cells [141].  CD8+ T cells serve as a use-
ful marker to predict prognosis and therapeutic efficacy 
in cancer [142].

Table 1 Interaction between resident liver cells and cancer cells

MHC I Major histocompatibility complex class I, MHC II Major histocompatibility complex class II, SAA Serum amyloid A1 and A2,  IGF-1 Insulin-like growth factor-I

Resident cells Interacting molecule(s) Major effects

LSECs Mannose receptor and scavenger receptor Internalise, process and transfer antigens through MHC I and MHC II to T 
cells

PD-L1–PD-1 Induce  CD8+ T-cell tolerance to trigger immune escape of cancer cells

IFNγ, NO and Fas–FasL Induce apoptosis of cancer cells

CXCL16 Recruit NKT cells to fight cancer cells

E-selectin, VCAM-1, ICAM-1, sialyl Lewis-x, PSGL-1 and ESL-1 Facilitate the adherence of cancer cells to LSECs and their migration 
into the space of Disse to protect them from elimination

LSECtin Suppress T-cell immune responses and promote the adhesion 
and metastasis of CRC to the liver

KCs TNF-α, IL-1α and IL-1β Phagocytose and eliminate disseminated cancer cells

MHC II and PD-L1–PD-1 Expand  Treg cells to induce an immune-tolerant environment

TGF-β, fibronectin, EGF, VEGF, MMP-2, MMP-9 and MMP-13 Lead to ECM remodelling, angiogenesis and cancer progression

Exosomal miR-135a-5p Mediate immunosuppression and facilitate the formation of a pre-
metastatic niche

HSCs TGF-β, fibronectin, EGF, VEGF, MMP-2, MMP-9, and MMP-13 Lead to ECM remodelling, angiogenesis and cancer progression

TGF-β Promote ECM remodelling

Exosomal miR-181a-5p Facilitate CRLM by activating HSCs

Hepatocytes Integrins or desmosomes Mediate the adhesion of CRC cells to hepatocytes

Integrins and heregulin Boost the migration and LM of CRC 

SAA Reshape the hepatic immune and fibrogenic microenvironment to pro-
mote LM

IGF-1 Promote cancer growth and metastasis
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Upon encountering cancer cells,  CD8+ T cells are acti-
vated by TCR-recognised antigens and rapidly prolifer-
ate and differentiate into CTLs to eliminate cancer cells 
through cell-to-cell contact. After CTLs are conjugated 
to target cancer cells, they secrete cytotoxic granules and 
release a cargo of deadly proteins, including PRF, GZM 
and granulysin, to kill the target cells [143]. A high pro-
portion of CTLs contributes to improved outcomes in 
CRC [144]. However, to maintain hepatic immune toler-
ance, effector T cells are induced to undergo anergy, dif-
ferentiation or apoptosis [145, 146].

CTLs undergoing persistent exposure to cancer anti-
gen signals will gradually lead to the transformation of 
 CD8+ T cells to a dysfunctional state, which are known 
as ex  CD8+ T cells [147]. Moreover, ex  CD8+ T cells 
secrete fewer effective cytokines, including TNF-α, IL-2 
and IFNγ [148], thus resulting in failure to induce effi-
cient adaptive tumour-killing effects on disseminated 
CRC cells. A key hallmark of exhaustion is the high 
level of inhibitory cell surface receptors, including PD-1 
and CTLA-4 [149, 150].  CTLA4+CD8+ T cells are rela-
tively enriched in primary CRC and LM tissues [151]. 
Additionally, the high proportion of immunosuppres-
sive regulatory cells in LM, including M2 macrophages, 
neutrophils and  Treg cells [151], directly or indirectly pro-
motes  CD8+ T-cell exhaustion [149] (Fig. 3A).

It has been reported that  CD8+ T cells mediate differ-
entiation into  Tim3+PD1+CD8+ T cells by glucocorticoid 
(GC) signalling in an MC38 colon carcinoma model [152] 
(Fig.  3B). The progressive upregulation of GC receptor 
signalling from naïve  CD8+ T cells to ex  CD8+ T cells 
communicates with monocyte–macrophage lineage 
cells, which impairs the production of immune-effective 
cytokines, including IL-2, TNF-α and IFN-γ, and pro-
motes the high expression of immunosuppressive check-
points (such as Tim-3, PD-1 and Lag-3) in CTLs, thus 
shaping an immunosuppressive TME [152]. Moreover, 
exosomal circCCAR1 expressed by cancer cells commu-
nicates with  CD8+ T cells to impede the degradation of 
PD1, thus promoting the exhaustion of  CD8+ T cells in 
the liver [153]. In addition, the high expression of MGP 
in cancer cells from both the primary CRC or LM sites 
increases intracellular  Ca2+ to boost NF-κB phosphoryla-
tion, which mediates PD-L1 upregulation in CRC cells, 
thus promoting  CD8+ T-cell dysfunction [154]. Further-
more, the induction of T cells to differentiate into regula-
tory cells is mediated by IL-10 release from LSECs, which 
are prone to activating the regulatory pathway of  CD4+ T 
cells to  FOXP3+CD4+  Treg cells [145].

Recent studies on the apoptosis of  CD8+ T cells have 
demonstrated that tumour-associated macrophages 
(TAMs) induce apoptosis of  CD8+ T cells and impair 
cytotoxic functions by reducing the expression of 

granzyme B and perforin in the liver [155]. The mecha-
nism for this effect involves the fact that activated  CD8+ 
T cells experience apoptotic cell death by the Fas–FasL 
pathway, as mediated by TAMs within the liver, which 
induces a decrease in activated T cells and transforms 
the hepatic immune microenvironment in CRLM [25] 
(Fig. 3C).

Given that cancer-reactive CTLs play a central role in 
cancer immunity, it is important to reactivate  CD8+ T 
cells to suppress the progression and metastasis of CRC. 
It has been reported that hyper-IL-15, IL-15 and the 
sushi domain of the IL-15 receptor α chain augment the 
cytotoxic functions of  CD8+ T and NK cells, which may 
be a prospective therapy to reactivate  CD8+ T cells and 
recover their anticancer ability to manage CRLM [156].

Tumour‑associated macrophages
As multifunctional APCs, macrophages are critical medi-
ators of tumour immunity [157]. Macrophages present 
exogenous antigens to T cells through MHC-I and MHC-
II aided by costimulatory signals, inhibitory signals or 
other cytokine signals to regulate T-cell activation [158]. 
Macrophages that infiltrate malignant tissues are known 
as TAMs.

With inherent plasticity and polarising characteristics, 
TAMs are conventionally categorised into two subtypes: 
M1 and M2 macrophages [159, 160]. M1 macrophages 
suppress cancer growth by releasing cytotoxic reac-
tive oxygen species (ROS), NO and IL-12, which can 
directly kill cancer cells [161]. However, M2 macrophages 
induce the formation of an immunosuppressive TME 
by secreting cytokines, including IL-10, TGF-β, CCL17 
and CCL22 [157, 162]. Due to their poor ability to pre-
sent cancer antigens, M2 macrophages undermine Th1 
adaptive immunity [163]. In addition, M2 macrophages 
produce MMPs to regulate matrix remodelling, thus 
facilitating the invasion and metastasis of cancer [164]. 
In CRC, the expanding liver metastatic tumour is rich 
in TAMs (primarily M2 macrophages) [157, 165], which 
are recruited through the CCL2/CCR2 chemokine axis 
to form an immunosuppressive microenvironment [166], 
which is regulated by the expression of TCF4 in CRC 
cells to promote LM [167].

TAMs play an important role in CRLM. It has been 
reported that extracellular matrix glycoprotein spondin 2 
(SPON2) reshapes the cytoskeleton and activates integrin 
β1/PYK2 signalling to promote the migration of TAMs, 
which increases the infiltration of TAMs and promotes 
the metastasis of CRC [168]. Furthermore, CRC-derived 
lipids reshape the metabolism of TAMs with the help of 
CD36, thus inducing TAM M2 polarisation to drive the 
development of LM [169]. Moreover, CRC-derived exo-
somal miRNAs can induce M2 polarisation, thus driving 
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Fig. 3 The role of  CD8+ T cells in hepatic immune tolerance. To maintain homeostasis in the liver, which is exposed to an increased burden 
of harmless dietary factors and antigens, effector  CD8+ T cells are induced to undergo anergy, differentiation or apoptosis
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the EMT program, which correspondingly promotes the 
progression and metastasis of CRC [35, 170]. Addition-
ally, the metastasis-related secreted protein Collagen 
Triple Helix Repeat Containing 1 (CTHRC1) enhances 
the infiltration of M2-like macrophages to remodel an 
immunosuppressive TME in the liver [171]. Mechanisti-
cally, CRC-derived CTHRC1 interacts with the TGF-β 
receptor in macrophages to activate TGF-β signalling to 
promote CRLM.

With the development of single-cell profiling, TAMs 
have been classified as C1QC+ TAMs, SPP1+ TAMs and 
MRC1+CCL18+ TAMs [151, 165, 172]. In a previous 
study, single-cell analysis showed that MRC1+CCL18+ 
macrophages and SPP1+ macrophages are the predomi-
nant M2 cell subsets in liver metastatic tissue [151]. Con-
sistently, the presence of SPP1+ macrophages in liver 
metastatic tissue was reported in a study by Liu et  al. 
Therefore, SPP1+ macrophages may be a potential cul-
prit in CRLM. Moreover, MRC1+CCL18+ macrophages 
infiltrating liver metastatic tissue exhibit high metabolic 
activities, thus suggesting that they may promote LM 
through metabolic pathways [151]. SPP1+ macrophages 
are found in mesenteric lymph nodes with metastasis 
but not in mesenteric lymph nodes without metasta-
sis, thus indicating that SPP1+ macrophages play a role 
in facilitating the expansion of disseminated cancer cells 
[165]. Furthermore, it has been reported that in micros-
atellite-stable (MSS) CRC, SPP1+ macrophages and fibro-
blasts communicate very closely via the ligand‒receptor 
pathway, which may help to shape an immunosuppres-
sive TME in the liver [173]. However, more studies are 
required to understand the mechanisms by which differ-
ent subtypes of macrophages promote LM.

Overall, as the leading tumour-infiltrating immune 
cells in the TME [174–176], TAMs play a critical role 
in the progression and metastasis of CRC. Their high 
proportion is closely related to a worse prognosis 
[165, 177]. Specific subsets of macrophages, including 
MRC1+CCL18+ and SPP1+ macrophages, may serve as 
potential therapeutic targets for CRLM.

Myeloid‑derived suppressor cells
MDSCs are one of the key contributors to the formation 
of an immunosuppressive TME in the liver [178]. They 
mediate immune evasion by inducing the production of 
 Treg cells [179], thus inhibiting NK cell function [180] 
and impairing the antigen-presenting activity of DCs 
[181]. In addition, MDSCs facilitate cancer progression 
and metastasis in a nonimmune manner by producing 
MMP-9, which is a primary regulator of EMT [182], as 
well as VEGF, in order to promote TME remodelling and 
angiogenesis [20]. MDSCs are mainly classified as granu-
locytic or polymorphonuclear MDSCs (PMN-MDSCs) 

and monocytic MDSCs (M-MDSCs). The phenotypic 
and molecular features of these subtypes are difficult to 
identify [183]. Furthermore, the accumulation of MDSCs 
is one of the most dominant immunological features of 
CRC and is associated with disease progression and 
metastasis [184, 185].

MDSCs facilitate the formation of a PMN and the met-
astatic colonisation of CRC [186, 187]. Clinically, the high 
expression of CCL15 in patients with CRC results in the 
recruitment of more  CCR1+ MDSCs, which is associ-
ated with the loss of SMAD4 (which is a TGFβ-relevant 
transcription factor) and promotes CRLM [188, 189]. In 
an orthotopic mouse model of CRC, CXCR2-expressing 
MDSCs are recruited from the circulatory system to the 
liver by CXCL1 secreted from CRC cells in the premeta-
static liver, which facilitates the growth of disseminated 
CRC and its metastasis to the liver [187]. Mechanistically, 
sphingosine-1-phosphate receptor 1 (S1PR1)–STAT3 sig-
nalling in CRC cells results in the production of IL-6 to 
induce the activation of S1PR1 and p-STAT3 in MDSCs, 
thus leading to the formation of a PMN in the liver to 
promote CRLM [190]. Zeng et  al. reported that the 
overexpression of hepatocyte-derived cell cycle-related 
kinase (CCRK) increases CXCL1 production to recruit 
PMN-MDSCs, thereby impairing NKT cell-mediated 
immunosurveillance, which dramatically promotes the 
metastasis of CRC cells to the liver [191]. M-MDSC-pro-
duced CCL7 binds to CCR2 on micrometastatic cells and 
stimulates the JAK/STAT3 pathway to activate dormant 
cells, thereby promoting the progression of CRLM [192]. 
Moreover, the inhibition of CCL7 may represent a poten-
tial strategy for preventing recurrent CRLM.

However, it is difficult to target MDSCs because they 
do not have a specific phenotype that differs from other 
mature granulocytes. Therefore, further research is 
required to identify therapeutic targets.

Natural killer cells
Under physiological conditions, NK cells are enriched 
in the liver and contribute to defending against infec-
tion and eliminating cancer cells [69]. After NK cells 
encounter cancer cells and are activated, they release PRF 
and GZM, thus leading to osmotic lysis and apoptosis 
of cancer cells [193]. Additionally, NK cells can directly 
kill target cells via the expression of TNF-related apop-
tosis-inducing ligand and FasL [194]. NK cells function 
in tumour immunosurveillance and elicit inflammatory 
responses by producing cytokines and chemokines [195].

NK cells can eliminate disseminated cancer cells 
to control metastasis [196]. A high proportion of NK 
cells indicates a good prognosis in patients with CRLM 
[197]. However, in the highly glycolytic environment of 
CRLMs, lactic acid causes the apoptosis of NK cells by 
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downregulating their intracellular pH [198]. In addition, 
MDSCs attenuate the immunoreaction of NK cells by 
releasing NO, which interferes with FcR-mediated func-
tions of NK cells, such as antibody-dependent cellular 
cytotoxicity (ADCC) and cytokine generation [199]. In 
a previous study on murine models of CRLM, compared 
with conventional NK (cNK) cells, liver-resident natural 
killer (LrNK) cells had a high expression of RORα, which 
is required to maintain LrNK cells but has no impact 
on cNK cells. The conditional knockout of Rorα aggra-
vated CRLM, thus indicating that RORα is required for 
LrNK cell-mediated antitumour immunity. However, the 
RORα agonist SR1078 restrained CRLM [200]. Clini-
cally, LrNK cells are significantly depleted in CRLM due 
to the accumulation of tumour-derived lactate, thus 
resulting in mitochondrial dysfunction and apoptosis of 
NK cells [198]. The targeting of lactate in the TME may 
restore the tumour-killing effects of NK cells and benefit 
patients with CRLM. Altogether, LrNK cells exert a great 
antitumour impact on CRLM and are closely related to 
prognosis; therefore, they may be qualified as specific 
therapeutic targets for CRLM.

Dendritic cells
Dendritic cells are the classical APCs that exert consid-
erable influence in triggering antigen-specific immune 
responses and inducing immune tolerance [201–204]. 
The antigen-presenting function of conventional DCs 
(cDCs) is important for the antitumour response of 
effector T cells [205–207]. Efficient antigen presentation 
increases the polarisation of  CD4+ Th1 cells and the acti-
vation of  CD8+ T cells [208, 209].

DCs are heterogeneous and exhibit different char-
acteristics. Compared with plasmacytoid DCs (pDCs), 
cDCs can more efficiently initiate an immune response 
against cancer cells [210]. In ICB-treated mouse mod-
els of orthotopic pMMR CRLM, the proportion of acti-
vated  CD8+ T cells,  CD4+ T cells and cDCs is lower in 
metastatic tumours than in subcutaneous tumours [211]. 
Liver-derived pDCs have a poor capability to stimu-
late the proliferation of T cells, thus resulting in anergy 
of effector T cells and immune suppression to main-
tain inherent liver tolerogenicity [212, 213]. Moreover, 
liver-resident regulatory DCs differentiated from bone 
marrow-derived progenitors secrete high levels of IL-10 
but low levels of IL-12, thereby inhibiting effective T-cell 
function to maintain liver tolerance [214]. A subset of 
cDCs in CRLM identified as DC3s induces a proinflam-
matory phenotype and is correlated with a poor progno-
sis [165]. DC3s may be considered as a promising target 
for improving the therapeutic outcome of immunother-
apy in CRLM. Further investigations are required to elu-
cidate the mechanism by which DC3s promote CRLM.

Tumour‑associated neutrophils
Similar to TAMs, TANs play a dual role in cancer pro-
gression by both promoting and inhibiting the growth 
and metastasis of cancer [215]. Specifically, TANs facili-
tate activated T-cell immune reactions by presenting 
antigens and releasing IL-18 to induce the activation 
of NK cells [216]. In contrast, TANs release CCL2 and 
CCL17 to recruit  CCR2+ M2 macrophages and  CCR4+ 
 Treg cells, which shape a suppressive TME in the liver, 
thus promoting the progression and metastasis of cancer 
[217]. Additionally, TANs produce MMP-9 and neutro-
phil elastase to promote the extravasation of cancer cells 
and drive disseminated cancer cells to metastasise [218].

The accumulation of TANs has been demonstrated to 
be necessary for the formation of an omental PMN in 
orthotopic ovarian cancer models [219]. Ovarian can-
cer induces neutrophils to form NETs, which trap ovar-
ian cancer cells and facilitate their implantation on the 
omentum [219]. Therefore, NETs can promote the metas-
tasis of ovarian cancer. Several in vivo and in vitro stud-
ies on CRC have reported that the formation of NETs is 
enhanced by cancer-derived IL-8. These NETs can trap 
CRC cells in the liver and promote their invasive and 
metastatic capabilities [220–222]. In addition, anterior 
gradient-2 (AGR2) released from TANs can promote 
metastasis in murine models of CRLM. TAN–CRC cell 
crosstalk between TAN-derived AGR2 and CRC-derived 
TGF-β1 is considered the primary driver of CRLM [223]. 
Collectively, TAN is an effective potential target for the 
treatment of CRLM. However, further investigations are 
required to explore and develop TAN-based therapeutic 
strategies for CRLM.

In conclusion, immune cells involved in CRLM shape 
the susceptible suppressive immune microenvironment 
for tumour invasion and metastasis in CRC (Table  2). 
Immunotherapeutic strategies that can reverse the 
immunosuppressive microenvironment or strengthen 
effector immunity may be effective against CRLM.

Extracellular vesicles in the immune microenvironment 
of CRLM
EVs refer to various nanosized vesicles with membrane 
structures released by cells [224, 225]. According to their 
diameter and the mechanisms of biogenesis, they are 
classified into three subgroups (exosomes, microvesicles 
and apoptotic bodies). Exosomes have attracted substan-
tial interest and have been widely investigated in recent 
years [226]. EVs carry bioactive molecules such as nucleic 
acids, proteins and lipids for intercellular delivery and 
facilitate intercellular communication [227, 228]. They 
are an important aspect of the immune microenviron-
ment. CRC-derived EVs in the immune microenviron-
ment facilitate the relocation and aggression of CRC, 
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which contributes to LM [229–232]. In previous studies, 
we elucidated the molecular mechanisms underlying the 
involvement of EVs in the formation of a hepatic PMN 
and the metastasis of CRC, and we also identified prom-
ising functional biomarkers for CRC [35, 112, 233, 234], 
thus indicating that EVs may serve as a therapeutic tar-
get and a prognostic and diagnostic biomarker for CRLM 
(Fig. 4).

Several studies have validated the pivotal role of EVs 
in the formation of a hepatic PMN. After being phago-
cytosed by KCs, CRC-derived EV-packaged miR-135a-5p 
can inhibit CD30-induced activation of  CD4+ T cells 
and promote cell adhesion, which facilitates the devel-
opment of a PMN for CRLM [101]. In a previous study, 
we reported that EV-packaged miR-181a-5p secreted 
by CRC cells activates HSCs. The interaction between 
CCL20 released from aHSCs and CCR6 expressed on 
CRC cells activates CRC cells to promote the release of 
exosomal miR-181a-5p, which generates a positive feed-
back loop to reshape the hepatic TME and form a PMN 
[112]. In mouse models of CRLM, endothelial cells stim-
ulated by CRC-derived exosomal miR-25-3p can lead to 
vascular leakage and vasculogenesis, thus contributing to 
the formation of a PMN and enhancing CRLM [235].

EVs play an important role in intercellular commu-
nication, such as between CRC cells and other cells, in 
CRLM. M2 macrophage-derived exosomes can deliver 
miR-21-5p and miR-155-5p to CRC cells. Additionally, 

miR-21-5p and miR-155-5p are internalised by CRC cells 
and targeted to the BRG1 coding sequence, thus lead-
ing to a decrease in the expression of BRG1 in CRC cells 
and contributing to the migration and invasion of CRC 
[236]. In a previous study, we demonstrated that exoso-
mal miR-934 in the immune microenvironment induces 
M2 macrophage polarisation to promote CRLM. Addi-
tionally, CXCL13 released by M2 macrophages interacts 
with CXCR5 on CRC cells to promote the transcrip-
tion of miR-934 [35]. CRC-derived exosomal HSPC111 
can promote the activation of HSCs, thus leading to the 
upregulation of CXCL5, which targets CXCR2 expressed 
on CRC cells, increases the release of exosomal HSPC111 
from CRC cells and promotes CRLM [237].

Altogether, as coordinators of intercellular communica-
tion in the dynamic network of the TME, EVs are respon-
sible for the progression and metastasis of cancer [238] 
and can serve as noninvasive markers for the screening 
and management of CRLM [239, 240]. A better under-
standing of the regulatory mechanisms of EVs can help to 
generate antitumour responses and design efficient EV-
based diagnostic and therapeutic strategies for CRLM.

Therapies for CRLM
Surgical resection
At present, surgical resection is an effective therapeutic 
option for resectable CRLM [241]. The two commonly 
used surgical strategies include simultaneous resection 

Table 2 Immune cells involved in the liver immune microenvironment of CRLM

PRF Perforin, GZM Granzyme, MMP Matrix metalloproteinase, AGR2 Anterior gradient-2

Immunological characteristics Immune cells Roles in CRLM

Immunosuppressive Treg cells Inhibit effective responses of effector T cells and contribute to immune evasion of CRC 

M2 macrophages Secret cytokines including IL-10, TGF-β, CCL17 and CCL22 to induce the formation of an immu-
nosuppressive TME; attenuate Th1 adaptive immunity; produce MMPs to regulate matrix 
remodelling

MDSCs Induce the production of  Treg cells and repress the function of effective NK cells; produce MMP-9 
and VEGF to promote TME remodelling and angiogenesis

TANs Recruit M2 macrophages and  Treg cells to shape a suppressive TME in the liver; produce MMP-9 
and neutrophil elastase to promote extravasation of CRC cells; form NETs to trap and facilitate 
the implantation of CRC cells to the liver; produce AGR2 to communicate with CRC cells to drive 
CRLM

Immuno-effective CD4+ Th1 cells Produce IFNγ and TNF-α, leading to cell-mediated killing

CD4+ Th2 cells Secrete IL-4, which assists in the activation of humoral immunity

CD8+ T cells Secret cytotoxic granules and release proteins to kill disseminated CRC cells; produce TNF-α, IL-2 
and IFNγ to strengthen the cytotoxicity

M1 macrophages Kill cancer cells directly by releasing cytotoxic reactive oxygen species (ROS), NO and IL-12

NKs Release IFNγ and NO toupregulate the expression of functional Fas in CRC cells; exert cytotoxic 
effects to eliminate CRC cells by PRF and GZM and kill CRC cells directly by releasing the apopto-
sis-inducing ligand and FasL

DCs Present antigens and deliver co-stimulatory signals for T-cell activation to initiate effective 
immune responses

TANs Activate T-cell immune reaction by presenting antigens; release IL-18 to induce the activation 
of NK cells
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Fig. 4 Schematic diagram depicting extracellular vesicles in the immune microenvironment of CRLM. Various cells in the hepatic immune 
microenvironment interact with CRC cells via extracellular vesicles to form a sophisticated immunosuppressive microenvironment that contributes 
to CRLM. The different pathways are indicated by different coloured arrows. ① CRC-derived hypoxia-induced exosomal miR-135a-5p 
is phagocytosed by KCs, thus blocking CD30-mediated  CD4+ T-cell activation and promoting cell adhesion. ② Highly mCRC cells produce 
EV-packaged miR-181a-5p that activates HSCs. aHSCs release CCL20, which interacts with CCR6 expressed on CRC cells and activates CRC 
cells to promote the release of EV-packaged miR-181a-5p, thus contributing to reshaping the hepatic TME and forming a PMN; CRC-derived 
exosomal HSPC111 promotes the activation of HSCs, thus leading to the upregulation of CXCL5, which targets CRC-expressed CXCR2, increases 
the secretion of exosomal HSPC111 from CRC cells and promotes CRLM. ③ M2 macrophages release exosomal miR-21-5p and miR-155-5p, 
after which they shuttle into CRC cells, which contributes to the migration and invasion of CRC. ④ Exosomal miR-934 secreted from CRC 
cells induces M2 macrophage polarisation to promote CRLM. M2 macrophages release CXCL13, which interacts with CXCR5 in CRC cells 
and promotes the transcription of miR-934. ⑤ CRC cells secrete exosomal miR-25-3p to stimulate endothelial cells, thus leading to vascular leakage 
and vasculogenesis
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and delayed resection. The results of existing studies 
on the selection of simultaneous or delayed resection 
are inconsistent [242–244]. The 5-year survival rate of 
patients with CRLM after resection can be improved to 
50% [241]. However, only 10–30% of patients with local-
ised LM are eligible for resection after diagnosis [245]. 
Moreover, 52% of patients develop postoperative recur-
rence of CRLM [246], thus resulting in a high mortality 
rate. Therefore, there is a need to explore novel therapeu-
tic modalities for CRLM.

Systemic and conversion therapies
Systemic therapy is a more favourable treatment option 
for nonresectable CRLM. In addition to improving the 
quality of life and prolonging survival, effective systemic 
therapy can transform unresectable lesions into resect-
able lesions, which is known as conversion therapy 
[247]. According to the guidelines recommended by the 
National Comprehensive Cancer Network (NCCN) [248], 
first-line chemotherapy regimens for patients eligible for 
intensive therapy are FOLFOX (5-fluorouracil combined 
with leucovorin plus oxaliplatin), CAPEOX (combination 
of capecitabine and oxaliplatin), FOLFIRI (5-fluorouracil 
plus leucovorin and irinotecan) and injectable  5-fluoro-
uracil/leucovorin or capecitabine. The use of FOLFOXIRI 
(5-fluorouracil combined with leucovorin, oxaliplatin and 
irinotecan) in conversion therapy may maximise tumour 
shrinkage and improve the eventual outcomes of surgery 
in patients with potentially resectable CRLM. Effective 
conversion therapy can allow for 12.5% of patients with 
unresectable CRLM to undergo liver resection, thus 
resulting in improved survival rates [249]. However, 
several adverse effects are associated with this regimen, 
which should be carefully considered.

Chemotherapy combined with targeted therapy can 
yield a better outcome for patients who are tolerant 
to aggressive therapy [250]. Drugs targeting epithelial 
growth factor receptor (EGFR) and VEGF are commonly 
used in combination with chemotherapeutic drugs. A 
phase III trial demonstrated that cetuximab and panitu-
mumab (which are monoclonal antibodies against EGFR) 
can suppress the downstream signalling pathways of 
EGFR to effectively inhibit disease progression and pro-
vide clinical benefits to patients with mCRC [251]. How-
ever, cetuximab and panitumumab are only indicated in 
patients with wild-type RAS/BRAF [248]. Bevacizumab 
targets VEGF and plays a significant role in antiangiogen-
esis [252]. Several clinical studies have demonstrated that 
compared with independent chemotherapy, the com-
bination of bevacizumab and chemotherapy improves 
progression-free survival (PFS) and overall survival (OS) 
[253–255]. However, the effectiveness of antiangiogenic 
therapy varies among patients, with some patients failing 

to benefit from this therapy and others developing toler-
ance or worse, aggressive, metastatic and other adverse 
outcomes [256, 257]. Therefore, more effective treatment 
strategies are urgently needed.

Immunotherapy targeting the immune microenvironment 
to eliminate immunosuppression
Immune checkpoint blockade
At present, the direct blockage of immune checkpoints 
to inhibit immune escape is the most well-established 
immunotherapeutic approach that has demonstrated 
excellent efficacy in the treatment of several cancers 
[258–265]. However, unlike the response of patients 
with other cancers, that of patients with CRC to immune 
checkpoint blockade (ICB) depends on the DNA micros-
atellite instability (MSI) or mismatch repair (MMR) sta-
tus [266–268]. ICB agents are effective in patients with 
mCRC but mostly in those patients with high microsat-
ellite instability (MSI-H) or deficient mismatch repair 
(dMMR) [269–271]. CRC with MSI-H/dMMR has a high 
tumour mutational burden that induces tumour-specific 
neoantigens to alert immune cells and subsequently 
recruits numerous T cells, which improve sensitivity to 
ICB [272, 273].

The phase II CheckMate 142 trial demonstrated that 
patients with mCRC with MSI-H/dMMR who were 
pretreated with nivolumab, which is a PD-1 immune 
checkpoint inhibitor, had an objective response rate 
(ORR) of 31.1% and 12-month PFS and OS rates of 50% 
and 73%, respectively [270]. Additionally, a subsequent 
study reported that patients with mCRC with MSI-H/
dMMR responded to the combination of nivolumab plus 
ipilimumab (a CTLA-4 inhibitor) as second-line therapy 
with a higher ORR of 55%, and the clinical benefit of the 
combination therapy was better than that of nivolumab 
monotherapy [274]. A recent investigation showed that 
the combination of nivolumab and low-dose ipilimumab, 
which was a first-line treatment, was well tolerated by 
patients with mCRC with MSI-H/dMMR and provided 
durable and robust clinical benefit characterised by an 
ORR of 69% [275], which indicated that ICB agents may 
serve as new and safe first-line drugs for the treatment 
of mCRC. The KEYNOTE-164 study showed that pem-
brolizumab, which is a PD-1 inhibitor, was an effective 
and safe ICB agent with an ORR of 33% in patients with 
treatment-refractory mCRC with MSI-H/dMMR [276]. 
As the first-line standard treatment, pembrolizumab out-
performs chemotherapy in terms of PFS (16.5  months 
versus 8.2 months, respectively) in patients with mCRC 
with MSI-H/dMMR [277].

However, ICB alone or in combination shows weak 
outcomes in patients with MSS/mismatch repair-pro-
ficient (pMMR) mCRC. A phase II study demonstrated 
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that lenvatinib combined with pembrolizumab resulted 
in a poor median PFS of 2.3  months with a 50% inci-
dence of treatment-related adverse events in non-MSI-
H/pMMR mCRC [278]. In the METIMMOX study, with 
short-course sequential oxaliplatin-based chemotherapy 
(FLOX), the addition of nivolumab treatment prolonged 
PFS by only 1  month compared with chemotherapy 
alone [279]; however, the therapeutic strategy was not as 
effective in patients with MSI-H/dMMR CRC. Another 
study demonstrated that regorafenib plus nivolumab 
resulted in an encouraging ORR of 21.7% in patients with 
MSS/pMMR CRC without LM; however, the ORR was 
remarkably lower in patients with LM [280]. Therefore, 
ICB treatment of patients with MSS/pMMR CRLM is 
challenging.

Overall, patients with MSI-H/dMMR CRC exhib-
ited a positive response to ICB, whereas patients with 
MSS/pMMR CRC exhibited almost no response to ICB 
(Table  3). As one of the most promising antitumour 
treatments, ICB-based therapy has great potential for the 
treatment of CRC. Further investigations are required to 
verify the efficiency and safety of ICB agents in patients 
with CRLM, irrespective of their MSI or MMR status.

Adoptive cell therapy
In adoptive cell therapy, cells with antitumour activ-
ity in  vivo are isolated, modified and cultured in  vitro 
and infused back into patients for antitumour treat-
ment [281]. As an important branch of immunotherapy, 
adoptive cell therapy has made significant contributions 
to advancing the development of immunotherapy [281, 
282]. In particular, chimeric antigen receptor T-cell 
(CAR-T) therapy has demonstrated successful results in 
the treatment of haematological malignancies and is the 
only cell product approved by the FDA [283, 284]. Given 
the effectiveness of CAR-T therapy, new adoptive cell 
therapies have been developed for the treatment of solid 
tumours [285]. In CRC, CAR-T therapy remains a major 
focus of research and has a distinct advantage over other 
cell therapies (Table 4).

In a small-sample phase I clinical study on patients 
with  CEA+ mCRC treated with gradient doses of CAR-T 
cells, 70% of participants regressed from progressive 
disease to stable disease without experiencing severe 
adverse events [286]. Therefore, CAR-T therapy is a safe 
and hopeful immunotherapeutic option for the effective 
management of mCRC. A preclinical study demonstrated 
that human guanylyl cyclase C (GUCY2C)-targeted 
CAR-T cells triggered T-cell activation, exerted antitu-
mour effects and alleviated CRLM in both syngeneic and 
human CRC xenograft murine models [287]. Due to the 
fact that the safety of GUCY2C-targeted CAR-T cells 
has only been examined in murine models, these cells 

should be cautiously used in humans because GUCY2C 
is selectively expressed in intestinal epithelial cells. Fur-
thermore, CYAD-01 (which is an autologous CAR based 
on natural killer group 2D [NKG2D] with a single generic 
construct) induces both innate and adaptive immunity 
to regulate the immunosuppressive TME, thus present-
ing novel insights into CAR-T-cell therapy [288]. Moreo-
ver, the phase I SHRINK trial showed that CYAD-01 in 
combination with standard chemotherapy elicited par-
tial response (PR) in 25% of participants with resectable 
mCRC (n = 4) and reduced tumour burden in 60% of par-
ticipants with refractory mCRC (n = 5) without inducing 
cumulative toxicity [289].

In the ALLOSHRINK trial, combination therapy with 
CYAD-101 (a nongene-edited, allogeneic, second-gen-
eration NKG2D CAR-T-cell product) and chemotherapy 
was well tolerated with no evidence of graft-versus-host 
disease and was reported to be a prospective treat-
ment for patients with incurable mCRC who relapsed 
after multiple lines of therapy [290]. The KEYNOTE-
B79 phase 1b multicentre clinical study was open and 
recruited patients to assess the effectiveness of CYAD-
101 plus pembrolizumab in refractory mCRC [291]. 
Therefore, CYAD-01 and CYAD-101 CAR-T therapies 
are novel immunotherapeutic strategies for the effective 
treatment of mCRC.

In conclusion, appropriate CAR targets are poorly 
expressed in normal cells but are enriched in cancer cells. 
Therefore, CAR-T cells can precisely target cancer cells 
and improve the survival of patients with mCRC. Further 
preclinical/clinical trials should be conducted to demon-
strate the actual effectiveness of CAR-T-cell therapy in 
solid tumours, including CRC.

Cancer vaccines
Cancer vaccines are prospective therapeutic options in 
cancer immunotherapy [292–294]. Unlike ICB and adop-
tive cell therapy, cancer vaccines exert antitumour effects 
by introducing tumour antigens into the body, activating 
immune responses and using the active immune func-
tion to kill cancer cells [295, 296]. At present, no prod-
ucts have been approved for developing cancer vaccines 
against CRC; however, relevant clinical trials are actively 
ongoing (Table 5).

Various vaccine strategies have been designed, 
including whole tumour cell-based, protein- or pep-
tide-based and DC-based vaccines [297–299]. In a ran-
domised clinical trial, patients with colon cancer who 
received an autologous cancer cell-based vaccine had a 
significantly longer recurrence-free interval (p = 0.011) 
and recurrence-free survival (p = 0.032); however, 
disease-specific survival and OS showed no improve-
ment [300]. Based on this foundation, further clinical 



Page 16 of 28Wang et al. J Exp Clin Cancer Res          (2023) 42:177 

Table 3 Main immune checkpoint blockade agents for the treatment of metastatic colorectal cancer

mCRC metastatic colorectal cancer, PFS Progression-free survival, OS Overall survival, ORR Objective response rate, TRAEs Treatment-related adverse events, m months, 
w weeks

Intervention Key trial (NCT number) Design (N) Subject Main results

Nivolumab CheckMate 142 (NCT02060188) Phase II (N = 74) MSI-H/dMMR mCRC PFS rate: 50% (12 m)
OS rate: 73% (12 m)
ORR: 31.1%
Grade ≥ 3 TRAEs: 21%

Nivolumab + ipilimumab CheckMate 142 (NCT02060188) Phase II (N = 119) MSI-H/dMMR mCRC PFS rate: 71% (12 m)
OS rate: 85% (12 m)
ORR: 55%
Grade ≥ 3 TRAEs: 32%

Nivolumab + ipilimumab CheckMate 142 (NCT04008030) Phase II (N = 45) MSI-H/dMMR mCRC PFS rate: 76.4% (12 m)
OS rate: 84.1% (12 m)
ORR: 69%
Grade ≥ 3 TRAEs: 22%

Pembrolizumab KEYNOTE-164 (NCT02460198) Phase II (N = 124, 61 
in cohort A and 63 
in cohort B)

MSI-H/dMMR mCRC PFS: 2.3 m in cohort A and 4.1 m 
in cohort B
OS: 31.4 m in cohort A and not 
reached in cohort B
ORR: 33% in cohort A and 33% 
in cohort B
Grade ≥ 3 TRAEs: 16% in cohort A 
and 13% in cohort B

Pembrolizumab KEYNOTE-177 (NCT02563002) Phase III (N = 307) MSI-H/dMMR mCRC PFS: 8.2 m with chemotherapy 
and 16.5 m with pembrolizumab 
treatment
Estimated restricted mean sur-
vival: 10.8 m with chemotherapy 
and 13.7 m with pembrolizumab 
treatment
ORR: 33.1% with chemotherapy 
and 43.8% with pembrolizumab 
treatment
Grade ≥ 3 TRAEs: 66% 
with chemotherapy and 22% 
with pembrolizumab treatment

Pembrolizumab + lenvatinib LEAP-005 (NCT03797326) Phase II (N = 32) Non-MSI-H/pMMR mCRC Median PFS: 2.3 m
Median OS: 7.5 m
ORR: 22%
Grade ≥ 3 TRAEs: 50%

Nivolumab + FLOX METIMMOX (NCT03388190) Phase II (N = 54) MSS mCRC PFS: 5.6 m with FLOX alone 
and 6.6 m with repeat sequential 
FLOX and nivolumab
Complete response: 0% 
with FLOX alone and 16% 
with repeat sequential FLOX 
and nivolumab
Ongoing objective response: 
23% with FLOX alone and 32% 
with repeat sequential FLOX 
and nivolumab

Nivolumab + regorafenib NCT04126733 Phase II (N = 70) MSS/pMMR CRC Median PFS: 15 w in patients 
without LM and 8 w in patients 
with LM
Median OS: 52 w in patients 
without LM and 47 w in patients 
with LM
ORR: 21.7% in patients with-
out LM and 0% in patients 
with LM
Grade 3–4 TRAEs: 63%
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studies (Clinicaltrials.gov Identifier: NCT00016133, 
NCT02448173) have been conducted to examine the 
protective effects of the autologous cancer vaccine 
against tumour recurrence after colon cancer surgery 
[301]. DC-based vaccines are powerful contributors 
to antigen presentation and the initiation of antitu-
mour immunity [302–304]; however, the development 
of DC-based vaccines for CRC is currently at an early 
stage. In a preclinical murine model, effective immuno-
therapy using tumour-associated antigen-loaded cDC-
based vaccines increased the infiltration of activated 
effector T cells and inhibited tumour growth [305]. 
Two related clinical trials (Clinicaltrials.gov Identi-
fier: NCT03730948, NCT02919644) on DC-based vac-
cines are ongoing to develop strategies for preventing 
the progression of surgically resected stage I and II 
hypermutated CRC or curatively resected stage IV 
CRC. Moreover, peptide-based vaccines have strong 
specificity and can easily elicit an effective immune 
response [306, 307]. In a phase I clinical trial, the ade-
novirus (Ad5)-GUCY2C-PADRE vaccine was efficient 
in patients with CRC and did not cause grade-3/4 toxic 
events during the 6-month follow-up period after vac-
cination [308]. Another phase I study demonstrated 
that the combination of a single-dose PolyPEPI1018 
vaccine and maintenance therapy with fluoropyrimi-
dine and bevacizumab was strongly effective, with 96% 
of vaccine peptides inducing T-cell responses without 

causing grade 3 or higher adverse events in patients 
with mCRC [309].

Based on these encouraging results, cancer vaccines 
may represent an immunotherapeutic strategy that is not 
limited by the DNA MSI or MMR status. Cancer vac-
cines can stimulate immune surveillance to combat ini-
tially undetected microscopic lesions and consequently 
enhance the survival of patients with CRLM.

There are multiple therapeutic options for CRLM; how-
ever, they fail to meet the requirements for a disease-free 
prognosis (Fig.  5). Immunotherapy is an emerging and 
effective weapon in the fight against CRLM that requires 
further research to explore its superior potential value.

Discussion and perspectives
Liver metastasis is the most common site of metastasis 
in CRC and is the leading cause of death in patients with 
CRC. The liver is a characteristic immune-tolerant organ 
in which resident liver cells, recruited inflammatory 
and immune cells and active protein molecules inter-
act with each other; additionally, EVs act as important 
mediators of intercellular communication. The intricate 
characteristics and mechanisms of the hepatic immune 
microenvironment that directly or indirectly induce 
immunosuppression and contribute to the regulation of 
cancer metastasis should be extensively investigated to 
explore potential therapeutic targets for CRLM.

Table 4 CAR-T therapy for metastatic colorectal cancer in preclinical or clinical trials

mCRC metastatic colorectal cancer

Intervention Stage of research Trial ID Design (N) Subject

Anti-CEA CAR-T cells Clinical trial NCT02349724 Phase I (N = 10) Relapsed and refractory mCRC 

Human GUCY2C-targeted murine 
CAR-T cells

Preclinical trial - - -

CYAD-01 Clinical trial NCT03310008 Phase I (N = 36) CRLM

CYAD-101 Clinical trial NCT03692429 Phase I (N = 49) Unresectable mCRC 

CYAD-101 + pembrolizumab Clinical trial NCT04991948 Phase I (N = 34) Unresectable mCRC 

Table 5 Clinical trials targeting the immune landscape for the treatment of metastatic colorectal cancer

mCRC metastatic colorectal cancer

Type of cancer vaccine Tumour-associated antigen Trial ID Phase Subject

Cancer cell vaccine Autologous cancer cells NCT00016133 Phase I/II Stage II or III colon cancer

Cancer cell vaccine Autologous cancer cells NCT02448173 Phase III Stage II colon cancer

DC vaccine Mutated peptides NCT03730948 Phase I Stage I and II hypermutated 
colorectal cancer

DC vaccine Autologous tumour homogenate NCT02919644 Phase II Stage IV colorectal cancer

Peptide vaccine GUCY2C–PADRE NCT01972737 Phase I Stage I or stage II colon cancer

Peptide vaccine 12 unique epitopes NCT03391232 Phase I mCRC 
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The formation of a PMN in CRC is an important pre-
requisite for LM, which is a progressive process that 
triggers local changes such as vascular leakage, ECM 
remodelling and systemic effects on the immune sys-
tem. Induced by the combined systemic effects of 
CRC-secreted factors and EVs, the PMN shapes a micro-
environment that is favourable for LM, which makes the 
distant liver a favourable site for the colonisation of dis-
seminated cancer cells. However, the underlying mecha-
nisms responsible for the formation of the PMN remain 
uncertain and warrant further investigations.

ICB-based treatment is only effective in patients with 
MSI-H/dMMR CRC but not in patients with MSS/
pMMR CRC. Moreover, another challenge involves the 
potentially deleterious side effect known as hyperpro-
gression that occurs in some patients after ICB therapy 
and is independently associated with advanced age and 
higher metastatic load. With the increasing use of ICB 
therapy in clinical practice, more studies are required to 
elucidate the potential mechanisms and to identify the 
predictors of hyperprogression, which would allow for 
patients at high risk for life-threatening immune-related 
adverse events to be screened before ICB therapy. As 
emerging immunotherapeutic strategies, CAR-T-cell 
therapy and cancer vaccines may revolutionise the era 

of cancer immunotherapy. Despite the excellent effi-
cacy of CAR-T-cell therapy in haematological malignan-
cies, its use in solid tumours may be limited due to the 
trafficking barriers of CAR-T cells, their weak ability to 
infiltrate solid tumours and their off-target effects. Fur-
thermore, tumour vaccines are a type of individualised 
immunotherapy with high specificity and few side effects. 
However, the effective translation of cancer vaccines in 
clinical practice remains challenging. Further preclinical 
and clinical trials should be conducted to demonstrate 
the efficacy of immunotherapy in mCRC and to iden-
tify novel therapeutic targets or to develop combination 
strategies to improve or activate antitumour immune 
responses for the effective treatment of CRLM.
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