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Abstract 

Background A growing body of research has revealed the connection of metabolism reprogramming and tumor 
progression, yet how metabolism reprogramming affects inter-patient heterogeneity and prognosis in head and neck 
squamous cell carcinoma (HNSCC) still requires further explorations.

Methods A cellular hierarchy framework based on metabolic properties discrepancy, METArisk, was introduced to re-
analyze the cellular composition from bulk transcriptomes of 486 patients through deconvolution utilizing single-cell 
reference profiles from 25 primary and 8 metastatic HNSCC sample integration of previous studies. Machine learning 
methods were used to identify the correlations between metabolism-related biomarkers and prognosis. The func-
tions of the genes screened out in tumor progression, metastasis and chemotherapy resistance were validated in vitro 
by cellular functional experiments and in vivo by xenograft tumor mouse model.

Results Incorporating the cellular hierarchy composition and clinical properties, the METArisk phenotype divided 
multi-patient cohort into two classes, wherein poor prognosis of METArisk-high subgroup was associated with a par-
ticular cluster of malignant cells with significant activity of metabolism reprogramming enriched in metastatic single-
cell samples. Subsequent analysis targeted for phenotype differences between the METArisk subgroups identified 
PYGL as a key metabolism-related biomarker that enhances malignancy and chemotherapy resistance by GSH/ROS/
p53 pathway, leading to poor prognosis of HNSCC.

Conclusion PYGL was identified as a metabolism-related oncogenic biomarker that promotes HNSCC progression, 
metastasis and chemotherapy resistance though GSH/ROS/p53 pathway. Our study revealed the cellular hierarchy 
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Background
Head and neck squamous cell carcinoma (HNSCC) is the 
most prevalent type of malignancy in the head and neck 
region with high incidences and adverse 5-year survival 
rate [1]. Poor clinical outcomes are attributed to exten-
sive inter-patient heterogeneity and chemotherapy resist-
ance, highlighting the inadequacy of standard therapy 
for curing patients with HNSCC [2]. Therefore, further 
exploration of cellular mechanisms that drive HNSCC 
development and identification of new therapeutic tar-
gets for overcoming chemotherapy resistance, are of 
great significance for improving the prognosis of HNSCC 
patients.

Previous studies have shown that cancer cells often 
perform epigenetic alteration to tackle challenges from 
microenvironment and promote adaptability [3]. Cell 
metabolism reprogramming, one of the crucial tumor 
epigenetic alterations in response to fluctuating energy 
needs [4], allows cancer cells to dynamically adjust 
energy generation and bioenergetics through several 
metabolic pathways such as glycolysis [5], gluconeo-
genesis [6], lipid metabolism [7] and arachidonic acid 
metabolism [8]. Malignant behaviors including prolifera-
tion, invasion and metastasis have been proved to cor-
relate with cell metabolism reprogramming [9], wherein 
biological processes have been increasingly revealed. For 
instance, cancer cells can stimulate metastasis through 
targeting fatty acid receptor CD36 via O-GlcNAcylation 
[10, 11], or affect lipid metabolism through interferon-γ 
and granzyme B to alter the function of stromal and 
immune cells from microenvironment, leading to tumor 
invasion and recurrence [12]. Simultaneously, metabolic 
changes in cancer cells are also associated with chemo-
therapy resistance [13]. Activation of glutamine metabo-
lism could significantly up-regulate adipogenesis, leading 
to sorafenib resistance in tumor [14]. Moreover, resist-
ance of gemcitabine can be induced by increasing gly-
colysis mediated by hypoxia-inducible factor (HIF)-1α 
[15]. In allusion to chemotherapy resistance related cell 
metabolism reprogramming, studies of targeting meta-
bolic changes through the metabolic core pathways in 
tumor cells has been emerging [16, 17], which may bet-
ter solve the drug resistance of tumors and improve the 
prognosis of patients.

Existing studies have confirmed that the changes 
of metabolic characteristics of HNSCC cells through 
diverse metabolic pathways inducing the malignant 

behaviors and chemotherapy resistance [18–20], but the 
relationship between these alterations and patient prog-
nosis has not yet been systematically elucidated. On 
the other hand, cell metabolism reprogramming may 
also contribute to the heterogeneity of HNSCC patients 
[21].Various research about the underlying mechanisms 
of metabolism reprogramming emerged recent years, 
indicating it would be a promising direction to break 
through. Single-cell RNA sequencing (scRNA-seq) has 
emerged as a powerful tool for dissecting cellular hierar-
chies [22], and there has been a study utilizing this tech-
nique on metabolic characteristics in cellular hierarchies 
of tumor cells [23]. However, owing to limited number 
of patients from scRNA-seq datasets, few studies have 
comprehensively explored the link between metabolism 
reprogramming reflected in cellular hierarchy composi-
tion and inter-patient heterogeneity, which may account 
for the poor prognosis and chemotherapy resistance 
in HNSCC. With integration of single-cell and multi-
patient sample sequencing, we explored the relationship 
of specific tumor cell subsets and patient’s prognosis, and 
further revealed the therapeutic target for more informa-
tion from the combination of sequencing data.

In this study, the cellular hierarchies of 486 patients 
with HNSCC were characterized through gene expres-
sion deconvolution on bulk HNSCC transcriptomes 
using single-cell reference profiles of distinct HNSCC 
cell types including METAactive and METAsilent malig-
nant cells and integrated non-malignant cells from 25 
primary and 8 metastatic HNSCC samples. METAactive 
cells were classified as the particular malignant cluster 
with high potential of cell metabolism reprogramming 
and metastasis and METAsilent cells possessed com-
paratively low metabolic activity and mainly distributed 
in primary tumor, by which patients were divided into 
METArisk-high and METArisk-low groups based on the 
proportion. Later, PYGL was identified as the key metab-
olism-related biomarker that drives the poor prognosis 
and drug resistance of patients in METArisk-high group, 
wherein PYGL/GSH/ROS/p53 was demonstrated as a key 
pathway (Fig. 1 and Fig.S1). Sequentially, our study may 
provide reference for further understanding of genetic 
characteristics of cancer metabolism of HNSCC, and 
how metabolism reprogramming affects tumor malig-
nancy and chemotherapy resistance in HNSCC patients, 
thus, hopefully providing a new target in metabolic path-
ways to improve patient prognosis.

composition of HNSCC from the cell metabolism reprogramming perspective and may provide new inspirations 
and therapeutic targets for HNSCC in the future.
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Methods
Data source
The single-cell RNA expression profile of 25 primary and 8 
metastatic head and neck squamous carcinoma (HNSCC) 
samples were downloaded from NCBI Sequence Read 
Archive (SRA) with an accession #: SRP332116, SRP228811. 
The mRNA expression profile and clinical information of 
multi-patient HNSCC samples were downloaded from The 
Cancer Genome Atlas (TCGA) (http:// portal. gdc. cancer. 
gov/) database and The Gene Expression Omnibus (GEO) 
(https:// www. ncbi. nlm. nih. gov/ geo/) database.

Quality control of single‑cell and bulk tissue transcriptomic 
samples
The inclusion criteria for the single-cell transcriptomic 
samples includes: (1) From the datasets ≥ 4 samples, at 
least 2 controls and 2 cases, and availability of raw data 

or gene expression data; (2) Extraction protocol:Droplet-
based single-cell RNA-sequencing on 10X Genomics 
Chromium platform.

A standard Seurat quality control, transformation, and 
data integration was then performed: (1) the data with 
low-quality cells expressing ≤ 200 genes or ≥ 2500 genes 
or the percent of mitochondrial genes infinite or ≥ 15% 
were removed and the data with genes expressed in less 
than 3 cells were removed; (2) For better interpretabil-
ity, the gene expression matrixes were then transformed 
using the ’ScaleData’ function in Seurat with 3000 highly 
variable genes, regressions were applied to reduce the 
effects of mitochondrial genes; (3) ’FindIntegrationAn-
chors’ and ’IntegrateData’ function was then used to inte-
grate datasets.

The inclusion criteria for the bulk tissue transcriptomic 
samples were: (1) Non-formalin soaking samples; (2) 

Fig.1 Overall design of the study

http://portal.gdc.cancer.gov/
http://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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With complete clinical metadata; (3) With definite clini-
cal outcome and survival time.

Pre‑processing of scRNA‑sequencing data
CellRanger (version 4.0.0) was used to obtain the fastq 
files of the raw data and annotated with the human 
genome reference sequence (GRCh38). The gene-barcode 
matrix was then obtained following the Seurat (version 
4.0.4) pipeline in R software (version 4.0.5, R-Foundation, 
Vienna, Austria).

Cell clustering analysis, visualization, and annotation
Cell-clustering and sub-clustering analyses were per-
formed with the FindClusters function of the Seurat pack-
age with proper resolutions. For the re-clustering of each 
type of cell clusters, cells with ribosome gene ratio higher 
than 35% were filtered. Uniform manifold approximation 
and projection (UMAP) was used to display identified cell 
clusters and sub-clusters. The cell clusters were annotated 
based on highly expressed genes, unique expressed genes, 
and reported canonical cellular markers.

Clustering and cell type assignment
First, a neighborhood graph was constructed to identify 
related groups of cells. Next, Leiden clustering was per-
formed on the neighborhood graph. The cluster assign-
ments were then visualized on UMAP plots. Using a 
combination of top expressed genes in each cluster and 
a list of known marker genes, cell types were assigned to 
each cluster.

Pseudobulk
Pseudobulk was used to detect the Differential expressed 
genes (DEGs) between primary- and metastatic- specific 
populations, for it aggregates count values from each 
sample and cell cluster to create data that can be analyzed 
using the same methods as bulk RNA-seq data, maintain-
ing the same number of genes but reducing the number 
of cells to the number of samples in the gene expression 
matrix [24].

Functional analysis
The DEGs for the malignant group were independently 
imported into Enrichr, an online bioinformatic website 
(https:// maaya nlab. cloud/ Enric hr/) for Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) analysis. The top 
10 pathways were selected based on p-value ranking. 
“META_ACTIVATE” was defined as the gene signature 
from metabolism pathways selected in KEGG analysis 
intersected with genes from single cell database. Dif-
ferential expression rank order was used for subsequent 
Gene Set Enrichment Analysis (GSEA), performed using 
the clusterProfiler package in R.

AUCell
META_ACTIVATE gene signature was set as input 
data for area under the curve (AUC) value calculation. 
According to the AUC value, gene-expression rankings 
were built for each cell. The AUC estimates the propor-
tion of genes in the gene set that are highly expressed in 
each cell. Cells expressing more genes from the gene set 
will have higher AUC values than cells expressing fewer 
genes. Function “AUCell_exploreThresholds” was used 
to calculate the threshold that could be used to consider 
the current gene-set active. Then, cell clustering UMAP 
embedding was colored based on the AUC score of each 
cell to show which cell clusters were active in the META_
ACTIVATE gene signature. Metabolism-related genes 
(MRGs) for downstream analysis were obtained from the 
intersection of the META_ACTIVATE gene signature 
and cell cluster with high AUC score.

CIBERSORTx
Raw gene expression counts from single cell database 
were used as input for signature matrix generation with 
CIBERSORTx28. Default settings were used, with the 
exception of the minimum expression parameter, which 
was set to 0.25. Deconvolution was performed on nor-
malized Transcripts per million (TPM) bulk RNA-seq 
data using S-mode batch correction and Absolute mode.

Analysis of the prognostic and therapeutic value of MRGs 
in HNSCC
“Limma” R package was used to identify DEGs between 
486 HNSCC and 44 normal samples and between METAr-
isk-low and METArisk-high group with |log2FC|> 1 and 
adjusted p-value < 0.05. Then the DEGs were overlapped 
with MRGs to obtain Differential Expressed Metabolism-
Related Genes (DEMRGs) involved in HNSCC. A cus-
tomization of an open-source the support vector machine 
recursive feature elimination (SVM-RFE) R script (https:// 
github. com/ johnc olby/ SVM- RFE) based on the R pack-
age “e1071” was made to train samples through the training 
set, sorting the scores of DEMRGs and estimation of ten-
fold cross-validation errors of gene combinations. The gene 
combination with the least tenfold cross-validation errors 
was selected as SVM-RFE generated prognosis-related gene 
candidates. Multivariate Cox regression analysis was used 
to identify the independent prognostic factors among the 
DEMRG candidates and the prognostic value was evaluated 
by Kaplan–Meier analysis. Images of immunohistochem-
istry (IHC) staining of the protein products of the genes in 
HNSCC samples were extracted from the Human Protein 
Atlas (HPA) database (http:// www. prote inatl as. org). Com-
putational Analysis of Resistance (CARE) is a software for 
identifying genome-scale biomarkers of targeted therapy 
response using compound screen data. “OncoPredict” is an 

https://maayanlab.cloud/Enrichr/
https://github.com/johncolby/SVM-RFE
https://github.com/johncolby/SVM-RFE
http://www.proteinatlas.org
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R package for predicting the drug response, by which the 
associations of gene expression with the sensitivities to the 
commonly utilized chemotherapy drugs were investigated.

Metabolic heterogeneity analysis of PYGL‑low 
and PYGL‑high groups
To characterize the metabolic features of PYGL-low and 
PYGL-high groups, the enrichment of 113 metabolism pro-
cesses in different clusters were quantified by “GSVA” R pack-
age and the differential analysis was conducted by “limma” 
R package. Thereafter, unsupervised non-negative matrix 
factorization (NMF) clustering was performed using “NMF” 
R package with the settings “nrun = 50, method = brunet” 
based on the genes involved in the metabolism process “GSH 
metabolism”. According to the maximum of cophenetic and 
dispersion values in rank survey, HNSCC patients were 
divided into glutathione (GSH) metabolism up-regulated and 
GSH metabolism down-regulated clusters. To characterize 
the of different clusters, we analyzed and compared the Esti-
mation of Stromal and Immune cells in Malignant Tumor tis-
sues using Expression (ESTIMATE) score and tumor purity 
score calculated by the ESTIMATE algorithm. The survival 
among two clusters were analyzed by Kaplan–Meier curves 
using “survminer” R package.

Cell culture and cell transfection
HNSCC cell lines CAL-27 (RRID: CVCL_1107) and 
HSC-6 (RRID: CVCL_A615) were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM, Invitrogen, Grand 
Island, NY, USA) with 10% fetal bovine serum (FBS, 
Sigma-Aldrich) at 37℃ in an incubator with 5%  CO2. For 
cell transfection experiments, CAL-27 and HSC-6 cells 
were seeded in 24-well plates for 24 h with Opti-medium 
before transfection. The cells were treated with siRNA 
using lipofectamine (ThermoFisher, China) according to 
the manufacturer’s instructions after growth to 70–80% 
puromycin (Sellek, USA) was used to select the stable 
transfected cells.

Patient samples
Paired tumor and peritumor tissues were collected 
from HNSCC patients. Peritumor samples were col-
lected 2–5 cm from the edge of tumor tissue. All patients 
were surgically proven HNSCC, and the follow-up was 
performed by the Hospital of Stomatology, Guanghua 
School of Stomatology, Sun Yat-sen University. Samples 
were obtained with informed consent, and the study was 
approved by the Institutional Ethics Review Board.

Cell proliferation assay
The Cell Counting Kit-8 (CCK-8, Dojindo, China) was 
used to measure proliferation ability of CAL-27 and 
HSC-6 cells. The cells were cultured in a 96-well plate 

after transfection. 100μL Opti-medium and 10ul CCK-8 
solution were added to each well at 24, 48 and 72 h time 
points. After 30  min of incubation, the optical den-
sity (OD) value at 450  nm of each well was evaluated 
by microplate reader machine (BioTek, Vermont, USA). 
Experiments were repeated at least three times.

Transwell assay
Cell migration and invasion were evaluated by Tran-
swell assay. For cell migration experiments, CAL-27 
and HSC-6 cells were seeded in a 24-well plate after 
transfection. 300ul DMEM with 10% FBS was added to 
the 24-well plate in prior and 200ul cell suspension was 
added to the upper chambers containing serum-free 
medium after 1 h. Photographs of non-overlapping fields 
were taken after 18  h cell incubation in the present of 
5% CO2 at 37℃. For cell migration experiments, 300ul 
DMEM with 10% FBS was added in the 24-well plate 
while Matrigel matrix (CORNING, USA) was added to 
the center of upper chamber at a concentration of 50ul/
cm2 growth area. After Matrigel formed into a gel, 200ul 
cell suspension was added to the upper chambers con-
taining serum-free medium. Photographs of non-over-
lapping fields were taken after 24 h cell incubation in the 
present of 5% CO2 at 37℃. Experiments were repeated at 
least three times.

Flow cytometry assay
CAL-27 and HSC-6 cells were washed with and resus-
pended in phosphate buffered solution. 7-aminoactino-
mycin D (7-AAD) (A1310, Life technologies) was used 
to exclude dead cells. For cell cycle analysis, cells were 
fixed with 4% paraformaldehyde (MA0192, Meilunbio) 
for 12  h at 4℃, permeabilized with 0.2% Triton X-100 
(T9284, Sigma) in PBS for 15 min at room temperature, 
and then stained by antibodies to Ki67 (16A8, Bioleg-
end) and further incubated with 0.1  μg μL-1 4’,6-diami-
dino-2-phenylindole (DAPI, 1306, Thermo Scientific) 
for 30 min at room temperature. For apoptosis analysis, 
cells were stained by AnnexinV (640,907, Biolegend) and 
7-AAD. For intracellular reactive oxygen species (ROS) 
levels, cells were stained with antibodies to LSC pheno-
typic markers, and further stained by 5 μM Dihydroeth-
idium (DHE, KGAF019, KeyGEN) for 30  min at 37  °C. 
For glucose uptake assay, glucose uptake was measured 
using the fluorescence-labeled deoxyglucose analog 
2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deox-
yglucose (2-NBDG, Apex Bio, USA). After the indicated 
treatment, cells were incubated with 2-NBDG for 1 h at 
37  °C. Cell sorting and analysis were performed using 
either a flow cytometer (Attune NxT; Thermo Fisher) or 
sorter (InFlux Cell or FACSARIA III, BD Biosciences). 
Data analysis was performed using FlowJo software.
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Immunofluorescence assay
Cells were incubated for 3 h with a Histone Rabbit mAb 
(Cell signal, #7631S). Incubations were performed at 
room temperature. The slides were collected and manu-
ally washed three times with Ventana buffer and three 
times with distilled water. Finally, the slides were coun-
terstained for 2 min with 1ug/ml of 4,6-diamidino-2-phe-
nylindole (#D1306, Life Technologies, Oregon, USA). 
γ-H2AX staining were used to indicate double-stranded 
DNA damage and apoptosis [25]. A proprietary image 
analysis system was used to quantify the number of posi-
tive cells over the total number of cells and the average 
signal emission/nucleus.

Western blot
Total protein was collected from CAL-27 and HSC-6 cells 
using RIPA lysis buffer (Beyotime, Shanghai, China), sep-
arated by 10% sodium dodecyl sulphate–polyacrylamide 
gel electrophoresis (SDS-PAGE) gels and then transferred 
to polyvinylidene fluoride (PVDF, Millipore) membranes. 
The proteins were incubated with primary antibodies 
overnight at 4  °C, and then incubated with secondary 
antibodies for 1  h at room temperature. An Enhanced 
Chemiluminescence (ECL) Detection Kit (Millipore) 
was used to visualize the immunoreactive proteins. The 
information of antibodies: p53 (1:1000); p21 (1:1000). The 
antibodies against PYGL (Abcam, ab227403), p53 (Cell 
signaling, #2524S), p21 (Cell Signaling, #2947S) were 
used for western blotting.

RNA extraction and qRT‑PCR
TRIzol (Invitrogen) was used to extract total RNA from 
HSC-6 and CAL-27 cells and tissue samples according to 
the manufacturer’s instructions. The concentration and 
purity of total RNA were examined by UV spectrophoto-
metric analysis at 260 nm. The cDNAs were synthesized 
using a reverse transcription kit (Promega, Madison, WI, 
USA) according to the manufacturer’s instructions. The 
mRNA expression levels were measured using the SYBR 
Green PCR Master Mix (Applied Biosystems, Waltham, 
MA, USA) and the Applied Biosystems 7900HT sequence 
detection system (Applied Biosystems). And mRNA rela-
tive expression level was measured using the 2 − ΔΔCt 
method and normalized to glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH).

PAS staining and glycogen assay
Glycogen level was measured using standardized peri-
odic acid Schiff (PAS) staining technique by AB-PAS 
staining kit (Bioss). Cells were fixed with 4% paraform-
aldehyde for 15  min, incubated in 1% periodic acid for 
5 min, rinsed in water, and placed in Schiff’s reagent for 
10  min. Finally, cells were washed with water. Amylase 

was used in a set of experiments to verify that staining 
was specific for glycogen.

Detection of ROS
ROS levels were determined using MitoSOX Red (Apply-
gen, China) as an indicator of mitochondrial superox-
ide. CAL-27 and HSC6 cells were treated with MitoSOX 
Red according to the instruction by manufacturer after 
transfection for 24  h. Cells were washed using PBS and 
analyzed by FACSCantoTM (BD Biosciences). Data anal-
ysis was performed using FlowJo software (Tree Star, 
Ashland, OR). Experiments were repeated at least three 
times.

Detection of GSH
GSH levels were determined using a colorimetric GSH 
assay kit according to the manufacturer’s instruction. 
Briefly, cells (10 µg) were mixed with 30 µl 5% metaphos-
phoric acid, and then frozen and thawed twice using 
liquid nitrogen and 37  °C water. The samples were cen-
trifuged, and the supernatant was subjected to a GSH 
assay based on a kinetic enzymatic recycling method 
that detects the oxidation of GSH by 5,5′-dithiobis-2-ni-
trobenzoic acid (DTNB) and GSH reductase to measure 
the GSH content in cells74. The absorbance was meas-
ured at 412 nm with the Microplate Readers.

Xenograft tumor model
Female BALB/c nude mice (RRID: IMSR_
JCL:JCL:mID-0001, 4-weeks-old, purchased from Gem-
pharmatech-GD, Guangdong, China) were maintained 
in a specific pathogen-free room in the sterile animal 
facility. PYGL knock-down and control cells were cul-
tured in 100 mm culture dishes and collected by trypsin. 
The cells were injected subcutaneously into the sub-
mandibular region of BALB/c nude mice at a density of 
 106 in 100 μl medium. The mice were randomly divided 
into four groups: for the PYGL KD group, the mice were 
injected with PYGL KD tumor cells. For the cisplatin 
chemotherapy group, mice were administered injection 
of cisplatin (0.2 ml/20 g/d) and NaCl (0.4 ml/20 g/d), The 
control mice were administered the same volume of NaCl 
(0.6 ml/20 g/d). Tumor volumes were measured twice a 
day and calculated according to the following formula: 
0.5 × length ×  width2. The lung tissue was harvested for 
sectioning and slice culture to evaluate tumor metasta-
ses. All the section images were evaluated by two quali-
fied pathologists in the Department of Pathology of the 
Hospital of Stomatology, Guanghua School of Stomatol-
ogy, Sun Yat-sen University. When the results reported 
by the two pathologists were found to be consistent, they 
were considered as the verified outcomes. However, in 
case of any inconsistencies, a third pathologist from the 
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Department of Pathology would reevaluate the results. 
All the pathologists had obtained the Certificate of 
Licensed Practicing Physician (Medical examination and 
Pathology). Mice were euthanized after 60 days of obser-
vation. Our experimental procedures were approved by 
the Institutional Ethics Review Board.

Statistical analyses
Statistical analyses were performed with R (version 4.2.1) 
and GraphPad Prism 9.2. For comparisons between 
two groups, statistical significance was estimated using 
Wilcoxon test. For comparisons among three groups, 
Kruskal–Wallis test was applied. Pearson correlation 
analysis was used to determine the correlation between 
two variables. Survival analysis was performed by using a 
log-rank test. A p-value < 0.05 was considered statistically 
significant unless specified.

Results
Heterogeneity among HNSCC driven malignant metastasis 
was related to cell metabolism reprogramming
As a first step to uncover the organization of cellular 
hierarchies in HNSCC, we re-analyzed the scRNA-seq 
profiles covering 25 primary and 8 metastatic HNSCC 
samples, and notably classified malignant cells, endothe-
lial cells, fibroblast cells, monocytic cells, mast cells, T 
cells, and B/plasma cells (Fig.  2A, S2A and B). With a 
focus on the malignant population mainly triggering 
invasion and pathological state, malignant cells were 
extracted and re-clustered, while sample source was 
calculated for cluster identification. 5 clusters with high 
ratio of cells from primary cancer were named primary 
C1-C5, 2 clusters with abundant proportion of cells from 
metastatic tissue were named metastatic C1-C2, and the 
remain 2 clusters with hybrid sample origin were catego-
rized as Mixed C1-C2 (Fig.  2B, S3A and B). Markers of 
different clusters were shown in Fig.S3C. The identifica-
tion of cell clusters with different constitution revealed 
the existence of distinct cellular distribution in malignant 
cells, which provided a molecular basis for the known 
heterogeneity found within the malignant cells com-
partment [26]. Because metastatic clusters have more 
proportion of cells from metastatic tissue while primary 
clusters possess high ratio of cells from primary cancer, 

studying the heterogeneity between these two popula-
tions would provide cellular traits of tumor metastasis, 
which was considered as the behavior of later tumor 
period and associated with worse prognosis. Therefore, 
mixed clusters were discarded while characteristics of 
primary- and metastatic-specific populations were com-
pared in the subsequent analysis. Using pseudobulk, a 
method for DEGs detection that avoids the interfere of 
several over-expressed genes and therefore reduces the 
false positives [24], we obtained the DEGs between two 
specific populations (Fig.S4).

Functional analysis based on pathway information 
from KEGG database illustrated that DEGs of metas-
tasis-specific population were particularly enriched 
in several metabolism-related pathways including 
nucleotide metabolism, oxidative phosphorylation, 
purine metabolism, carbon metabolism and fatty 
acid metabolism (Fig.  2C), which indicated that cell 
metabolism reprogramming was supposed to be a 
magnitude explanation of HNSCC metastasis. Con-
sequently, we intersected genes from KEGG metabo-
lism-related pathways and genes expressed in HNSCC 
scRNA-seq profiles generated a set of genes named 
“META_ACTIVATE”. To investigate whether metab-
olism reprogramming was dynamic in metastasis 
population, GSEA was applied and the result showed 
that activity of most genes was inclined to activate in 
the metastasis-specific population (P.adjust = 0.038) 
(Fig. 2D). To quantify the metabolism activity in each 
cell, AUCell analysis, an efficient approach to identify 
cells with the META_ACTIVATE gene signature by 
evaluated threshold, was conducted, and we defined 
the cell with AUCell score exceeded than the thresh-
old calculated as “META- active” cells, while other 
cells were defined as “META-silent” cells (Fig. 2E). The 
distribution of AUCell score was markedly hoisted and 
surpassed the threshold in metastatic C1-C2 among 
all of the malignant clusters, while AUCell score was 
inferior in other clusters (2F and S5A). The result 
represented that META-active cell significantly asso-
ciated with metastasis, indicating that specific cell 
population could virtually influence the development 
of HNSCC. Additionally, 858 MRGs were screened out 
form the intersection between top marker genes of the 

(See figure on next page.)
Fig.2 Cellular populations of HNSCC correlated with metabolic properties and survival. A Diffusion map of cells from all sc-RNA samples, 
colored by cell-type annotation. B Diffusion map of malignant cells colored by cell proportion annotation, including 9 clusters. C KEGG pathway 
enrichment analysis of DEGs between primary- and metastatic-specific populations. D GSEA analysis of “META_ACTIVATE” gene signatures 
between primary- and metastatic-specific populations, which were at the right and left side respectively. E AUC score of all cells from HNSCC 
samples. The threshold was marked by red bar and the cells colored by darked blue exceeded the threshold value. F Diffusion map based 
on the AUC score with cells exceeded the threshold value marked. G Relative abundance of different cell populations by gene expression 
deconvolution in each patient from METArisk-high and METArisk-low groups. Each bar represents an individual patient, and the distribution 
of colors throughout each bar represents the distribution of cells. H Kaplan–Meier analysis for survival probability of the two METArisk groups
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“META-active” cells and META_ACTIVATE gene sig-
nature, which might serve as the potential metabolic 
biomarkers associated with tumor progression.

Meanwhile, expression profile of non-malignant 
cells from HNSCC microenvironment were integrated 
according to method depicted in the previous research 
on metabolic landscape of tumor microenvironment 
[23] for the downstream analyses.

Deconvolution of cell populations in HNSCC revealed 
active metabolic properties leading to poor clinical 
outcomes
We next sought to figure out how these defined 
HNSCC cell populations and the hierarchies which 
they are organized into relate to functional, biologi-
cal and clinical properties of HNSCC. Single-cell RNA 
sequencing analysis described the biological pattern 
provided the expression profile of META-active cell, 
META-silent cell and non-malignance cell, which ena-
bled us to perform CIBERSORTx [27], a scRNA-seq-
based gene expression deconvolution method to infer 
the cellular hierarchy composition in bulk HNSCC 
transcriptomes as 486 patient samples from TCGA 
database to examine how the metabolic properties 
vary across patient samples and how they relate to 
molecular and clinical features of HNSCC at scale in 
large clinical datasets (Fig. 2G). Obviously, we revealed 
the significant heterogeneity of cellular hierarchy 
composition among patients. Termed as “METArisk”, 
the proportion of META-active cells in each sample 
was calculated to describe the heterogeneity of cel-
lular hierarchy composition of each patient and two 
subgroups were identified according to the segmen-
tation value generated by optimal cutoff analysis: the 
“METArisk-high” group with higher METArisk and 
the “METArisk-low” group with lower METArisk (Fig.
S5B). Kaplan–Meier analysis showed remarkable dif-
ference in prognosis between METArisk-high and 
METArisk-low group, wherein METArisk-high was 
associated with worse prognosis and METArisk-low 
was associated with better prognosis (Fig.  2H), sug-
gesting that exploring the heterogeneity of METArisk 
group would contribute to finding specific biochemical 
characteristic lead to poor prognosis.

PYGL was identified as a significant metabolic biomarker 
provoking high METArisk and poor prognosis.
To further explore the underlying mechanisms for the 
observed association of METArisk and clinical outcomes 
of HNSCC, 56 candidate biomarkers were screened out 
after the intersection was taken using 858 MRGs of the 
META_ACTIVATE gene signature, DEGs between the 
two METArisk groups and those between tumor and 
normal samples (Fig.  3A). In consideration of the link 
between prognosis and gene expression, machine learn-
ing was employed to select biomarker that was closely 
correlated with the patient survival from the 56 candi-
dates. To select combination of machine learning meth-
ods with the best prediction ability, we counted C-index 
and finally chose SVM-RFE and Mutivariate Cox PH 
regression analysis (Fig.S6). SVM-RFE first screened 16 
genes related with overall survival (Fig.  3B), and multi-
variate Cox PH regression analyses identified four genes 
independently associated with clinical risk evaluated 
by both the outcomes and the survival time, includ-
ing EPHX3, FDCSP, FAM3B and PYGL (P < 0.05, and 
IDO1 was abandoned for P > 0.05) (Fig.  3C). To choose 
the metabolic biomarkers for intensive study, several 
analyses were conducted subsequently. Kaplan–Meier 
analysis showed that high expression of these genes led 
to better prognosis but for PYGL, which worsened the 
prognosis (Fig.  3D). Calculating the expression of four 
genes, PYGL was highly expressed in METArisk-high and 
tumor groups, while the others were highly expressed in 
METArisk-low and normal groups (Fig. 3E and S7). The 
different protein expression level of the four genes was 
detected by obtaining IHC staining image from the HPA 
database, which demonstrated that PYGL was highly 
expressed in HNSCC at translation level while the other 
was almost not expressed (Fig.  3F). RT-PCR experi-
ment was conducted to verify the different expression of 
the four genes, which also exhibited the same variation 
(Fig. 3G). Our research findings along with the biological 
functions of the four metabolic biomarkers were summa-
rized in Fig.  3H. Collectively, PYGL, the key element of 
the glycogen degradation process, was finally chose as the 
core biomarker of our research, for it was connected with 
high METArisk, led to poor prognosis, and was increas-
ingly expressed in tumor at both transcriptional and 
translational level of HNSCC samples, which might sever 

Fig.3 Identification of PYGL as a significant metabolic biomarker. A Venn diagram among METArisk-related DEGs, tumor-related DEGs and MRGs. 
B SVM-RFE used to select features having best discriminative capability for patient’s prognosis of HNSCC. C Multivariate Cox regression analyses 
discovered DEGs that can serve as independent predictors of clinical outcomes. D Kaplan–Meier survival curves of the four genes selected above. E 
Boxplot depicted the expression level of the four genes in METArisk-high and METArisk-low groups. F Representative IHC images of the four genes 
from the HPA database. G qRT-PCR analysis of the four genes. Relative mRNA expression level of tumor tissue compared with paracancerous tissure 
were exhibited in bar chart (n = 3). H The summary image of the four genes with research findings along with the biological functions

(See figure on next page.)
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as the driving factor for tumor-promoting cell metabo-
lism reprogramming.

PYGL was validated to stimulate HNSCC malignant 
behaviors and chemotherapy resistance.
To further explore the role of PYGL in HNSCC occur-
rence and development, we knocked down PYGL in 
HNSCC cell lines (HSC6 and CAL27) and verified the 
efficiency of transfection (Fig.  4A and B), and subse-
quently conducted a series of cell functional experiments. 
In cell proliferation assay, PYGL knock-down significantly 
suppressed HNSCC cell lines’ trend growth rate (Fig. 4C). 
In Transwell assay, migration (Fig.  4D) and invasion 
(Fig.  4E) of HNSCC cell lines was distinctly inhibited 
after PYGL knock-down. Immunofluorescence assay 
revealed that DNA damage occurred more frequently 
in PYGL knock-down group (Fig. 4F), and cell apoptosis 
analysis exposed that PYGL knock-down increased cell 
apoptosis rate (Fig. 4G). As the cellular alterations dem-
onstrated in  vitro, the expression of PYGL functionally 
promotes the malignant behavior of HNSCC, including 
promoting its growth, metastasis, invasion, and main-
taining DNA integrity.

In addition to malignant behaviors, we also investi-
gated the relationship between PYGL and chemotherapy 
resistance, another risk factor leading to poor progno-
sis in HNSCC. In accordance with ASCO Clinical Prac-
tice Guideline [28] and EHNS-ESMO-ESTRO Clinical 
Practice Guidelines [29], cisplatin was the first choice of 
chemotherapy to HNSCC, and consequently we imple-
mented “Oncopredict” R package to predict IC50 of cis-
platin in different groups. The METArisk-high group, 
with higher cellular hierarchy composition of META-
active cells and up-regulated expression of PYGL, was 
correlated with higher IC50 of cisplatin (Fig.  5A). Split-
ting the HNSCC patients into subgroups according to 
the expression level of PYGL, higher IC50 of cisplatin 
was also observed in the PYGL-high group (Fig. 5B), and 
computer analysis showed a correlation with PYGL and 
drug resistance in the CARE database (CARE score < 0 
in CCLE, CGP, CTRP respectively) (Fig.  5C), which 
indicated expression of PYGL was potential to induce 
chemotherapy resistance of cisplatin. Established by 
subcutaneously injecting HNSCC cell lines with PYGL 
knocked down into female BALB/c nude mice, xeno-
graft tumor model was applied to validate the function 
of PYGL to cisplatin resistance of HNSCC. As Fig.  5D 
and E revealed, xenograft derived from PYGL knock-
down cell lines was significantly diminished compared 
with the control, and cisplatin’s inhibition to HNSCC was 
also amplified at PYGL knock-down group. Furthermore, 
the effect of PYGL on HNSCC’s metastasis and its sup-
pression by cisplatin was examined by determining the 

metastatic nodules in the lungs 60 days after inoculation, 
which illustrated that size of pulmonary metastatic nod-
ules was suppressed while cisplatin’s function on metas-
tasis suppression was increased in PYGL knock-down 
groups (Fig.  5F). In line with the cell function experi-
ments in  vitro, we demonstrated that the expression 
of PYGL was closely associated with HNSCC’s growth 
and metastasis in vivo, and further revealed its relation-
ship with cisplatin’s resistance in the chemotherapy of 
HNSCC.

TP53’s suppression was involved in PYGL’s promoting 
HNSCC malignancy
As previous studies have already proved that suppres-
sion of TP53 was closely related with tumor progression, 
metastasis and chemotherapy resistance [30, 31], we also 
discovered that low TP53 expression was associated with 
higher IC50 of cisplatin (Fig. 6A) and TP53 had negative 
correlation with PYGL at transcriptional level (R = -0.332, 
P = 3.38e-14) (Fig. 6B), which drew to a speculation that 
PYGL might promote HNSCC’s chemotherapy resist-
ance by suppressing TP53’s expression. To further ascer-
tain the regulatory relationship between PYGL and TP53, 
cell experiment in  vitro was performed to demonstrate 
that PYGL knock-down activated the expression of TP53 
along with its downstream target gene P21 (Fig.  6C 
and D). Simultaneously, TP53’s expression obviously 
increased after knock-down employed on both PYGL 
and TP53 (Fig. 6E), which indicated that TP53 was on the 
downstream of PYGL’s regulation pathway. Moreover, 
flow cytometry assay detected that PYGL knock-down 
facilitated TP53’s function of cell cycle checkpoint on 
proliferative malignant cells in HNSCC, evidenced by the 
significantly increasing proportion of cell stagnated in G0 
stage (Fig. 6F and G). Basically, our findings verified the 
expression of PYGL suppressed TP53’s expression and 
function, leading to abnormal proliferation and chemo-
therapy resistance in HNSCC.

Glycogen degradation and GSH metabolism participated 
in PYGL’s promotion of HNSCC.
As mentioned earlier, METArisk phenotype related to 
cell metabolism reprogramming was potential to clas-
sify inter-patient heterogeneity and clinical outcomes 
in HNSCC; hence we next sought to identify the meta-
bolic characteristics that attributed to poor prognosis 
and correlated with PYGL’s expression. Employing gene 
set variation analysis (GSVA), we examined the activated 
discrepancy of 113 defined metabolism related path-
ways in PYGL-high and PYGL-low subgroups. Apart 
from glycogen degradation mediated directly by PYGL, 
several pathways including GSH metabolism, fruc-
tose and mannose metabolism, purine biosynthesis and 
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cardiolipin metabolism were also up-regulated in PYGL-
high group (Fig.  7A), and correlation analysis of these 
enriched pathways (Fig.S8) showed that PYGL-mediated 
glycogen degradation was significantly associated with 

GSH metabolism, wherein targeted analysis confirmed 
the positive correlation of the two pathways (R = 0.85, 
P < 2.2e-16) (Fig.  7B). To further determine the correla-
tion between PYGL and GSH metabolism, we conducted 

Fig.4 HNSCC malignant behaviors suppressed after PYGL knock-down. A and B qRT-PCR (A) and WB (B) analysis of the transfaction efficiency 
(n = 3 for independent experiments). C CCK-8 assay were used to detect cell proliferation capacities (n = 3). D and E Transwell assay were performed 
to examine cell potential of migration (D) and invasion (E). F Immunofluorescence staining showed the DNA damage (stained by γ-H2AX, red) 
in cells. Nuclei were counterstained with DAPI (blue) (n = 3). G Cell apoptosis was measured by flow cytometry assay. Cell was stained by AnnexinV 
and SSA-C and apoptotic cell was emphasized (n = 4)
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Fig.5 Chemotherapy resistance and metastasis of HNSCC promoted by PYGL. A Prediction of cisplatin IC50 in METArisk-high and METArisk-low 
groups. B Prediction of cisplatin IC50 in high and low PYGL expression groups. C Computational analysis of resistance with PYGL of cisplatin 
in the CARE database. D Tumor growth was measured once a week in tumor-bearing nude mice stably transfected with HNSCC cells (n = 5). E The 
tumors were removed, and the tumor weight was analyzed after the mice were executed. F Metastasis of HNSCC was measured by the results 
of hematoxylin–eosin staining of mice lung tissue



Page 14 of 21Guan et al. J Exp Clin Cancer Res          (2023) 42:162 

Fig.6 PYGL promoted HNSCC malignancy by suppressing TP53 expression. A Prediction of cisplatin IC50 in high and low TP53 expression groups. 
B Pearson correlation analysis between PYGL and TP53 expression. C qRT-PCR of TP53 and P21 in PYGL knock-down groups (n = 3). D Western blot 
of p53 and p21 in PYGL knock-down groups. E Western blot of pygl and p53 in PYGL and TP53 knock-down groups. F Flow cytometry using DAPI 
and Ki67 for cell cycle phase ratio analysis in PYGL knock-down groups (n = 3). G Statistics of cell cycle phase ratios analyzed in Fig. 5F

Fig.7 GSH metabolism correlated with PYGL-mediated glycogen degradation and poor prognosis. A GSVA between PYGL-low and PYGL-high 
group. B Correlation analysis between glycogen degradation and GSH metabolism. C Consensus map for NMF clustering. D Kaplan–Meier curves 
for survival probability of the two clusters. E The result of PAS and 2-NBDG assay in PYGL knock-down groups (n = 5). F Glycogen accumulation 
in PYGL knock-down groups was detected by standardized PAS staining. G The level of GSH and ROS in PYGL knock-down groups (n = 5). H ROS level 
was measured by ROS detection in PYGL knock-down groups

(See figure on next page.)
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Fig.7 (See legend on previous page.)
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serious correlation analysis between PYGL and genes of 
GSH metabolism pathway, which demonstrated the posi-
tive correlations between PYGL and nine genes motivat-
ing GSH metabolism at transcriptional level (R > 0.5, 
P < 2.2e-16) (Fig.S9). GSS and GCLM express enzymes 
that synthesize GSH; GSR, IDH1 and G6PD express 
enzymes promoting the transform progress from oxi-
dized glutathione (GSSG) to GSH; GSTA1, GSTM3 
and GSTM4 express the oxidoreductases of the redox 
reaction between GSH and peroxide; GPX2 expresses 
invertase catalyzing the biochemical reaction from GSH 
to GSSG, which serves as a significant biological progress 
for cells to dispose the majority of ROS. Results above 
all indicated that PYGL has significant correlation with 
GSH metabolism pathway. To explore the role of GSH 
metabolism in HNSCC, NMF cluster analysis based on 
the genes of GSH metabolism pathway were applied and 
HNSCC cohort was categorized into GSH-active cluster 
and GSH-silent cluster according to the distinct activa-
tion pattern of the pathway (Fig. 7C). Based on these two 
clusters, a series of analyses were conducted to inves-
tigate the impact of GSH metabolism on HNSCC. By 
using ESTIMATE algorithm, a method evaluating tumor 
microenvironment, the lower ESTIMATE scores repre-
senting for inferior immune infiltration, and the higher 
tumor purity scores suggesting superior malignancy, 
were both observed in GSH-active cluster, indicating that 
GSH metabolism pathway is associated with HNSCC 
malignancy. (Fig.S10A and B). Moreover, Kaplan–Meier 
analysis on two clusters also illustrated the relationship 
between GSH metabolism and poor prognosis of patients 
with HNSCC, as GSH-active cluster exhibited worse clin-
ical outcomes than GSH-silent cluster (Fig.  7D). These 
results represented that the activation of GSH metabo-
lism performed similar effect on tumor malignancy as 
PYGL activation, and also could lead to poor prognosis, 
illustrating that GSH probably in the same regulation 
pathway with PYGL in HNSCC.

To further investigate the underlying regulatory rela-
tionship of PYGL-mediated glycogen degradation and 
GSH metabolism, we examined the variations of these 
two biochemical processes after PYGL knock-down. 
Standardized PAS staining and 2-NBDG detection 
revealed the increasing glycogen accumulation in PYGL 
knock-down groups (Fig. 7E and F), which indicated that 
glycogen degradation was blocked after the suppression 
of PYGL. Inhibition of glycogen degradation possibly 
led to reduction of glucose-6-phosphate (G6P) that was 
indispensable for the synthesis of GSH through pen-
tose phosphate pathway, and decreasing GSH level was 
detected in PYGL knock-down groups (Fig.  7G). The 
consumption of ROS by GSH, an essential biological 

process maintaining the normal cells, was reported as an 
approach for malignant cells escaping the surveillance by 
TP53 [32]. By conducting ROS detection, we observed 
the rise of ROS after PYGL knock-down (Fig. 7G and H), 
which illustrated that PYGL probably suppressed TP53 
through ROS consumption mediated by GSH metabo-
lism and ultimately promoted the evolvement of HNSCC.

Discussion
Cancer cells must react rapidly to internal and external 
stimuli to maintain high proliferation rates and survive 
in unfavorable environment with low oxygen, nutrition 
deficiency, and even chemotherapy drug intoxication. 
One way is to reprogram cell metabolism, thus affecting 
intra- and extra-cellular metabolites, which can have a 
major impact on gene expression, cellular differentiation 
and tumor microenvironment [9, 33]. Such metabolic 
reprogramming, especially in energy metabolism, has 
long been accepted as a hallmark and general phenom-
enon of tumors. For example, glycolysis has been found 
to significantly influence tumor development, metastasis 
and treatment susceptibility through a variety of biologi-
cal processes [34]. Thus, the flexible and sophisticated 
metabolic network of cancer cells, as a hub for numerous 
cellular signaling pathways, may provide new therapeu-
tic targets in the treatment of cancer [35]. Recent studies 
on metabolic reprogramming in HNSCC have provided 
promising potential targets in the treatment of HNSCC 
[36–38], demonstrating that comprehensively research 
on metabolic heterogeneity and relevant metabolic 
mechanisms is significantly demanded.

Primarily based on bulk RNA-seq, previous multi-
patient sample transcriptomics studies on HNSCC 
mostly concentrated on screening prognostic genes [39] 
and predicting clinical outcomes [40], but with little con-
cerns of intercellular heterogeneity. Simultaneously, sin-
gle-cell sequencing studies on HNSCC mainly focused 
on functions of various cell component [41], discovery 
of new cell subsets [42], and investigation of intercellular 
heterogeneity [43], but were lack of the analyses between 
specific tumor cell subsets and patients prognosis for 
the limitation of small sample size. With combination of 
single-cell analysis and multi-patient sample sequencing, 
we firstly explored the relationship between specific cell 
subsets and prognosis in HNSCC, and HNSCC patients 
were classified from the perspective of unique metasta-
sis-related malignant cell populations for further selec-
tion on therapeutic targets.

In our study, we first conducted single-cell RNA 
sequencing studies to investigate the metabolic hetero-
geneity in primary and metastatic samples from HNSCC 
patients. Combined with several functional analyses 
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and AUCell algorithm, we revealed that the HNSCC 
metastases showed increased abundance of a specific 
cluster of malignant cells termed as META-active cells, 
which possessed high metabolic activity compared with 
the primary tumor. Analysis of patient-specific varia-
tion in hierarchy composition captured and integrated 
genomic profiles from single-cell and bulk RNA sequenc-
ing and clinical outcomes from large cohorts and func-
tional properties of cancer metabolism within a single 
classification framework, which classified samples into 
METArisk-high group and METArisk-low group accord-
ing to the proportion of METAactive malignant cells. 
METArisk-high group with high proportion of METAac-
tive malignant cells showed lower overall survival, imply-
ing that metabolic heterogeneity might serve as a crucial 
factor affecting the prognosis of HNSCC. In order to fig-
ure out the biomarkers associated with the distinction of 
the hierarchy composition and clinical outcomes, we per-
formed SVM-RFE and multivariate Cox regression analy-
ses on the DEMRGs between the high and low METArisk 
groups. PYGL was finally selected as the key biomarker 
of our research, for it can lead to poorer prognosis, and 
was highly expressed both in tumor and METArisk-high 
group in transcriptional level, and also in HNSCC sam-
ples in translational level.

PYGL, located on chromosome 14q22.1 with 20 exons 
in total [44], is one of the genes related to hypoxia metab-
olism and was found to be up regulated in HNSCC [45]. 
PYGL is expressed as glycogen phosphorylase (GP), the 
key enzyme of glycogenolysis, which is responsible for 
the release of glycose-1-phosphate (G1P) from hepatic 
and muscle glycogen under physiological conditions [46]. 
In malignant cells, GP is involved in the glycogen catabo-
lism and antioxidant defenses [47]. In previous studies, 
PYGL was reported as a gene signature derived from 
HNSCC, which defines the hypoxia ‘metagene’ [45]. It is 
also upregulated in several other cancers, such as semi-
noma, brain cancer and papillary renal cell carcinoma, 
as shown at oncomine website (https:// www. oncom ine. 
org/) [48]. Previous researches also reported that PYGL 
could promote metastasis in pancreatic cancer [49], while 
disruption of PYGL induces necroptosis [50]. Moreover, 
inhibitors of glycogen degradation metabolism regu-
lated by PYGL has already been discovered like CP91149, 
CP320626 and Flavoperidol, but neither of them has 
been applied in HNSCC treatment [51–54], implicat-
ing a great potential of PYGL targeting therapy. Despite 
these findings, the underlying molecular mechanisms 
between PYGL and HNSCC are yet to be clarified. Thus, 
we combined significant metabolic signatures aforemen-
tioned and performed further research to identify possi-
ble pathways.

Cell apoptosis and nuclear DNA damage remarkably 
increased while cell proliferation ability and the poten-
tial of migration and invasion diminished in PYGL 
knock-down HNSCC cells, which illustrated that PYGL 
can promote the malignancy of HNSCC. Drug resist-
ance analysis and xenograft tumor model supported 
that PYGL enhanced the resistance of HNSCC to cis-
platin, leading to its progression and metastasis. It was 
reported that expression of TP53 markedly enhanced 
the susceptibility to cisplatin and cisplatin-induced 
cell death in variable cancers [55–57], and we discov-
ered that low TP53 expression in HNSCC was closely 
associated with higher IC50 of cisplatin while TP53 
was proved to have negative correlation with PYGL in 
expression level. The following experiment confirmed 
the speculation that PYGL can promote HNSCC’s 
evolvement by suppressing TP53, which was function-
ally verified by the discovery that PYGL knock-down 
resulted in a higher proportion of cells in G0 phase and 
lower proportion of both G1/S/M and G2 phase.

Correlation analysis of enriched metabolic path-
ways based on GSVA illustrated that GSH metabolism 
was significantly correlated with glycogen degradation 
regulated by PYGL, which was simultaneously con-
firmed at the transcriptional level. NMF and ESTI-
MATE analysis further revealed the activation of GSH 
metabolism pathway was closely related to higher 
tumor malignance and poorer prognosis. GSH metabo-
lism on tumor has been discussed in previous research 
and was certified to affect tumor in different ways. As 
an important antioxidant in organisms, GSH expends 
ROS to control oxidative stress in tumor and promote 
tumor development, which was demonstrated in breast 
cancer [58], prostate cancer [59], and liver cancer [60]. 
GSH can also affect the apoptotic process by regulat-
ing the anti-apoptotic proteins and caspase activity of 
the Bcl-2 family, which was certified in breast cancer 
[61]. Ferroptosis was detected to be suppressed by GSH 
simultaneously in liver cancer [62] and triple-negative 
breast cancer [63]. Additionally, GSH was proved to 
enhance cisplatin resistance of tumor by several path-
ways [64]. However, the mechanism of GSH on HNSCC 
was still not clearly determined. Here, we demon-
strated that PYGL can promote HNSCC’s evolvement 
by activating GSH metabolism and downstream path-
way. PYGL catalyzes glycogen phosphorylation, and 
the degradation metabolite G1P transforms into G6P, 
which produces NADPH from pentose phosphate path-
way. With the participation of NADPH, GSH reduc-
tase (GR) can reduce GSSG to GSH [65], decreasing 
ROS in tumor cells. Previous researches proved cell 
death by the activation of p53 was closely correlated 

https://www.oncomine.org/
https://www.oncomine.org/
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with the accumulation of cellular ROS [66, 67]. Besides, 
the reduction of ROS can suppress p53’s function and 
promote the progression of tumor [68, 69]. To sum up, 
PYGL activates GSH metabolism to reduce ROS level, 
which suppresses the function of TP53, and ultimately 
promotes the evolvement and decrease the chemosen-
sitivity of HNSCC.

There are also some limitations in our study. For 
instance, single-cell samples can be further expanded 
to reduce selection bias and ensure the randomness. 
It’s also a better consideration to generalize our model 

for studies on other cancer, which can not only demon-
strate its universality but also expand the study for exca-
vating the metabolic pathways. Furthermore, generally 
recognized as a complex network, tumor development 
can be affected by multiple factors via the GSH/ROS/
p53 pathway. PYGL knock-down is bound to change the 
expression of other molecules, which probably affects 
the function of p53 and thus influences the long-term 
efficacy. Finally, we were not able to collect and adjust all 
the potential confounding factors in our Kaplan–Meier 
analysis, which may cause bias in our survival analysis. 

Fig.8 PYGL can serve as a therapeutic target for HNSCC
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In addition to our current discoveries, further systemic 
studies are demanded to clarify relational molecular 
mechanism and conduct corresponding clinical studies 
in the future.

Conclusion
Collectively, our study revealed cell metabolism repro-
gramming was a crucial risk factor for HNSCC through 
the discovery of a unique cluster of malignant cells with 
high metabolic activity in metastatic samples and the 
construction of METArisk phenotype which illustrated 
the composition of each patient’s cell hierarchy and cor-
related with the poor prognosis. Furthermore, analyses of 
the DEMRGs in METArisk phenotypes suggested PYGL, 
the key biomarker in glycogen degradation, was strongly 
potential to guide the development and drug resist-
ance of HNSCC by the PYGL/GSH/ROS/p53 pathway, 
thereby setting the foundation for new clinical therapies 
of HNSCC in the future (Fig. 8).
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