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Abstract 

Macrophages are highly plastic in different tissues and can differentiate into functional subpopulations under differ‑
ent stimuli. Tumor‑associated macrophages (TAMs) are one of the most important innate immune cells implicated 
in the establishment of an immunosuppressive tumor microenvironment (TME). Recent evidence pinpoints the criti‑
cal role of metabolic reprogramming in dictating pro‑tumorigenic functions of TAMs. Both tumor cells and mac‑
rophages undergo metabolic reprogramming to meet energy demands in the TME. Understanding the metabolic 
rewiring in TAMs can shed light on immune escape mechanisms and provide insights into repolarizing TAMs 
towards anti‑tumorigenic function. Here, we discuss how metabolism impinges on the functional divergence of mac‑
rophages and its relevance to macrophage polarization in the TME.
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Background
Tissue-resident macrophages have been recognized as 
integral components in different organs, and their func-
tional polarization contributes to localized immune 
responses, tissue repair and homeostasis [1]. Mac-
rophage-mediated extracellular matrix remodeling and 
angiogenesis participate in normal physiological devel-
opment [2, 3]. Liver macrophages (also known as Kupffer 
cells) function to scavenge products derived from iron 
metabolism and intestinal derivatives [4]. Pulmonary 
macrophages are involved in the immune defense against 

invading pathogens as well as the maintenance of alveolar 
microenvironment by clearing pollutant and surfactant 
[5]. Perturbation of macrophage function is implicated in 
pathophysiological conditions such as metabolic disor-
ders (obesity and arteriosclerosis), chronic inflammation 
(colitis and multiple sclerosis) and cancer progression 
[6–8].

Macrophage infiltration in the tumor microenviron-
ment (TME) is a common determinant of the immuno-
suppression in different tumors [9]. TME represents a 
unique milieu for complex interactions between can-
cerous cells and immune cells. TME is characterized 
by a low-pH, hypoxic and sugar-deficient, and the lac-
tic acid, lipids and cytokines-enriched milieu where 
the reprogramming of tumor-associated macrophages 
(TAMs) towards pro-tumorigenic phenotype is favored 
[10]. TAMs can not be simply defined by M1/M2 mac-
rophage dichotomy since they possess mixed features 
of M1 and M2 macrophages [11, 12]. The expression of 
special receptor tyrosine kinases such as Tyro3, Axl, 
and MerTK has been reported in TAMs, and these 
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receptors are implicated in the interaction with tumor 
cells, macrophage polarization and efferocytosis [13]. 
TAMs secrete a variety of factors, such as vascular 
endothelial growth factor (VEGF), to promote neo-
vascularization and the metastasis of cancer cells [14]. 
Tumor-infiltrating macrophages also serve as the main 
source of anti-inflammatory cytokine IL-10 to establish 
an immunosuppressive TME [15]. There exist different 
macrophage subpopulations in a state between M1- and 
M2-type in the TME, which complicates the functional 
diversity of TAMs [16]. Nevertheless, recent evidence 
pinpoints the critical roles of metabolic reprogram-
ming in dictating functional specification of TAMs [17]. 
Understanding the metabolic rewiring in TAMs provides 
opportunities to repolarize TAMs towards anti-tumori-
genic function.

In this review, we summarize different signaling path-
ways involved in the metabolic rewiring of macrophage 
polarization, delineate the metabolic pattern of TAMs, 
and highlight TME-derived metabolites that regulate the 
functional polarization of TAMs. We also discuss recent 
developments in employing metabolic reprogramming to 
repolarize TAMs for anti-cancer purpose.

Metabolic pattern of TAMs
Macrophages are one of the most predominant immune 
cell types in the TME, where TAMs can be repro-
grammed into pro-tumorigenic phenotype to facilitate 
tumor progression or anti-tumorigenic phenotype to 
exert tumoricidal function. Although TAMs are predom-
inantly polarized into M2-like pro-tumorigenic state in 
the TME, the high degree of macrophage plasticity allows 
re-directing TAMs into M1-like tumor-suppressive state. 
Distinct metabolic profiles underpin the functional spe-
cialization of macrophages in the TME [18]. Under-
standing the specific metabolic patterns of M1 and M2 
polarization state is crucial for the metabolic manipula-
tion of TAM activity in the TME.

Glycolysis and pentose phosphate pathway
One of the hallmarks in cancer metabolism is the War-
burg effect, which is characterized by the preferential 
conversion of glucose to pyruvate without engaging mito-
chondrial aerobic metabolism [19]. M1 macrophages 
rely heavily on glycolysis for fighting pathogens and 
tumor cells. The metabolic intermediates of aerobic gly-
colysis can be rerouted into oxidative pentose phosphate 
pathway (PPP), through which nicotinamide adenine 
dinucleotide phosphate (NADPH) is generated. NADPH-
dependent reactive oxygen species (ROS) generation by 
NADPH oxidases (NOXs) is essential for the phagocytic 
and tumoricidal effects of M1 macrophages (Fig. 1) [20, 
21]. The suppression of glycolysis and PPP attenuated 

LPS-induced inflammatory polarization of macrophage 
[22, 23], indicating the essential role of aerobic glycoly-
sis and PPP in M1 macrophage differentiation. Glycoly-
sis and PPP may promote the inflammatory response in 
macrophages by mediating NOX2 oxidase activity and 
IFN-β-dependent responses [24]. A recent study dem-
onstrated that RNA-binding motif 4 (RBM4), an mRNA 
binding protein interacting with signal transducer and 
activator of transcription 1 (STAT1) mRNA, can sup-
press IFN-γ-induced M1 macrophage polarization by 
destabilizing STAT1 mRNA and downregulating glycol-
ysis-related genes [25]. Nevertheless, the detailed mech-
anisms how aerobic glycolysis and PPP orchestrates the 
gene programs in M1 macrophages remain unclear.

Although M2 macrophage preferentially rely on fatty 
acid oxidation and mitochondrial metabolism, glyco-
lysis is also required for supporting M2-like phenotype. 
Glucose uptake is increased over time in IL-4 polar-
ized macrophages [26], and glycolysis inhibition by 
2-Deoxy-d-glucose (2-DG) suppresses the M2 polari-
zation [26–28]. In human melanoma-derived TAMs, 
accelerated aerobic glycolysis is required to support the 
M2-like polarization since glycolysis inhibition damp-
ens the expression of M2 markers [29]. Nevertheless, 
there is evidence that glycolysis is not mandatory for the 
M2 polarization of macrophages if mitochondrial activ-
ity and oxidative phosphorylation (OXPHOS) remains 
intact [30]. The discrepancy of these studies may result 
from the differential effect of glucose deprivation and 
glycolysis inhibition by 2-DG. Although 2-DG is widely 
used as a glycolytic inhibitor, it is not specific and could 
affect OXPHOS differentially at different doses [30]. 
Genetic perturbation of glycolytic genes would be a supe-
rior approach to show the necessity of glycolysis in sup-
porting functional M2 macrophage. Together, current 
knowledge favors the notion that glycolysis serves as a 
metabolic support for OXPHOS in the M2 polarization.

Although TAMs are believed to predominantly rely on 
OXPHOS and fatty acid oxidation (FAO) to metabolically 
support the pro-tumorigenic phenotype in a glucose-
deficient TME, recent evidence from in vivo glucose trac-
ing demonstrated the greatest glucose uptake capacity of 
myeloid cells in the TME and the preferential usage of 
glutamine by cancer cells, suggesting the nutrient parti-
tioning by immune and cancerous cells [31]. Several lines 
of evidence also showed the upregulation of glycolytic 
genes in macrophages cultured in tumor-conditioning 
medium [32, 33]. Further, lactate production by glycolytic 
cancer cells can induce the upregulation of HIF-1α in 
TAMs to enhance the expression of glycolytic genes and 
M2-like state [34]. Therefore, glycolysis is an important 
metabolic process sustaining the functional phenotype of 
TAMs.
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The TCA cycle
The tricarboxylic acid (TCA) cycle is the key metabolic 
circuit of aerobic respiration in mitochondria. Follow-
ing M1 polarization, macrophages show a highly gly-
colytic phenotype with reduced mitochondrial activity 
[35]. The diminished mitochondrial activity is associ-
ated with the truncated TCA cycling characterized by 
succinate accumulation and impaired metabolic flux 
through isocitrate dehydrogenase (IDH). It was found 
that inflammatory cytokines could upregulate aco-
nitate decarboxylase 1 (ACOD1, also known as IRG1), 
an enzyme catalyzing itaconate (ITA) production from 
cis-aconitate of the TCA cycle during M1 macrophage 
polarization [36, 37]. ITA serves as a direct inhibitor of 
succinate dehydrogenase (SDH), leading to succinate 
accumulation during macrophage inflammatory acti-
vation [38]. IRG1-deficient macrophages without ITA 
synthesis showed increased cytokine production after 

being stimulated with LPS, suggesting an anti-inflam-
matory function of ITA. Since succinate accumulation 
stabilizes HIF-1α and increases the production of IL-1β 
[39], the truncated TCA cycle at succinate breakpoint 
can support the inflammatory polarization of mac-
rophages, while ITA could fine tune the inflammatory 
responses. The impaired TCA cycle is also accom-
panied by an active aspartate-arginosuccinate shunt 
which relies on aspartate aminotransferase to produce 
L-arginine for nitric oxide (NO) synthesis [35]. Herein, 
the truncated TCA cycle supplies the intermediate for 
ROS production in M1 polarization.

In contrast, M2-polarized macrophages contain more 
mitochondria and show elevated oxygen consump-
tion rate [40]. Unlike M1 macrophages which depend 
on glycolysis to fuel the TCA cycle, M2 macrophages 
tend to utilize glutamine to drive the TCA cycle [35]. 

Fig. 1 Distinct metabolic patterns of M1 and M2 macrophages. In M1 macrophages high gycolytic flux and the shunting of intermediates 
to PPP favor ROS production. The TCA cycle is truncated due to the expression of IRG1 and the impaired IDH activity. Itaconate production 
inhibits SDH and succinate accumulation further stabilizes HIF‑1α to strengthen glycolysis. M2 macrophages reply on β‑oxidation of fatty acids 
and glutaminolysis to drive TCA cycle. The production of polyamines and proline from L‑arginine facilitate tumorigenesis. Abbreviations: α‑KG, 
α‑ketoglutarate; ARG1, arginase 1; FAO, fatty acid oxidation; GLS, glutaminase; HIF‑1α, hypoxia inducible factor‑1α; IDH, isocitrate dehydrogenase; 
iNOS, inducible nitric oxide synthase; IRG1, aconitate decarboxylase 1; NO, nitric oxide; NOXs, NADPH oxidases; PPP, pentose phosphate pathway; 
ROS, reactive oxygen species; SDH, succinate dehydrogenase; TCA, tricarboxylic acid (Created with BioRe nder. com)

https://www.BioRender.com
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Indeed, the M2 polarization remains unaffected in the 
deprivation of glucose if the mitochondrial activity 
and OXPHOS are preserved [30]. The increased num-
ber of functional mitochondria and the integrity of the 
TCA cycle in M2 macrophages allow M2 macrophages 
to exhibit significant plasticity and easily repolarize to 
the M1 state [41]. M1 macrophages with diminished 
OXPHOS and mitochondrial activity are resistant to 
M2 repolarization. Of note, different from L-arginine-
dependent NO generation in M1 macrophages, M2 
macrophages produce polyamines and L-proline from 
L-arginine to suppress inflammation [42]. Blocking NO 
production improves mitochondrial activity and facili-
tates the reprogramming from M1 to M2 state [41]. 
These observations collectively indicate that TCA cycle 
rewiring not only underpins the functional divergence 
of macrophages, but also has implication in the func-
tional plasticity.

In macrophages isolated from tumor tissues, both the 
oxygen consumption rate (OCR) and extracellular acidi-
fication rate (ECAR) are higher than tumor cells and 
tumor-infiltrated T cells [31], indicating the continuous 
firing of both aerobic glycolysis and mitochondrial activ-
ity in TAMs. There is also evidence that a subpopulation 
of TAMs can use lactate to fuel the TCA cycle [43]. TCA 
cycle is interconnected with a variety of metabolic path-
ways to contribute to the pro-tumorigenic functions in 
TAMs, which can be rewired to repolarize the state of 
TAMs.

Fatty acid metabolism
Elevated lipid synthesis is considered as a metabolic hall-
mark in carcinogenesis [44], and an important metabolic 
feature of M2-like macrophages in tumor tissues is the 
increased FAO. Fatty acids can be obtained directly from 
the external microenvironment or synthesized through 
intracellular lipogenesis. During M2 polarization, fatty 
acid uptake by the scavenger receptor CD36 and the 
lipolysis provide carbon source for FAO to fuel the TCA 
cycle and support the OXPHOS [45]. There is a concomi-
tant upregulation of genes in fatty acid uptake, lipolysis 
and FAO upon M2 polarization. FAO supports the pro-
tumorigenic potential of TAMs, as the inhibition of FAO 
suppresses tumorigenesis by promoting the anti-tum-
origenic property of TAMs [46]. A recent work further 
demonstrated that IL-4 polarized and tumor-associated 
macrophages show increased activity of protein kinase 
RNA-like ER kinase (PERK), which is required to sustain 
FAO and mitochondrial activity by promoting serine bio-
synthesis. The depletion of PERK impairs the immuno-
suppressive phenotype of TAMs by dampening FAO and 
mitochondrial respiration [47].

However, if fatty acid biosynthesis and FAO are simul-
taneously induced, macrophages tend to polarize into 
anti-tumorigenic direction [31]. The application of Toll-
like receptor 9 (TLR9) agonist shows anti-tumor effect by 
driving the metabolic reprogramming in macrophages. 
TLR9 signaling activation enables both FAO and the 
shunting of TCA cycle intermediates for lipogenesis, and 
carnitine palmitoyltransferase 1 (CPT-1, for fatty acid 
import to mitochondria) and adenosine triphosphate 
citrate lyase (ACL, for converting citrate to acetyl-CoA) 
coordinate the metabolic flow of FAO and lipogenesis 
[48]. The de novo biosynthesis of cholesterol is believed 
to improve the fluidity of cell membrane and enhance 
anti-tumor phagocytosis in TAMs. These results pro-
vide novel insights into how the coupling of lipid catabo-
lism and anabolism impinges on macrophage function. 
It remains to be clarified whether the biosynthesis of 
lipids other than cholesterol also regulates the activity of 
macrophages.

Glutamine metabolism
Glutamine, the most abundant circulating amino acid 
in blood, is closely associated with the metabolic needs 
in cancer cells, such as the supply of metabolites in the 
TCA cycle and the production of antioxidant glutathione 
[49]. Glutaminolysis-dependent pathway preferentially 
promotes M2 polarization. IL-4 stimulation leads to the 
increased uptake of glutamine in macrophages, which 
may depend on the upregulation of glutamine trans-
porter [50]. Glutamine deprivation exerts profound 
effects on M2 polarization, including the reduced expres-
sion of M2 markers and attenuated TCA cycle, whereas 
M1 polarization seems unaffected [35]. In another 
independent study, glutamine removal also impairs the 
expression of M2-specific markers after IL-4 stimula-
tion, while the expression of M1-specific markers after 
LPS activation shows upregulation when compared to 
the macrophages activated in glutamine-replete medium 
[51]. Thus, glutamine is essential for M2 polarization. 
Further investigation revealed the critical role of glu-
tamine catabolic product α-ketoglutarate (α-KG) in sup-
porting M2 polarization. Inhibiting glutaminase 1 (an 
enzyme for glutamine hydrolysis) impairs M2 pheno-
type after IL-4 polarization, and the supplementation of 
dimethyl-αKG (an analog of α-KG) is able to restore M2 
phenotype. As an intermediate metabolite in the TCA 
cycle, α-KG fuels the TCA cycle to increase FAO and 
OXPHOS in M2 macrophages and drives the epigenetic 
reprogramming of M2 genes in a histone methylation-
dependent fashion. In addition, M2 macrophages favor 
α-KG accumulation by dampening the enzymatic activity 
of α-KG dehydrogenase, and the increased ratio of α-KG/
succinate suppresses the expression of inflammatory 
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genes by inhibiting Nuclear factor-κB (NF-κB) [51]. Simi-
larly, a recent study reported that IL-4 dependent acti-
vation of mitochondria-localized sirtuin-3 deacetylates 
glutamate dehydrogenase 1 (GLUD1), which enhances 
GLUD1 activity to accelerate glutaminolysis and α-KG 
production, leading to the alternative activation of M2 
macrophages [52]. Notably, the TCA cycle breakpoints, 
including attenuated isocitrate to α-KG conversion [35] 
and the shunting of cis-aconitate to itaconate [38], help 
maintain a low level of α-KG in M1 macrophages. There-
fore, α-KG serves as a metabolic hub of tailoring mac-
rophage immune responses.

Since tumor cells are highly addicted to glutamine [31], 
how TAMs compete with tumor cells for glutamine is 
elusive. A recent work revealed that glutamine-addicted 
ovarian cancer cells secrete N-acetylaspartate metabo-
lite which acts as a signaling molecule to upregulate glu-
tamine synthetase (GS) in TAMs and support the M2-like 
state [53]. Macrophage-specific ablation of GS in tumor-
bearing mice redirects TAMs toward an anti-tumorigenic 
M1-like state [54, 55]. Intriguingly, under glutamine-
deprived condition macrophages tend to overexpress GS 
to replenish cellular level of glutamine [55, 56]. There-
fore, glutamine overconsumption by tumor cells creates a 
glutamine-deficient TME where the induced GS expres-
sion might support the pro-tumorigenic state of TAMs.

Signaling pathways involved in macrophage 
metabolic reprogramming
Macrophages have been conventionally classified into 
two phenotypes based on their activation status and 
function. M1 macrophages are classically differentiated 
and activated by interferon gamma (IFN-γ, IFNG) and 
lipopolysaccharide (LPS), while M2 macrophages are 
alternatively activated by T helper cell 2 (Th 2) cytokines, 
including interleukin-4 (IL-4) and Interleukin-13 (IL-13). 
The functional polarization is accompanied by the meta-
bolic rewiring, manifesting as the preferential glycolysis 
in M1 macrophages and the domination of OXPHOS and  
FAO in M2 macrophages. In this section, we summarize 
the signaling pathways implicated in macrophage meta-
bolic reprogramming, mainly focusing on phosphatidyl 
inositol 3-kinase(PI3K)/protein kinase B (AKT) pathway, 
hypoxia inducible factor (HIF), adenosine 5’-monophos-
phate–activated protein kinase (AMPK) and peroxisome 
proliferator activation receptors (PPARs) (Fig. 2).

PI3K/AKT/mTOR Pathway
Since Bellacosae et  al. Characterized AKT as an onco-
gene 32 years ago [57] and Franke et al. identified PI3K 
as its upstream regulator [58], the roles of PI3K/AKT in 
various cell types and cellular processes have been expen-
sively studied. The regulation of PI3K/AKT pathway in 

macrophages is not only restricted to cell survival, migra-
tion and proliferation, this pathway also engages in the 
metabolic responses to inflammatory signals [59]. Signals 
from Toll-like receptors (TLRs), cytokines, Fc receptors 
(FCR) and other pathogen recognition receptors acti-
vate PI3K [59–61]. The activated kinase activity of PI3K 
converts phosphatidylinositol 4,5-bisphosphate (PIP2) 
to phosphatidylinositol 3,4,5-triphosphate (PIP3) at the 
plasma membrane. PIP3 serves as the membrane anchor 
for AKT which is then activated by pyruvate dehydroge-
nase kinase isozyme 1 (PDK1) and mammalian target of 
rapamycin complex 2 (mTORC2) [61]. LPS and IFN-γ 
stimulation causes the metabolic shift towards glycolysis 
and PPP in M1 polarization in vitro, a process dependent 
on PI3K/AKT signaling, and glycolysis inhibition sup-
presses the inflammatory polarization in macrophages 
[62]. Silencing AKT attenuates glycolytic shift and mac-
rophage activation during M1-like polarization [63], 
suggesting the pivotal role of AKT-dependent metabolic 
pathway in  classical M1 polarization.

mTOR is a serine/threonine protein kinase and the 
downstream effector of PI3K and AKT signal transduc-
tion. mTOR interacts with other protein adaptors to 
form two different complexes, mTORC1 (with Raptor) 
and mTORC2 (with Rictor) [64]. mTORC1 activation is 
known to promote the expression of metabolic genes in 
glycolysis and PPP [65]. However, the role of mTORC1 
in macrophage polarization is controversial. As shown 
by pharmaceutical inhibition, mTORC1-dependent gly-
colysis is indispensable for the inflammatory polarization 
of macrophage induced by LPS [66], In addition, PI3K/
AKT/mTOR-mediated aerobic glycolysis is essential for 
the persistent inflammatory phenotype of M1-like mac-
rophages in the mouse model of trained immunity [67]. 
On the other hand, IL-4 signaling also activates AKT-
mTORC1 pathway to phosphorylate and activate ATP-
citrate lyase (ACLY, a key enzyme in converting citrate 
to acetyl-CoA), culminating in histone acetylation at 
M2 gene loci. Nevertheless, only a subset of M2 genes is 
regulated by this manner, indicating that AKT-mTORC1-
Acly axis fine tunes metabolic state to control M2 acti-
vation [26]. A recent study employing genetic deletion of 
mTORC1 in mouse macrophage revealed an augmented 
M1 macrophage phenotype despite the impaired glyco-
lysis, which is linked to the epigenetic activation of M1 
genes through enhanced histone acetylation [68]. The 
discrepancy of these studies may come from the differ-
ence between the cell and animal models, and between 
the genetic ablation and pharmaceutical inhibition. In 
contrast, mTORC2 has a more definite role in dictating 
M2-like polarization in macrophage. IL-4 polarized mac-
rophages show enhanced FAO and OXPHOS, coupled 
with augmented glycolysis. The activation of mTORC2 
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is required for the increased glucose uptake in M2 mac-
rophages [28]. Macrophage colony stimulating factor 
(M-CSF) seems to act as an upstream ligand to activate 
mTORC2 through PI3K/AKT pathway. Genetic dele-
tion of Rictor (mTORC2 adaptor) suppresses the pro-
duction of M2-like macrophages in the mouse model, 
while the generation of M1-like pro-inflammatory mac-
rophages remains intact [28, 69]. Therefore, mice with 
macrophage-specific Rictor deletion show exaggerated 
sensitivity to LPS-induced sepsis [70], impaired clear-
ance of parasitic nematode [69], enhanced inflammatory 
cytokine production as well as the suppression of tumor 

growth [28, 71]. The divergent roles of mTORC1 and 
mTORC2 in macrophage polarization provide plausible 
target for manipulating macrophage activation. In addi-
tion to mTOR-dependent metabolic regulation, Shu-Jie 
Zhao et  al. reported that proliferator-activated recep-
tor gamma coactivator 1-alpha (PGC1α) is a target gene 
of PI3K/AKT/GSK3β/β-catenin pathway activated by 
macrophage scavenger receptor 1 (MSR1), which pro-
motes M2-like differentiation by enhancing mitochon-
drial OXPHOS [72]. Nevertheless, the mechanism by 
which MSR1 activates PI3K/AKT pathway remains to be 
clarified.

Fig. 2 Signaling pathways implicated in macrophage metabolic reprogramming. M1 macrophages are classically polarized by IFN‑γ and LPS, 
and the activation of PI3K‑AKT‑mTOR‑HIF‑1α signaling cascade sustains glycolysis and PPP. In contrast, the activation of PPARs and AMPK 
signaling underpins FAO and mitochondrial activity in IL‑4/IL‑10 polarized M2 macrophages. Abbreviations: AKT, protein B; AMPK, adenosine 
5’‑monophosphate–activated protein kinase; ARG1, arginase 1; ERK, extracellular regulated protein kinases; FAO, fatty acid oxidation; GSK3β, 
glycogen synthase kinase‑3 beta; HIF, hypoxia inducible factor; IFN‑γ, interferon γ; IFNR, interferon receptor; IKK, inhibitor of kappa B kinase; IL, 
interleukin; IL‑10R, interleukin‑10 receptor; IL‑4R, IL‑4 receptor; LPS; lipopolysaccharide; MEK, mitogen‑activated protein kinase kinase; MSR1, 
macrophage scavenger receptor 1; mTOR, mammalian target of rapamycin; mTORC1, mTOR complex 1; NF‑κB, Nuclear factor‑κB; OXPHOS, oxidative 
phosphorylation; PDK1, pyruvate dehydrogenase kinase isozyme 1; PGC1α, proliferator‑activated receptor gamma coactivator 1 α; PI3K, 
phosphatidyl inositol 3‑kinase; PKM2, pyruvate kinase 2; PPARγ, peroxisome proliferator activation receptor gamma; PPP, pentose phosphate 
pathway; Raf, rapidly accelerated fibrosarcoma; Ras, rat sarcoma; ROS, reactive oxygen species; TCA, tricarboxylic acid; TGF‑β, trans‑forming growth 
factor‑β; TGFβR, TGF‑β receptor; TLR, Toll‑like receptor (Created with BioRe nder. com)

https://www.BioRender.com


Page 7 of 19Zeng et al. J Exp Clin Cancer Res          (2023) 42:245  

There is evidence that PI3K/AKT/mTOR signaling axis 
mediates the infiltration and activity of TAMs. In mela-
noma, elevated level of TGF-β was reported to activate 
PI3K/AKT signaling and promote the tumor infiltra-
tion of immune-suppressive monocytes by upregulating 
monocyte chemoattractant protein-1 (MCP-1) expres-
sion and IL-10 [73]. Tamoxifen-resistant breast cancer 
cells activate mTORC1 signaling by altering amino acid 
metabolism to favor M2 macrophage polarization [74]. 
DNA Damage Inducible Transcript 4 (REDD1, DDIT4), 
a negative regulator of mTORC1, is upregulated in TAMs 
to suppress glycolysis. REDD1-deficient TAMs exhibited 
highly glycolytic features and increased glucose uptake 
in an mTOR-dependent manner, which impinges on 
neovascularization and tumor metastasis; however, the 
tumor growth remains unaffected [14].

HIF
HIF is a heteroprotein dimer consisting of α subunit 
and β subunit. The expression level of α subunit is oxy-
gen-dependent, while the β subunit is constitutively 
expressed [75]. Under normoxia, HIF-1α is hydroxy-
lated by prolyl hydroxylase (PHD) and degraded by the 
ubiquitin-dependent process. In the hyopixc environ-
ment, HIF-1α is stabilized to promote glycolysis by tran-
scriptionally upregulating glucose transporter as well as 
glycolytic genes (such as hexokinase, phosphofructoki-
nase, and pyruvate kinase) [76]. In addition, HIF-1α is 
a downstream signaling molecule of multiple signaling 
pathways (including PI3K/AKT/mTOR, Ras/Raf/MEK/
ERK(MAPK) and IKK/NF-κB), which are trigger by dif-
ferent inflammatory cytokines [75, 77]. LPS stimulation 
stabilizes HIF-1α during M1 macrophage differentiation, 
which is accompanied by a metabolic shift toward glycol-
ysis and PPP [39, 78]. Wang et al. showed that  mitochon-
drial activity was diminished in HIF-1α overexpressing 
macrophages, as evidenced by the reduced OCR. The 
elevated ECAR indicates the boosted aerobic glycolytic 
metabolism in macrophages with HIF-1α overexpres-
sion, which sustains the M1 polarization. The team also 
found increased levels of metabolic intermediates in gly-
colysis and PPP, as well as the upregulation of glycolytic 
genes [78]. In another study, under mild hypoxic condi-
tion during macrophage migration to the inflammatory 
sites, HIF-1α stabilization was found to promote glycoly-
sis by increasing the expression of PDK1 which prevents 
pyruvate from entering the TCA cycle [79]. Inhibiting 
glycolysis undermines macrophage migration and atten-
uates systemic inflammation. Enhanced glycolysis could 
in turn promote the stabilization or enhance the activity 
of HIF-1α. Accelerated glycolysis results in the accumu-
lation of succinate in TCA cycle, and elevated succinate 
levels inhibit PHD due to the competitive binding to its 

active site [80]. Furthermore, pyruvate kinase 2 (PKM2), 
a glycolytic enzyme upregulated by LPS induction, can 
translocate into the nucleus and interacts with HIF-1α 
to promote the transcription of target genes. Inhibiting 
PKM2-HIF-1α interaction impaired glycolysis and dimin-
ished the production of pro-inflammatory cytokine IL-1β 
after LPS stimulation [81]. Therefore, HIF-1α-depndent 
glycolysis forms a positive-feedback loop to stabilize the 
metabolic reprogramming in M1 polarization.

The role of another HIF α subunit (HIF-2α) in the met-
abolic reprogramming of macrophage is obscure. There 
is evidence that HIF-1α and HIF-2α are differentially 
activated in M1 and M2 polarization. LPS and IFN-γ 
stabilize HIF-1α and suppress HIF-2α gene expression, 
while IL-4 and IL-13 increase HIF-2α protein level [82]. 
HIF-2α can induce arginase 1 (ARG1) gene expression 
in M2 macrophages, the enzyme competing with induc-
ible nitric oxide synthase (iNOS) for L-arginine metabo-
lism and thereby limiting NO production [83]. Whether 
HIF-2α competes with HIF-1α or orchestrates other 
metabolic pathways in macrophage polarization needs 
further clarification.

It is intuitive to speculate that the hypoxic TME causes 
the stabilization of HIFs to impinge on the metabolic 
reprogramming of TAMs. Indeed, clinical evidence sug-
gests the preferential upregulation of HIF-1α and HIF-2α 
in TAMs [84, 85]. Genetic ablation of HIF-1α in TAMs 
reinforces the M2 features and attenuates the cytotoxic 
effect towards tumor cells [86]. A puzzle remaining to be 
resolved is how the activation of HIFs orchestrates the 
metabolic programs in TAMs to support the pro-tumo-
rigenic activity.

AMPK
AMPK is a conserved serine/threonine kinase consisting 
of three distinct subunits of catalytic α (α1, α2), regula-
tory β (β1, β2) and γ (γ1, γ2, γ3) [87]. Apart from acting as 
an energy sensor for ADP/ATP ratio, AMPK also serves 
as the kinase of several signaling cascades activated by 
IL-10, IL-4, TGF-β and oxidative stress, which promotes 
OXPHOS in M2 polarization [88–91]. Anti-inflamma-
tory cytokines (IL-10 and TGF-β) induces rapid phos-
phorylation of AMPK in macrophages, whereas LPS 
stimulation results in AMPK inactivation [92]. Silencing 
AMPK in macrophages augments LPS-induced inflam-
matory responses, while constitutive activation of AMPK 
shows the opposite effect, suggesting the anti-inflam-
matory effect of AMPK signaling. Recently, R. Liu et al. 
reported that spermidine, a natural polyamine, is able to 
activate AMPK to support anti-inflammatory polariza-
tion in macrophages. Spermidine treatment enhanced 
the production of mitochondrial ROS to activate AMPK, 
which leads to the upregulation of the components in 
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OXPHOS and FAO, as well as the total mass of mito-
chondria. Blocking AMPK activity attenuated the effect 
of spermidine on mitochondrial activity and the  anti-
inflammatory differentiation in macrophages [89]. In 
addition, spermidine suppressed LPS-mediated pro-
inflammatory responses  in an AMPK-dependent man-
ner, which is consistent with the previous observation 
that AMPK functions as a negative regulator of LPS-
induced inflammatory responses in macrophages [92].

IL-10 is a signal molecule upstream of PI3K/AKT/
mTORC1 pathway in macrophages, and IL-10 promotes 
AMPKα1 phosphorylation to activate this pathway. The 
activation of PI3K/AKT/mTORC1 pathway by IL-10 pro-
motes OXPHOS to suppress inflammatory phenotype 
in macrophages [90], while LPS activates PI3K pathway 
to promote glycolysis and inflammatory responses [61], 
suggesting that there are additional players mediating dif-
ferential metabolic rewiring induced by different signal-
ing molecules. The application of PI3K inhibitor does 
not affect IL-10-depnedent AMPKα1 activation, and 
AMPKα1 seems to function in parallel to PI3K path-
way to orchestrate the anti-inflammatory phenotype by 
phosphorylating STAT3 [91], However, a recent study in 
bacterial infection model demonstrated that AMPK acti-
vated by vascular endothelial growth factor C (VEGFC) 
signaling promotes glycolysis and inflammasome activa-
tion in macrophages to facilitate the clearance of bacte-
ria [93]. Thus, AMPK is a critical mediator of metabolic 
reprogramming in macrophage polarization, and its role 
in different pathophysiological conditions warrants fur-
ther investigation.

PPARs
PPARs are nuclear hormone receptors usually activated 
by fatty acids and their derivatives, which are engaged in 
the metabolic reprogramming of macrophages. Accord-
ing to different structures, PPARs can be divided into 
three subtypes: α, β/δ and γ [94]. PPARγ is the main sub-
type regulating  fatty acid metabolism of macrophages. 
An early study by Szanto et  al. demonstrated that pro-
inflammatory factors suppress PPARγ expression in both 
mouse and human macrophages, while IL-4 enhances 
PPARγ expression and the ligand-induced transcriptional 
activity [95]. It is well-documented that the activation of 
PPARγ by different signaling supports the anti-inflam-
matory polarization in macrophages by enhancing 
OXPHOS and FAO. S. Kangetal et  al. reported that the 
inhibition of mTOR or the deletion of Semaphorin 6D 
impairs PPARγ expression, dampening fatty acid metab-
olism and blocking the polarization of anti-inflamma-
tory macrophages [96]. The transcriptional activity of 
PPARγ is indispensable for the activation of metabolic 
genes, such as ARG1 and genes involved in fatty acid 

β-oxidation and mitochondrial biogenesis [96]. In the 
TME, PPARγ-dependent enhancement of FAO mediates 
the anti-inflammatory and pro-tumorigenic properties 
of TAMs [97]. In hepatocellular carcinoma, the func-
tional deficiency of receptor-interacting protein kinase 
3 (RIPK3) inhibits caspase-1 dependent PPAR cleavage, 
and the accumulation of PPAR augments the FAO and 
M2-like polarization of TAMs. RIPK3 upregulation or 
FAO blockade reversed the immunosuppressive activ-
ity of TAMs and dampened HCC tumorigenesis [98]. 
There is also evidence that M-CSF secreted from tumor 
cells upregulates PPARβ/δ expression in myeloid cells 
to promote IL-10 expression and induce the polariza-
tion of M2-like macrophages [99]. These studies pinpoint 
the potential of targeting PPAR signaling to reverse the 
immunosuppressive phenotype of TAMs.

Extrinsic metabolites dictating macrophage 
polarization in the TME
In the TME, the crosstalk of different cellular compo-
nents shapes the metabolic milieu, which has widespread 
implications in tumor progression and the anti-tumor 
immunity. Extracellular metabolites in the TME not only 
serve as energy sources but also act as signaling cues to 
regulate the immune phenotype of TAMs. In this section, 
we focus on TME metabolites that influence macrophage 
metabolic reprogramming, including lipids, succinate, 
α-Ketoglutarate, amino acids, adenosine and lactate 
(Fig. 3 and Table 1).

Lipids
Tumor tissues are enriched in lipids due to the de novo 
lipogenesis of cancer cells, and the lipid supply of cancer-
associated fibroblasts and adipocytes [100, 101, 110, 111]. 
TAMs are overloaded with lipids due to increased lipid 
uptake by the scavenger receptor CD36, and TAMs pref-
erentially rely on FAO for energy [100, 101, 111]. Both 
lipid accumulation and high CD36 expression are cor-
related with the immunosuppressive function of TAMs 
and unfavorable tumor progression. Targeting intra-
tumoral  lipid droplet formation or genetic deletion of 
CD36 curbs the pro-tumoral function of TAMs and 
suppresses tumor progression [100, 101, 111]. High lev-
els of FAO support TAM generation by promoting mito-
chondrial OXPHOS and inducing JAK1 (Janus Kinase 
1)/STAT6 activation [100]. Fatty acids such as oleate 
induce pro-tumoral polarization of TAMs by augment-
ing mTOR-dependent mitochondrial respiration [101]. 
Another study showed that ovarian cancer cells promote 
plasma membrane cholesterol efflux from TAMs, and the 
subsequent loss of cholesterol-rich membrane lipid rafts 
activates IL-4 signaling while suppressing IFNγ-induced 
genes. IL-4 signaling and cholesterol efflux pathways 
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contribute to the immune suppression of TAMs and 
tumor progression in  vivo [112]. In our recent work, it 
was found that β-glucosylceramide produced by tumor 
cells drives the reorganization of lipid components 

on  endoplasmic reticulum (ER) membrane, resulting 
in IRE1 (inositol-requiring enzyme 1)-dependent ER 
stress responses. Targeting IRE1-XBP1 (x-box binding 
protein 1) and IRE1-STAT3 signaling or ameliorating 

Fig. 3 Functional polarization of tumor‑associated macrophages (TAMs) is influenced by multiple metabolites present in the TME. Extracellular 
metabolites not only serve as energy sources but also act as environmental cues to regulate the immune phenotype of TAMs. Lipids, succinate, 
α‑Ketoglutarate, amino acids, adenosine and lactate are all implicated in fine‑tuning TAM function. Abbreviations: α‑KG, α‑ketoglutarate; ERS, 
endoplasmic reticulum stress; FAO, fatty acid oxidation; HIF‑1α, hypoxia inducible factor‑1α; IRE1, inositol‑requiring enzyme 1; ITA, itaconate; JAK, 
Janus Kinase 1; OXPHOS, oxidative phosphorylation; PHD, prolyl hydroxylase; PPARγ, peroxisome proliferator activation receptor gamma; ROS, 
reactive oxygen species; SDH, succinate dehydrogenase; STAT3, signal transducer and activator of transcription; TCA, tricarboxylic acid; XBP1, x‑box 
binding protein 1 (Created with BioRe nder. com)

Table 1 The impacts of extrinsic metabolites on the metabolic reprogramming in TAMs

Metabolite Signaling pathway Metabolic pattern Polarization Ref

Lipids JAK1/STAT6; mTOR; IRE1-XBP1/STAT3 FAO; Mitochondrial OXPHOS; ER lipid 
reshuffling and stress

Pro-tumorigenic polarization  [100–102]

Succinate SUCNR1/PI3K/HIF-1α Mitochondrial TCA cycle and glycolysis Pro-tumorigenic polarization  [103]

α‑KG JMJD3; NF-κB; PPARγ Mitochondrial respiration and FAO Pro-tumorigenic polarization  [51, 104]

Glutamine _ Glutaminolysis and α-KG production Pro-tumorigenic polarization  [35, 55]

Tryptophan AHR Tryptophan catabolism and KYN produc-
tion

Pro-tumorigenic polarization  [105]

Adenosine Adenosine receptors (A2A and A2B) _ Pro-tumorigenic polarization  [106, 107]

Lactate HIF-1α Lactate metabolism in TCA cycle and 
histone lactylation

Pro-tumorigenic polarization  [34, 108, 109]

https://www.BioRender.com
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ER stress  through genetic perturbation can disrupt the 
pro-tumoral activity and survival of TAMs [102]. These 
findings pinpoint targeting ER lipid composition and 
responses as potential strategy to sustain anti-tumor 
immunity.

Succinate
Succinate is an intermediate metabolite of the TCA 
cycle and has been considered as a pro-inflammatory 
metabolite. It stabilizes HIF-1α by inhibiting PHD activ-
ity and promoting ROS production [38, 39]. SDH is the 
catalyst for  succinic acid production in the TCA cycle. 
In macrophage inflammatory polarization, SDH inhibi-
tion by ITA leads to succinate accumulation and HIF-1α 
dependent metabolic changes [38, 113]. The frequent 
mutations of the gene encoding SDH in cancers result 
in the accumulation of succinate in the TME [114]. 
Although macrophage-intrinsic succinate accumulation 
was widely reported as an inflammatory modulator in 
M1-polarized macrophages, a recent study showed the 
pro-tumoral effect of extracellular succinte on TAMs 
[103]. Cancer cells secrete succinate into the TME to 
promote the migration and invasion by activating suc-
cinate receptor (SUCNR1) signaling. In the meanwhile, 
the activation of PI3K/AKT/HIF-1α signaling underpins 
succinate-induced TAM polarization to support cancer 
cell migration. Although the authors could not exclude 
the influence of other tumor-derived small molecules 
on TAMs, they provided evidence that increased serum 
succinate concentration may serve as a biomarker for 
lung cancer [103]. There is also evidence that succinate 
fuels mitochondrial oxidation via SDH and the concomi-
tant mitochondrial membrane potential elevation drives 
mitochondrial ROS production [115], which may serve as 
a key mechanism for maintaining the pro-inflammatory 
state of macrophages [116, 117]. Hence, macrophage-
intrinsic succinate accumulation due to truncated TCA 
cycle and the extracellular succinate overload may differ-
entially regulate TAM function.

α-Ketoglutarate
α-KG is a decomposition product of glutaminolysis and 
an intermediate product of the TCA cycle. α-KG pro-
motes M2 polarization through Jumonji-C-domain-
containing histone demethylase 3 (JMJD3)-dependent 
epigenetic reprogramming, and impairs the pro-inflam-
matory response of M1 macrophages by inhibiting the 
NF-κB pathway [51]. After M2 polarization, the expres-
sion of  FAO rate-limiting enzyme carnitine palmitoyl-
transferase 1A (Cpt1a) increases with enhanced fatty 
acid uptake in a α-KG-dependent manner. Similarly, 
α-KG supplementation suppressed M1 signature gene 
expression and dampened the activation of mTORC1/

p70 ribosomal protein S6 kinase (p70S6K/S6K1) signal-
ing in M1-polarized MH-S cells (a murine alveolar mac-
rophage cell line) [104]. Further evidence showed that 
α-KG promoted FAO and M2 polarization by enhancing 
the nuclear translocation of PPARγ and increasing the 
expression of fatty acid metabolism genes. α-KG alone 
is able to offset the HIF-1α activation induced by succi-
nate or hypoxia [118, 119], and α-KG is a co-stimulator 
of JMJD3 while succinate is an inhibitor [51]. Thus, the 
ratio of α-KG/succinate could be a determinant for the 
polarization state of macrophages. Indeed, an increase 
of α-KG/succinate ratio favors M2 polarization, while a 
decrease in the ratio strengthens the M1 phenotype [51]. 
As glutaminolysis has been recognized as a hallmark 
of cancer metabolism [120], it is speculated that α-KG 
derived from cancer metabolism could act as a TME 
metabolite to modulate TAM polarization. The ratio 
of α-KG/succinate in the TME and its impact on TAM 
function remain to be elucidated.

Amino acids
A variety of amino acids are involved in the regulation 
of macrophage polarization and activation. Glycine was 
previously reported to suppress LPS-induced NO pro-
duction and macrophage activation [121], and glycine 
regulates macrophage polarization via different signal-
ing pathways and microRNAs [122]. Another one-car-
bon amino acid serine is required for macrophage IL-1β 
production [123]. Serine deprivation blunts macrophage 
IL-1β expression level by dampening mTOR signaling 
[124]. However, a recent work showed that the depletion 
of exogenous serine and glycine augmented  M1 polari-
zation but attenuated IL-4-polarized macrophages. Fur-
thermore, macrophage-specific serine restriction was 
able to reprogram TAMs into the M1 phenotype and 
retard tumor growth [125].

Cancer cells are highly addicted to glutaminolysis for 
energy production [31, 120]. Glutamine deprivation 
could reduce M2 polarization and the production of the 
chemokine C–C motif chemokine ligand 22 (CCL22) 
[35]. This is in agreement with the M2-polarizing effect 
of α-KG as the decomposition product of glutamine [51]. 
In contrast, LPS-stimulated M1 differentiation does not 
require glutamine [35], and α-KG supplementation sup-
pressed M1 activation in a murine alveolar macrophage 
cell line [104]. Glutamine is synthesized by GS using 
ammonia and glutamate. In the TME, GS enzyme activ-
ity is highly correlated with macrophage M2 polariza-
tion [126]. GS activity inhibition leads to phenotypic 
transformation of M2-polarizing macrophages towards 
to M1, which is coupled with elevated levels of succi-
nate. Meanwhile, macrophage-specific deletion of GS in 
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tumor-bearing mice promotes anti-tumor immunity and 
suppresses metastasis [55].

L-arginine is also a mediator of macrophage polariza-
tion and can be derived from glutamine through citrul-
line intermediates. Macrophages maintain their ability 
to secrete arginine through high concentrations of glu-
tamine [127]. The enhanced catabolism of arginine by 
ARG1 pathway supports M2 polarization, while the 
increased NO production from arginine by iNOS pro-
motes M1 polarization. It is worth noting that these 
two metabolic pathways mutually inhibit each other 
[128]. Although it has been shown that ARG1 is highly 
expressed in M2-like TAMs [129], little is known about 
how arginine availability affects macrophage polarization 
in the TME.

Tryptophan is another important amino acid that 
regulates adaptive immunity in the TME. In TAMs and 
intratumoral regulatory T cell (Tregs), the tryptophan 
metabolizing enzymes indoleamine-2,3-dioxygenase 
(IDO) and tryptophan 2,3-dioxygenase (TDO) break 
down tryptophan into kynurenine (KYN), a metabolite 
binding to aryl hydrocarbon receptor (AHR) to orches-
trate immunosuppression in multiple immune compo-
nents of the TME [130]. Recent evidence revealed that 
in IDH-mutant glioma, tryptophan catabolism along 
the kynurenine pathway drives the immunosuppressive 
function of TAMs, which can be reversed by pharma-
cological inhibition of tryptophan metabolism and AHR 
[105]. Along similar lines, TAMs from pancreatic ductal 
adenocarcinoma (PDAC) display high AHR activity and 
AHR deletion in macrophages promotes an inflamma-
tory state. Intriguingly, macrophage-intrinsic tryptophan 
metabolism seems dispensable for the immunosuppres-
sive activity of TAMs. But dietary restriction of tryp-
tophan reduces  AHR activity  in TAMs and promotes 
anti-tumor immunity in PDAC mouse model [131]. 
These observations suggest that tryptophan availability is 
linked with the polarization state of TAMs, and trypto-
phan metabolites impose immunosuppression by activat-
ing AHR in the TME.

Adenosine
Adenosine is a metabolite released from various cell 
types and is present at high levels in the TME [132]. 
Ectonucleoside triphosphate diphosphohydrolase 1 
(CD39) and ecto-5ʹ-nucleotidase (CD73) expressed 
at the cell surface of macrophages and cancer cells in 
the TME are responsible for the adenosine generation 
[133]. Adenosine exerts a range of immunomodulatory 
effects on macrophages by engaging adenosine recep-
tors (A1, A2A, A2B and A3). There is abundant evi-
dence that adenosine activates A2A and A2B receptors 
to mediate M2-like macrophage polarization [106, 107, 

134]. Knockout of the A2A receptor in myeloid cells 
dampens IL-10 production in TAMs and augments 
anti-tumor immunity in melanoma model, highlighting 
the critical role of adenosine signaling in orchestrating 
myelosuppressive effects in the TME [135]. Blocking 
CD39 or CD73 activity can attenuate TAM inhibition 
on T cell proliferation [136]. Of note, tumor-derived 
adenosine in the TME sustains macrophage prolifera-
tion by activating PI3K/Akt pathway [122], which may 
also induce metabolic changes in TAMs. Thus, adeno-
sine can simultaneously regulate the proliferation and 
polarization state of TAMs.

Lactate
Lactate generated by the aerobic glycolysis of tumor 
cells is a favorable factor for cancer progression [137]. 
Lactate accumulation contributes to  immunosuppres-
sion in the TME by dampening tumoricidal effects of 
tumor-infiltrating immune cells [138]. Tumor-derived 
lactate drives macrophage M2 polarization and induces 
VEGF expression in a HIF-1α-dependent manner [34]. 
In addition, Zhang et  al. found that lactic acid metab-
olism is linked with histone modification to fine tune 
macrophage polarization. M1 macrophages undergo 
lactate anabolism using glycolysis to produce lactyl-
CoA, while in the late stage of M1 polarization the 
increased histone lactylation is associated with M2 
signature gene activation [108]. Exogenous lactate can 
also directly activate M2-like gene expression through 
histone lactylation. Hence, lactate-dependent epige-
netic mechanism serves as a negative feedback to pre-
vent the over-activation of inflammatory macrophages. 
The high content of lactic acids in the TME may also 
favor M2-like polarization in TAMs. Another study 
demonstrated that M2 macrophages actively metabo-
lize lactate in the TCA cycle to support histone acetyla-
tion-mediated M2 gene expression [109]. IL-4-induced 
M2 polarization activates mitochondrial lactate 
metabolism in the TCA cycle. Citrate is then shunted 
away from the TCA cycle for acetyl-CoA production 
by ACLY, with subsequent histone acetylation at M2 
gene promoters. Therefore, lactate can be utilized in 
mitochondrial metabolism of macrophages and ACLY-
dependent acetyl-CoA production from lactate induces 
M2 genes via histone acetylation. Importantly, ACLY 
deficiency impairs the immunosuppressive activity in 
TAMs, suggesting the critical role of lactate-dependent 
metabolic circuit in TAM polarization [109]. In addi-
tion, lactate concentration gradient in the TME can 
transmit spatial information to instruct macrophage 
polarization [139], which may regulate the functional 
diversity of TAM subpopulations.
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Metabolic reprogramming of TAMs 
as an anti‑cancer therapy
Using TAMs or their functional mediators as direct tar-
gets, various therapeutic strategies have been developed 
to overcome  immunosuppression in the TME, includ-
ing depleting TAMs, blocking monocyte/macrophage 
recruitment, and reprogramming TAMs into pro-inflam-
matory M1-like macrophages [140, 141]. Since metabolic 
alterations are the main drivers of macrophage sup-
pression in the TME [142], repolarization of TAMs via 
metabolic reprogramming presents the opportunity to 
activate tumoricidal immunity.

Glutamine synthase (GS) is a critical enzyme driving 
M2-like macrophage differentiation by elevating glu-
tamine level. It has been showed that inhibiting GS by 
methionine sulfoximine (MSO) skews M2 macrophages 
towards an M1-like phenotype in IL10-treated mac-
rophages [55]. GS inhibition induces a metabolic rewir-
ing involving glucose shunting into the TCA cycle and 
succinate accumulation. The elevated succinate level 
favors pro-inflammatory polarization of macrophages 
through the inhibition of anti-inflammatory gene expres-
sion and stabilization of HIF-1α. In the Lewis lung car-
cinoma model, macrophage-specific ablation of GS 
facilitates M1-like reprogramming in TAMs and leads to 
intratumoral cytotoxic T cell (CTL) accumulation [55]. 
Our study implied that the production of αKG via glu-
tamine catabolism is important for the JMJD3-depend-
ent epigenetic activation of M2 genes. A low ratio of 
α-KG/succinate strengthens M1 macrophage activation, 
whereas a high ratio favors M2 macrophage function 
[51]. Therefore, modulating the ratio of αKG/succinate 
can be exploited to fine tune the immune responses of 
TAMs.

Lactate impinges on macrophage metabolism via 
Gpr132, a macrophage sensor of the rising lactate to 
promote M2-like phenotype in TAMs [143]. Pharma-
cological inhibition or genetic deletion of Gpr132 could 
attenuate M2-like phenotype in TAMs and impair the 
tumor formation of breast cancer cells. Along this line, 
reducing lactate level in the TME by deleting lactate 
dehydrogenase A (LDHA) or through the administration 
of 2-deoxyglycose potentiates anti-tumor immunity by 
decreasing M2-like macrophage polarization [144, 145].

Additional strategy to reprogram TAMs includes 
the modulation of arginine catabolism. Inhibition of 
ARG1 by CB-1158 was able to shift the TME towards 
a pro-inflammatory environment by blunting myeloid 
cell-mediated immune suppression [146]. Although 
iNOS-derived NO has tumoricidal function, the selec-
tive inhibitor of iNOS was reported to enhance M1 
macrophage polarization; while NO donor inhibited 
M1 macrophage polarization [147]. NO derived from 

iNOS mediates the nitration of interferon regulatory 
factor 5 (IRF5) protein and suppresses IRF5-induced 
M1 signature genes.

In our recent work, we showed that CD40 signaling 
activation by monoclonal antibody rewires metabolic 
circuits to enhance the anti-tumorigenic polarization 
of TAMs and boost anti-tumor response  (Fig.  4) [148]. 
In contrast to LPS-polarized M1 macrophages which 
are highly dependent on glucose, CD40 signaling-
mediated pro-inflammatory polarization is glucose-
independent. Instead, CD40 signaling promotes both 
FAO and glutamine metabolism to instruct epigenetic 
reprogramming for pro-inflammatory/anti-tumorigenic 
polarization in macrophages. Mechanistically, CD40 acti-
vation augments histone acetylation on the promoters 
and enhancers of pro-inflammatory signature genes using 
acetyl-CoA produced by FAO. In parallel, CD40 signaling 
triggers glutaminolysis-dependent production of lactate 
in the absence of glucose. Intriguingly, glutamine-derived 
lactate production is critical to sustain FAO by fine-tun-
ing nicotinamide adenine dinucleotide (NAD) / nicotina-
mide adenine ainucleotide hydrogen (NADH) balance. 
We also provided evidence that metabolic interventions 
by depleting LDHA and GLS (a key enzyme of glutami-
nolysis), which are two metabolic targets under investi-
gations in clinical trials for cancer therapy, abrogated the 
anti-tumor response of TAMs induced by agonistic anti-
CD40 antibody [148]. Thus, CD40 signaling harnesses 
metabolic processes (FAO and glutaminolysis) which 
are believed to support M2 polarization to orchestrate 
pro-inflammatory polarization in macrophages. Of note, 
these findings highlight that properly pre-conditioned 
metabolic milieus in the TME may potentiate the anti-
tumor effect of agonistic anti-CD40 antibody.

Preclinical evaluation of metabolic reprogramming of 
TAMs has shown promising effects with the drugs tar-
geting arginine and tryptophan metabolism [105, 131, 
149, 150], respiratory complex I inhibitor metformin 
[151, 152], inhibitors of extracellular adenosine and lac-
tate production [153, 154], and FAO inhibitor [101, 155]. 
Although most strategies for targeting TAMs are still in 
the preclinical stage, a number of therapeutic approaches 
(e.g., CD40 agonists, HDAC inhibitors, PI3Kγ inhibi-
tors) are under evaluation in clinical trials in conjugation 
with immune checkpoint therapy [156]. Macrophage-
targeting approaches also synergize with chemothera-
peutics to reduce tumor burden and improve the survival 
in tumor-bearing mice [9]. Since there is accumulating 
evidence that dietary pattern generates a profound effect 
on TAMs and anti-cancer immunity [157, 158], we sur-
mise that evidence-based dietary specification for can-
cer patients could be beneficial to maximize the effect of 
immunotherapy.
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Conclusion
It has become a consensus that metabolic alterations 
are integral components accompanying macrophage 
polarization. After recruitment to the TME, TAMs 
inevitably rewire the metabolic network to support 
their survival and differentiation. This process can be 
influenced by TME-derived metabolites such as aden-
osine, lactate and lipids. On the other hand,  TAM-
intrinsic metabolic changes and the accumulation of 
certain metabolites, such as succinate and α-KG, may 
also function to fine-tune or reinforce the functional 
differentiation. The plasticity of metabolic profile dur-
ing the functional polarization in TAMs constitutes 
promising targets for TAM repolarization in anti-
cancer therapies. Targeting metabolic pathways which 
underpin the polarization and survival of TAMs in the 
TME could overcome  immunosuppression by reduc-
ing macrophage recruitment, depleting TAMs, and 

inducing the pro-inflammatory activation of TAMs 
[159–161].

Current approaches based on M2-like TAM deple-
tion or M1 polarization suffer from limited efficacy due 
to the existence of resistance mechanisms [162], the re-
infiltration of macrophages after therapy [163], and  the 
presence of other immunosuppressive cells such as regu-
latory T cells [164]. Besides, different immune cells may 
reply on similar metabolic pathways to support their 
activities in the TME [31, 165]. Thus, it seems inevitable 
that modulation of core metabolic processes may exert 
undesirable immunological effects on other immune cells 
in the TME. The presence of different cytokines and the 
interaction of TAMs with different cell types add another 
layer of complexity in TAM functional polarization in the 
TME [166, 167]. The key determinants in macrophage 
differentiation in the TME need to be clarified. The 
understanding of the most critical metabolic pathway 

Fig. 4 Schematics of CD40 signaling‑induced metabolic rewiring to support anti‑tumorigenic functions of macrophages. CD40 activation 
engages glucose‑independent metabolic pathways to induce epigenetic activation of pro‑inflammatory M1 genes. CD40 signaling triggers FAO 
and glutamine metabolism to drive the TCA cycle. The citrate is shunted towards ACLY‑dependent acetyl‑CoA production to promote histone 
acetylation and M1 gene activation. Glutamine usage reinforces FAO‑dependent anti‑tumorigenic functions by maintaining the NAD + /NADH 
ratio via lactate pathway. Abbreviations: ACLY, ATP‑citrate lyase; ATP, Adenosine triphosphate; Cpt1a, carnitine palmitoyltransferase 1A; FA, fatty acid; 
GLS, glutaminase; LDHA, lactate dehydrogenase A; ME1, malic enzyme 1; MDH1, malate dehydrogenase 1; OAA, Oxaloacetic acid; TCA: tricarboxylic 
acid (Created with BioRe nder. com)
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underlying TAM polarization is conducive to more pre-
cisely targeting TAM metabolism without favoring tumor 
growth.

On the other hand, whether TAM-derived metabolites 
are implicated in the progression of tumor cells remains 
largely unknown. Further, how TAMs undergo temporal 
and spatial metabolic changes in tumor progression? The 
potential metabolic rewiring of TAMs at different can-
cer stages (primary and metastatic tumors) may require 
more tailored strategies for TAM repolarization [168]. 
Moreover, TAM metabolic  profile changes before and 
after chemotherapy and immunotherapy may be also rel-
evant to the therapeutic response of a patient [169]. In an 
era of single cell omics, the heterogeneity of TAMs in dif-
ferent cancers has begun to be unveiled [170]. The char-
acterization of diverse TAM subpopulations can provide 
novel insights into the functional plasticity of TAMs in 
the TME. Future works are warranted to decipher the 
metabolic underpinnings of different functional groups 
of TAMs.

Although most metabolic reprogramming strategies 
are in the preclinical stage and the therapeutic potential 
in cancer patients remains to be validated, they provide 
opportunities to reshape the immune microenvironment 
in tumors. We surmise that some of these interventions 
could be integrated with the current immunotherapy to 
boost anti-tumor immunity in the TME.
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