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presence of ribosomes. The rough ER is defined by the 
presence of membrane-bound ribosomes and mainly 
performs functions associated with the biosynthesis 
of membrane and secretory proteins, including their 
proper folding and modification. The smooth ER, where 
ribosomes are absent, is primarily involved in lipid and 
steroid synthesis, carbohydrate metabolism, and cal-
cium ion storage [1, 2]. However, there is little evidence 
that the rough ER is excluded from the functions of the 
smooth ER. For instance, the rough ER is also involved 
in calcium homeostasis in the ER [3, 4]. With the assis-
tance of chaperones, nascent unfolded proteins from 
ribosomes are subjected to the ER quality control mecha-
nisms [5]. Qualified proteins are subsequently packaged 
into vesicles and trafficked to the Golgi apparatus for fur-
ther processing, while misfolded proteins are degraded in 

Introduction
The endoplasmic reticulum (ER) in eukaryotic cells is 
the largest organelle of interconnected membranes with 
diverse functions, including protein synthesis, transport 
and folding, lipid and steroid synthesis, calcium storage 
and crosstalk with other organelles [1]. The ER is clas-
sified as rough ER and smooth ER, depending on the 
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Abstract
A firm link between endoplasmic reticulum (ER) stress and tumors has been wildly reported. Endoplasmic reticulum 
oxidoreductase 1 alpha (ERO1α), an ER-resident thiol oxidoreductase, is confirmed to be highly upregulated 
in various cancer types and associated with a significantly worse prognosis. Of importance, under ER stress, 
the functional interplay of ERO1α/PDI axis plays a pivotal role to orchestrate proper protein folding and other 
key processes. Multiple lines of evidence propose ERO1α as an attractive potential target for cancer treatment. 
However, the unavailability of specific inhibitor for ERO1α, its molecular inter-relatedness with closely related 
paralog ERO1β and the tightly regulated processes with other members of flavoenzyme family of enzymes, 
raises several concerns about its clinical translation. Herein, we have provided a detailed description of ERO1α in 
human cancers and its vulnerability towards the aforementioned concerns. Besides, we have discussed a few key 
considerations that may improve our understanding about ERO1α in tumors.
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the cytosol through ER-associated degradation (ERAD). 
ERAD is a process driven by proteasomes whereby mis-
folded proteins are retrogradely transferred from the ER 
to the cytosolic proteasomes through channel proteins in 
an energy-consuming manner [5, 6].

Given the complex and pivotal functions, the ER is 
strictly and intricately regulated to meet cellular biologi-
cal activities. Protein homeostasis is a distinctive feature 
of a properly functioning ER, where protein synthesis is 
compatible with processing [7]. However, when cells are 

exposed to stressful conditions such as nutrient shortage, 
hypoxia, calcium dyshomeostasis, and oxidative stress, 
the protein-folding capacity of cells is disrupted, leading 
to the accumulation of unfolded and misfolded proteins 
in the ER lumen, thereby provoking ER stress (Fig.  1) 
[8]. In reaction to ER dysfunction, cells initiate an adap-
tive defense mechanism known as the unfolded protein 
response (UPR) to reinforce protein folding and degra-
dation capacities, ultimately tackling the ER stress and 

Fig. 1 The oxidative protein folding in the ER and the unfolded protein response. Nascent polypeptides from ribosomes are oxidatively folded by the 
ERO1α-PDI complex. Dysfunctional ERO1α-PDI complex results in accumulation of unfolded and misfolded protein, which then arouses the UPR and 
sends signals to retard translation and facilitate processing and degradation of protein. During the UPR activation, ATF6 is transported to the Golgi ap-
paratus, where it is processed to its activating form ATF6 (p50) and then locates to the nucleus for ERAD-related gene transcription. Activated PERK phos-
phorylates eIF2α, leading to global translation inhibition but selectively inducing ATF4. AFT4 then enters into the nuclear and activates gene transcription. 
Of note, facing the overwhelming ER stress, ATF4 can also activate CHOP, a transcription factor then inducing apoptosis through the caspase pathway. 
Activation of IRE1 induces the splicing of XBP1 and its activating form sXBP1 then goes into the nucleus and initiates the ERAD-related gene transcription. 
ERO1α, endoplasmic reticulum oxidoreductase 1 alpha; PDI, protein disulfide isomerase; BiP, binding immunoglobulin protein; ERAD, endoplasmic reticu-
lum (ER)-associated degradation; UPR, unfolded protein response; IRE1, inositol requiring enzyme 1; PERK, protein kinase (PKR)-like ER kinase; ATF6, acti-
vating transcription factor 6; eIF2α, eukaryotic initiation factor 2α; XBP1, X-box binding protein 1; sXBP1, spliced XBP1; CHOP, C/EBP homologous protein
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restoring protein homeostasis [9]. Therefore, the UPR is 
a protective response by which cells to handle ER stress.

The UPR is initiated by three transmembrane sen-
sors: inositol requiring enzyme 1 (IRE1), protein kinase 
(PKR)-like ER kinase (PERK), and activating transcrip-
tion factor 6 (ATF6) (Fig. 1) [8, 10]. The accumulation of 
unfolded and misfolded proteins binds more chaperone 
proteins, such as glucose-regulated protein 78 (GRP78, 
also known as binding immunoglobin protein (BiP)), 
resulting in the dissociation of BiP from these three sen-
sors. Upon BiP release, ATF6 is transported to the Golgi 
apparatus where it is processed into its active form, ATF6 
(p50), and subsequently translocated to the nucleus to 
promote the transcription of chaperone and ERAD-
related genes. Dimerization and autophosphorylation 
occur when PERK and IRE1 decouple from BiP. Activated 
PERK in turn phosphorylates eukaryotic initiation factor 
2α (eIF2α), which leads to transient inhibition of global 
protein translation to restore abnormal ER but selectively 
induces activating transcription factor 4 (ATF4). AFT4 
then enters the nucleus and activates the transcription 
of genes related to chaperone, apoptosis and amino acid 
metabolism. Activation of IRE1 induces the splicing of 
X-box protein 1(XBP1) mRNA and then the formation 
of its active form, sXBP1. sXBP1 is translocated to the 
nucleus to initiate the transcription of genes responsible 
for chaperone, ERAD and lipid synthesis. Collectively, 
UPR contributes to restore ER protein homeostasis by 
retarding general protein translation and increasing the 
translation of ER resident chaperones and components of 
the protein degradative machinery to prevent the aggre-
gation of unfolded and misfolded proteins. Moderate ER 
stress can be dispelled by proper collaboration among 
the respective UPR branches, therefore maintaining cell 
survival, however, persistent or severe ER stress eventu-
ally induces cell death [11]. Ample evidence supports that 
unrelievable ER stress leads to cell apoptosis, and two 
UPR branches, PERK and IRE1, control cell fate under ER 
stress [10, 12, 13]. In the face of overwhelming ER stress, 
ATF4, which is selectively activated in the PERK branch, 
has been shown to induce apoptosis by both inhibiting 
the anti-apoptotic protein Bcl-2 [14] and promoting the 
pro-apoptotic proteins BIM [15] and PUMA [16] through 
the activation of the transcription factor C/EBP homolo-
gous protein (CHOP). On the other hand, IRE1 can off-
set the apoptosis signals from the PERK/ATF4/CHOP 
branch by degrading apoptosis-dependent components 
[10]. However, IRE1 has also been revealed to promote 
apoptosis and autophagy by activating the c-Jun N-termi-
nal kinase (JNK) pathway [17, 18].

ER stress has been documented in most major types of 
human cancer, especially in solid tumor [19]. Of impor-
tance, amounting evidence has shown that ER stress 
and the subsequent UPR modulate various pro-tumoral 

properties, including angiogenesis, metabolism, metas-
tasis, and chemoresistance in cancers, while repro-
gramming the function of immune cells in the tumor 
microenvironment (TME) [8, 20, 21]. In addition, ER 
stress has also been identified in cancer stem cells (CSCs) 
and dormant tumor cells, which are mostly to blame for 
relapse, contributing to their stemness maintenance, qui-
escence and chemoresistance [22–24]. Targeting UPR, 
the adaptive mechanism of ER stress, induces the differ-
entiation of CSCs, increases cell death and sensitivity to 
chemotherapy in CSCs and dormant tumor cells [23–25]. 
Overall, adaptation to ER stress confers a survival advan-
tage to tumor cells, but also renders them vulnerable to 
environmental perturbations. Therefore, targeting ER 
stress to disturb the adaptive mechanism has emerged 
as an attractive approach for cancer immunotherapy in 
recent years [26, 27].

Oxidative protein folding is one of the critical functions 
of the ER, and both folding efficiency and quality play 
crucial roles in inducing UPR. Compared to the cyto-
sol, the redox environment in the ER is oxidative, which 
favors the formation of disulfide bonds. The oxidative 
environment in the ER is mainly due to the distribution 
of reduced/oxidized glutathione (GSH), where the gluta-
thione redox potential (EGSH) in the ER is much higher 
than that of in the cytosol [28, 29]. Endoplasmic reticu-
lum oxidoreductase 1 alpha (ERO1α) has been reported 
to help maintain the oxidative environment in the ER, as 
knockout of ERO1α significantly reduced EGSH in the ER 
[30, 31].

ERO1α (also known as ERO1A or ERO1L) is a flavin 
adenosine dinucleotide (FAD)-containing ER-resident 
thiol oxidoreductase responsible for catalyzing disulfide 
bond formation in nascent polypeptides, working in con-
junction with protein disulfide isomerase (PDI) [32]. In 
recent years, ERO1α has been implicated in various fac-
ets of tumor progression, such as tumor growth, angio-
genesis, metastasis and chemoresistance, due to its high 
expression in tumors [33]. Given its function, ERO1α has 
been reported to promote the oxidative folding of certain 
tumor-favoring proteins, such as vascular endothelial 
growth factor (VEGF), programmed cell death ligand-1 
(PD-L1), and matrix degrading enzymes (MMPs). In 
this review, we will delineate the profile of ERO1α in the 
context of tumors, focusing on four key areas: (1) the 
structure and function of ERO1α, (2) the expression and 
regulation of ERO1α, (3) the impact of ERO1α, and (4) 
targeting ERO1α in tumors.

Distribution, structure and function of ERO1α
ERO1α in mammals was first reported and characterized 
in 2000, sharing extensive homology with the Saccha-
romyes cerevisiae ERO1 gene and involved in oxidative 
protein folding in the ER [34]. In mammals, there are two 
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ERO1 isoforms, ERO1α and ERO1β [34, 35]. ERO1α is 
expressed ubiquitously in all cell types as its crucial role 
in oxidative protein folding, whereas ERO1β is selectively 
expressed in pancreatic and stomach cells, indicating its 
significance in insulin and glucose metabolism [36]. Of 
note, in addition to oxidative protein folding, ERO1α is 
also implicated in various biochemical pathways, such as 
calcium release and regulation of nicotinamide adenine 
dinucleotide phosphate oxidase (NOX) activity. ERO1α 
has been reported to trigger calcium release from the ER 
to the cytosol or mitochondria via regulating the inositol 
1,4,5-triphosphate receptor (IP3R)- and ryanodine recep-
tor (RyR)-induced calcium release [37–39]. Furthermore, 
the released calcium activates the enzyme calcium/
calmodulin-dependent protein kinase II (CaMKII), which 
in turn induces NOX expression [40]. In addition, an 
interesting finding is that ERO1α knockout in mammals 
is not as fatal as in yeast, and mice with ERO1α knock-
out exhibit a mere retardation in disulfide bond forma-
tion [41]. Indeed, it has been demonstrated that ERO1α 
function in oxidative protein folding can be compensated 
by other redundant oxidoreductases, such as peroxire-
doxin 4 (PRDX4), glutathione peroxidase 8 (GPx8), per-
oxiredoxin IV (PrxIV) and vitamin K epoxide reductase 
(VKOR) [42–45].

Human ERO1α protein is functionally composed of 
two regions: a four antiparallel alpha-helices core region 
containing a binding site for the FAD coenzyme and an 
adjacent inner active-site, as well as a shuttle loop with an 
outer active-site (Fig.  2A) [46]. In addition, ERO1α fea-
tures a protruding β-hairpin responsible for docking with 
PDI. Human PDI protein consists of two thioredoxin-like 
redox-active domains (a and a’) and two thioredoxin-like 
redox-inactive domains (b and b’), and a flexible x-linker 
between the a’ and b’ domains, in which the b’ domain 
is the common binding site for polypeptides and ERO1α 
(Fig.  2B) [47, 48]. The redox state of the PDI a’ domain 
regulates the affinity of the b’ domain to ERO1α and 
polypeptides by inducing the spatial rearrangement of 
the a’ and b’ domains through the conformational change 
of the x-linker region [49, 50].

ERO1α functions as an exchange center for disulfide 
bonds and electrons to assist PDI in the de novo disul-
fide bond formation in nascent polypeptides (Fig.  2C 
and D). Briefly, disulfide bond formation occurs between 
the sulfhydryl (-SH) side chains of two cysteine residues 
of substrate proteins. One sulfhydryl in the substrate 
attacks a disulfide bond in the active site of PDI, creat-
ing a transient mixed-disulfide bond. Another sulfhydryl 
then initiates a nucleophilic attack on this mixed-disul-
fide bond, resulting in the formation of an intramolecu-
lar disulfide bond within the substrate, leaving PDI in 
reduced state. Reduced PDI requires re-oxidation to 
allow another round of disulfide bond formation. ERO1α 

continuously re-oxidizes PDI and transfers disulfide 
bonds to PDI by reducing molecular oxygen, making the 
process sustainable. During the process, electrons flow in 
the reverse direction with disulfide bonds, and ultimately 
are accepted by molecular oxygen with the production of 
H2O2 (Fig. 2D). It has been reported that ERO1α is one 
of the primarily sources of H2O2, accounting for 25% of 
the total H2O2 in cells [51, 52]. H2O2 is involved in cell 
signaling cascades as a secondary messenger and can also 
be reduced to O2 and H2O through antioxidant enzyme 
system, such as superoxide dismutase, catalase, and glu-
tathione peroxidase [53, 54].

Notably, in terms of tumors, especially for solid 
tumors, hypoxia is a prominent characteristic [55]. 
Hypoxia retards the formation of disulfide bonds, as 
molecular oxygen acts as a provider of oxidizing equiv-
alents and an acceptor of electrons [56, 57]. However, 
some hypoxia-induced pro-tumoral proteins, such as 
VEGF and carbonic anhydrase 9 (CA9), complete disul-
fide bond formation and traverse through the secretory 
pathway in anoxic conditions, suggesting that ERO1α 
can utilize alternative electron acceptors instead of oxy-
gen [56]. In addition, despite the existence of back-up 
systems of ERO1α, the disulfide bond formation of some 
pro-tumoral proteins, such as VEGF, PD-L1, is indeed 
restrained upon ERO1α inhibition, implying the dysfunc-
tion of these compensatory mechanisms in tumor cells 
[58, 59]. Therefore, tumor cells are more dependent on 
ERO1α than normal cells, thereby providing an excel-
lent opportunity for the use of ERO1α inhibitors. ERO1α 
inhibition impairs oxidative protein folding in tumor 
cells, whereas it has a limited effect on normal cells due to 
the presence of back-up systems [41, 45, 60, 61]. Further-
more, it remains unclear whether the functions of ERO1α 
beyond disulfide bond formation are substitutable.

ERO1α in tumor landscapes
Expression profile of ERO1α in diverse tumors
All data from different studies were integrated to Table 1. 
The expression data consist of tumor cell lines (vs. nor-
mal cell lines), human tumor tissues (vs. normal or tumor 
adjacent tissues) and online gene expression databases 
(Oncomine, GEO, TCGA and GTEx). According to the 
consolidated result, except prostate cancer, in which 
ERO1α expression had no significant difference in both 
tumor tissues and tumor cell lines compared to their nor-
mal counterparts, ERO1α expression was up-regulated in 
bile duct cancer, cervical cancer, lung cancer, pancreatic 
cancer, breast cancer, liver cancer and gastric cancer. A 
pan-cancer expression analysis from the Oncomine data-
base revealed up-regulated ERO1α in 10 cancer types 
while reduced in esophageal cancer, head and neck can-
cer, and leukemia [64]. Taken together, these data support 
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that ERO1α is highly expressed in the vast majority of 
tumors, implying a potential role in tumor biology.

Regulation of ERO1α in tumors
In all cases, the interaction with PDI is the fundamen-
tal regulation of ERO1α. ERO1α is tightly controlled by 
intramolecular disulfide bonds and PDI to maintain an 
equilibrium between reduced and oxidized PDI, ensur-
ing sustainable oxidative protein folding [73–76]. In the 
UPR process, ERO1α is regulated by CHOP, an activated 
downstream transcription factor in the PERK branch 
[77, 78]. Furthermore, the phosphorylation of Ser145 has 

been reported to greatly enhance ERO1α oxidase activity 
[31].

In tumor settings, hypoxia is the leading factor for the 
regulation of ERO1α. Hypoxia is a distinctive feature of 
the TME, especially in the case of solid tumors [55]. In 
adapting to hypoxia, tumor cells evolve into an aggressive 
phenotype, acquiring invasive and metastatic properties, 
and crafting an immunosuppressive environment [55]. 
Importantly, hypoxia also induces ER stress and conse-
quently, the UPR [79, 80]. Hypoxia-induced up-regulation 
of ERO1α has been demonstrated to depend on hypoxia-
inducible factor-1 alpha (HIF-1α) [81], which controls 

Fig. 2 The crystal structure of human ERO1α and PDI and their working flow. The crystal structure and illustrative diagram of ERO1α (PDB: 3AQH) (A) 
and PDI (PDB: 4EKZ) (B). (C) The catalytic cycle of the ERO1α-PDI complex. The PDI a’ domain regulates the affinity of PDI to ERO1α and polypeptides by 
inducing the spatial rearrangement of the a’ and b’ domains through the conformational change of the x-linker region. Oxidized PDI has higher affinity 
to polypeptides and binds to them via the b’ domain. Oxidizing equivalents are transferred from the active site disulfide bonds of oxidized PDI to the 
unfolded polypeptides and PDI is therefore reduced. Reduced PDI shows higher affinity to ERO1α. Consequently, polypeptides dissociate from reduced 
PDI and are displaced by ERO1α. PDI is re-oxidized by ERO1α and then re-enters into a new catalytic cycle. (D) The electron transport chain within the 
oxidative folding. PDI oxidizes cysteines in nascent polypeptides to form disulfide bonds and accepts electrons from polypeptides, resulting in the reduc-
tion of PDI. Electrons from PDI are passed onto ERO1α leading to the reduction of the outer active site of ERO1α and the oxidation of PDI. Oxidized PDI 
then goes into a new round, while the outer active site of ERO1α shuffles electrons to the inner active site and onto the adjacent FAD coenzyme. FAD 
is reduced to FADH2 upon accepting electrons. As the ultimate acceptor, molecular oxygen accepts electron from FADH2 with the production of H2O2. 
ERO1α, endoplasmic reticulum oxidoreductase 1 alpha; PDI, protein disulfide isomerase; FAD, flavin adenosine dinucleotide
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the up-regulated transcription of most downstream 
genes in adaptive responses to hypoxia, and the ablation 
of HIF-1α resulted in a complete failure to up-regulate 
ERO1α under hypoxic condition [82]. In an esophageal 
cancer study, ERO1α was found to be capable of sens-
ing and being post-translationally regulated by the sulfur 
amino acid precursor homocysteine [83]. The researchers 
observed that homocysteine induced the active form of 
ERO1α, suggesting ERO1α might be regulated by anti-
oxidants or redox-active metabolites in epithelial cells. 
The affinity of ERO1α to amino acid precursor identifies 
a potential link between diet, antioxidants, and oxida-
tive protein folding in the ER. The transcription factor 
nuclear factor IB (NFIB) has previously been shown to 
facilitate tumorigenesis in several cancer types [84–86]. 
Federica et al. found that NFIB enhanced angiogenesis in 
breast cancer via the ERO1α/HIF-1α/VEGF pathway, in 
which ERO1α was identified as a direct transcriptional 

target of NFIB through chromatin immunoprecipitation 
(ChIP) assay [87]. MicroRNAs, a category of small non-
coding RNAs that target mRNA and inhibit their expres-
sion, have also been shown to down-regulate ERO1α. 
Li et al. demonstrated that microRNA-144-3p inhibited 
tumorigenesis in oral squamous cell carcinoma by down-
regulating the ERO1α/STAT3 pathway [88]. In addition, 
down-regulated microRNA-582-5p and microRNA-
218-5p in cervical cancer and lung cancer, respectively, 
have been shown to promote tumor progression via 
targeting ERO1α [89, 90]. Accumulating evidence has 
shown that epigenetic modifications play a crucial role 
in the regulation of gene expression [91]. Using bioin-
formatic analysis, Liu et al. and Shi et al. found that the 
promoter methylation of ERO1α was markedly reduced 
in lung cancer, suggesting that hypomethylation of 
the promoter relieved transcription inhibition, result-
ing in the overexpression of ERO1α [64, 67]. In a study 

Table 1 Expression profile of ERO1α in tumors
Can-
cer 
Type

Ref. Data 
source

Positive group Normal Control ERO1A expression

Bile 
duct 
cancer

[62] Cell line Tumor cell lines (n=5) Bile duct epithelial cell line (n=1) ↑ (Protein-WB)
Tissue Tissue microarray (n=186) Adjacent normal tissues (n=36) ↑ (Protein-IHC)

Cervi-
cal 
cancer

[63] Tissue Patient tumor tissues (n=15) Adjacent normal tissues (n=15) ↑ (Protein-WB)
Tissue Tissue microarray (n=69) Normal cervical tissues (n=9) ↑ (Protein-IHC)

Lung 
cancer

[64] Database Patient tumor tissues (n=376, Oncomine) Normal tissues (n=150) ↑ (mRNA)
Database Patient tumor tissues (n=483, TCGA) Normal tissues (n=59) ↑ (mRNA)
Database Patient tumor tissues (n=483, TCGA + GTEx) Normal tissues (n=347) ↑ (mRNA)
Database Patient tumor tissues (n=356, GEO) Normal biopsies (n=170) ↑ (mRNA)

[65] Tissue Tissue microarray (n=80) Adjacent normal tissues (n=80) ↑ (Protein-IHC)
[66] Tissue Patient tumor tissues (n=102) Adjacent normal tissues (n=102) ↑ (Protein-IHC)

Cell line Tumor cell lines (n=4) Lung epithelial cell line (n=1) ↑ (Protein-WB)
[67] Database Patient tumor tissues (n=502, TCGA) Normal tissues (n=49) ↑ (mRNA)

Pan-
creatic 
cancer

[68] Database Patient tumor tissues (n=179, TCGA + GTEx) Normal tissues (n=171) ↑ (mRNA)
Database Patient tumor tissues (n=96, GEO) Normal tissues (n=122) ↑ (mRNA)
Tissue Tissue microarray (n=205) Adjacent normal tissues (n=205) ↑ (Protein-IHC)

[69] Database Patient tumor tissues (n=145, GEO) Normal tissues (n=46) ↑(mRNA)
Tissue Patient tumor tissues (n=8) Normal tissues (n=3) ↑ (mRNA & protein, qPCR & WB)
Cell line Tumor cell lines (n=6) Pancreatic epithelial cell line 

(n=1)
↑ (mRNA & protein, qPCR & WB)

Breast 
cancer

[70] Cell line Tumor cell lines (n=7) Normal tissue (n=1) ↑ (mRNA, qPCR)

Pros-
tate 
cancer

[71] Tissue Patient tumor tissues (n=12) Normal tissues (n=6) NS (protein, WB)
Cell line Tumor cell lines (n=4) Epithelial prostate cell line (n=1) NS (protein, WB)

Liver 
cancer

[58] Tissue Patient tumor tissues (n=114) Adjacent normal tissues (n=114) ↑ (mRNA & protein, qPCR & WB & IHC)
Database Patient tumor tissues (n=371, TCGA) Normal tissues (50) ↑ (mRNA)
Cell line Tumor cell lines (n=5) Liver cell line (n=1) ↑ (mRNA & protein, qPCR & WB & IHC)

Gas-
tric 
cancer

[72] Tissue Patient tumor tissues (n=105) Adjacent normal tissues (n=105) ↑ (mRNA & protein, qPCR & WB & IHC)

Duplicate data in different references was deleted and only one was retained. NS, no significance; GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas 
Program; GTEx, Genotype-Tissue Expression; WB, Western blot;IHC, Immunohistochemistry; qPCR, quantitative polymerase chain reaction.
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focusing on liver cell apoptosis, DNA methyltransferase 1 
(DNMT1) and G9a (also known as euchromatic histone-
lysine N-methyltransferase 2 (EHMT2)) were shown to 
be responsible for the reduction of ERO1α by mediating 
the hypermethylation and H3K9me2 modification of the 
ERO1α promoter, respectively [92].

Secreted proteins from non-tumor cells can also influ-
ence ERO1α in tumor cells. Seungeun et al. reported that 
tumor associated microphage (TAM) derived C-C che-
mokine ligand (CCL) 2 induced ERO1α mRNA expres-
sion in breast epithelial cells, leading to the upregulation 
of MMP-9 and an invasive phenotype [93].

Overall, various intrinsic and extrinsic cellular regula-
tors show ability to modulate ERO1α. Indeed, as a vital 
adaptive mechanism for tumor cells responding to envi-
ronmental perturbations, the up-regulation of ERO1α 
contributes to improve the plasticity and survival of 
tumors. It is worth noting that the current regulatory 
factors may primarily originate from tumor cells them-
selves. Nevertheless, the regulatory roles of the inter-
plays between tumor and non-tumor cells, in particular 
immune cells that modulate these interactions, warrant 
more attention. Likewise, epigenetic regulation of ERO1α 
modulation also needs consideration.

ERO1α in mediating cancer progression and immune 
escape
Biological behavior
Tumor cells evolved from normal ones through precan-
cerous status under the influence of carcinogenic fac-
tors [102]. During this process, cells undergo a series of 
biological events, including initiation, promotion and 
progression, ultimately acquiring an aggressive pheno-
type. The malignant potential of tumor cells is typically 
in vitro assessed by proliferation, migration and invasion 
assays. The effects of ERO1α on tumor biological behav-
ior across various tumor types have been described in 
Table  2. In nearly all relevant studies, knockdown (KD) 
or knockout (KO) of ERO1α impaired the proliferation, 
migration and invasion of tumor cells, while overexpres-
sion (OE) resulted in opposite outcomes. However, one 
study on breast cancer has shown that knockdown of 
ERO1α had no significant impact on malignant potential 
compared to the normal cells. Additionally, two studies 
demonstrated that ERO1α also inhibited the proliferation 
of tumor cells by arresting the cell cycle [66, 67].

Epithelial-mesenchymal transition (EMT)
EMT is an important feature of tumor cells in pre-meta-
static niche [103]. During the EMT, epithelial tumor cells 
can transform into cells with a mesenchymal phenotype, 
gradually losing the connection to basement membrane, 
degrading extracellular matrix (ECM), and increasing 
invasion abilities. EMT is commonly characterized by 

the decrease of epithelial cell hallmarks and the increase 
of mesenchymal cell hallmarks. ERO1α has been shown 
to promote EMT in lung cancer, liver cancer, colorectal 
cancer, bile duct cancer and cervical cancer (Table  2). 
Aside from EMT hallmarks, integrins and MMPs are also 
crucial molecules in tumor migration, in which integrins 
are responsible for the adhesion of tumor cells to ECM, 
while MMPs are major contributors to the degradation 
of ECM [103, 104]. Hence, the collaboration between 
integrins and MMPs contributes to the metastatic capac-
ity of tumors. ERO1α has been reported to promote the 
expression of integrin β1 and MMP2/9 by enhancing the 
oxidative folding of these proteins [69, 71, 93, 101].

Angiogenesis
Angiogenesis is a pivotal factor for tumor growth, 
metastasis and colonization, as it supplies nutrients and 
channels for tumor spread [105]. The ERO1α effects on 
angiogenesis were in vitro and in vivo investigated by 
human umbilical vein endothelial cells (HUVEC) migra-
tion and tube-formation assay and CD31+/CD34+ stain-
ing in human or mouse tumor tissues (Table 2). Studies 
in breast and liver cancer revealed that ERO1α contrib-
uted to promoting the migration and tube formation of 
HUVEC cells [58, 87, 96], as well as increasing blood 
vessel density in mouse tumor tissues [58, 87, 94]. More-
over, ERO1α levels were also positively correlated with 
blood vessel density in human tumor tissues [94]. For the 
mechanism, current studies indicate that VEGF, a potent 
angiogenic agent, is the common effector by which 
ERO1α exerts its pro-angiogenesis role. On the one hand, 
as a protein with disulfide bonds, VEGF is up-regulated 
by ERO1α through enhancing its oxidative folding [87, 
96]. On the other hand, ERO1α indirectly up-regulates 
VEGF via HIF-1α [87, 94], which is a well-established 
mediator in VEGF regulation [106]. H2O2 generated by 
ERO1α during oxidative folding in the ER freely diffuses 
into the cytoplasm, where it then stabilizes HIF-1α by 
inhibiting prolyl hydroxylases (PHDs) [107, 108]. In addi-
tion, ERO1α has been reported to modulate VEGF via 
the S1PR1-STAT3 signaling pathway in liver cancer cells 
[58], and the deficiency of ERO1α in cervical cancer cells 
impaired the secretion of VEGF due to N-hyper-glycosyl-
ation [109].

In vivo tumorigenesis
Xenograft models of knockdown/knockout or overex-
pressing ERO1α tumor cells into mice were employed 
to investigate the in vivo tumorigenesis of ERO1α. Stud-
ies showed that silencing ERO1α resulted in retarded 
tumor growth, metastasis, and ameliorated overall sur-
vival (OS), while the overexpression of ERO1α produced 
opposite results (Table 2). In a study focusing on breast 
cancer, knockout of ERO1α did not significantly impact 
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tumor growth compared to wild-type (WT) cells, how-
ever, it impeded lung metastasis [96].

Immunosuppressive tumor microenvironment (iTME)
TME is a complex ecosystem that contains immune cells, 
stromal cells, vasculature and ECM. However, immune 
cells in TME, such as TAM and myeloid-derived suppres-
sor cells (MDSCs), often exhibit an immune-suppressive 
phenotype due to their “education” through the crosstalk 
with tumor cells [110]. Current findings indicate that 
ERO1α has broad and profound influences on TME, con-
tributing to shape an immunosuppressive microenviron-
ment. Analyses demonstrated that ERO1α mRNA levels 
were negatively correlated with the number of cells that 
define anti-tumor immunity, such as CD8+ T cells, B 
cells and natural killer (NK) cells, whereas positively cor-
related with immunosuppressive cells, including cancer-
associated fibroblasts (CAFs), MDSCs and TAMs [64, 
111].

In terms of tumor cells, which live in a hypoxic micro-
environment, the high expression of ERO1α is essential 
for tumor survival and progression. On the one hand, 
the high proliferation rate and crosstalk with non-tumor 
cells require a strong demand of protein synthesis. Up-
regulated ERO1α allows for efficient processing of pro-
tein oxidative folding while avoiding the accumulation 
of immature proteins. On the other hand, the potential 
ability of ERO1α to utilize alternative electron accep-
tors instead of oxygen contributes to the protein syn-
thesis of tumor cells under hypoxia. Additionally, it has 
been reported that ERO1α not only directly promotes 
the expression of PD-L1 on tumor cells by increasing 
its oxidative folding, but also indirectly through HIF-1α, 
thereby inducing T-cell dysfunction [59]. Similarly, Liu 
et al. found that knockout of ERO1α in tumor cells pro-
moted the infiltration of CD8+ T cells and enhanced 
responses to anti-PD-1 treatment [97]. Furthermore, 
studies also showed that ERO1α levels were negatively 
correlated with the sensitivity to immune checkpoint 

Table 2 The implications of ERO1α in tumors
Cancer type Ref. Biological 

behavior
EMT Angiogenesis Xenograft in mice Prognostic 

significance 
(Patients with 
ERO1A +/high)

Breast cancer [93] - - - - RFS↓
[87] - - CD31(KD↓, OE↑), 

HUVEC(OE↑)
Lung metastasis (KD↓), OS (KD↓) -

[70] KD(NS) - - Tumor growth (KD↓, OE↑), OS (KD↑, OE↓) -
[94] - - CD31 (KD↓, OE↑) Tumor growth (KD↓, OE↑) OS↓, #
[95] - - Tumor growth (KD↓), lung metastasis (KD↓) DFS↓, OS↓, #
[96] KO↓ - HUVEC (KO↓) Tumor growth (KO NS), lung metastasis (KO↓) OS (NS)

Lung cancer [97] - - - - RFS↓
[64] - - - - RFS↓, OS↓, DFS↓
[65] KD↓, OE↑ KD↓, OE↑ - Tumor metastasis (KD↓, OE↑) RFS↓, OS↓
[67] KD↓ - - - OS↓
[66] KD↓, OE↑ - - Tumor growth (KO↓) -
[68] - - - - DFS↓, #

Bile duct 
cancer

[63] KD↓, OE↑ KD↓, OE↑ - - DFS (NS), OS↓, #

Prostate 
cancer

[71] KD↓ - - - -

Pancreatic 
cancer

[99] KD↓ - - Tumor growth (EN460↓), OS↓, DFS ↓
liver metastasis (EN460↓), OS (EN460↓)

[69] KD↓, OE↑ - - Tumor growth (KD↓, OE↑) -
[68] KD↓, OE↑ - - Tumor growth (KD↓, OE↑) OS↓, #

Gastric 
cancer

[100] KD↓ - - - RFS↓, OS↓

Colon cancer [101] KD (NS) KO↓ - Tumor growth (KO↓) -
Liver cancer [58] KD↓, OE↑ KD↓, OE↑ HUVEC (KD↓, OE↑), 

CD34 (KD↓, OE↑)
Lung metastasis (KD↓, OE↑) RFS↓, OS↓

Cervical 
cancer

[63] KO↓ KO↓ - Tumor growth (KO↓) OS↓

Duplicate data in different references was deleted and only one was retained. EMT, epithelial–mesenchymal transition; NS, no significance; KD, knockdown; KO, 
knockout; OE, overexpression; EN460, ERO1α inhibitor; HUVEC, human umbilical vein endothelial cells; OS, overall survival; RFS, recurrence-free survival; DFS, 
disease-free survival; #, Independent prognostic factor; -, none.
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inhibitors (ICIs) [64, 97, 111]. So far, the relationship 
between ERO1α and other immune checkpoint path-
ways, such as T-cell immunoglobulin and mucin domain 
3 (TIM-3), lymphocyte activation gene 3 (LAG-3) and 
cytotoxic T-lymphocyte associated protein 4 (CTLA-4), 
have not been reported.

For myeloid-derived cells, ERO1α has been reported 
to improve the chemotaxis of MDSCs. Tsutomu et al. 
reported that the secretion of chemokines granulocyte 
colony-stimulating factor (G-CSF) and C-X-C motif 
chemokine ligand (CXCL) 1/2 from tumor cells were 
increased as ERO1α enhanced their oxidative folding, 
resulting in the promotion of recruitment and induction 
of polymorphonuclear (PMN)-MDSCs [70]. Moreover, 
ERO1α was found to affect the infiltration and differen-
tiation of monocytes. Silencing ERO1α in tumor cells 
facilitated monocyte infiltration and their differentia-
tion into dendritic cells (DCs) in pancreatic cancer [112]. 
MDSCs in TME are known for their potent immune-
suppressive activity, whereas DCs activate T cells by tak-
ing up and presenting tumor antigens [113]. In addition, 
analyses indicated that ERO1α had effects on macro-
phage polarization [64, 111]. Macrophages are typically 
classified into two representative types according to their 
function and activation: classically activated (M1) and 
alternatively activated (M2) macrophages [114]. TAMs, 
the macrophages in TME, are considered to possess an 
M2-like phenotype and favor tumor progression [115, 
116]. Database analysis showed that ERO1α expression 
in tumor cells was positively correlated with M2 macro-
phages while negatively correlated with M1 macrophages 
[64]. Single-cell RNA-sequencing (scRNA-seq) analy-
sis from ERO1αKO/WT mouse model also demonstrated 
that ERO1α promoted a phenotype transition of TAMs 
from M1 to M2 type [111]. However, most of these works 
are observational studies, and there is a need for a more 
comprehensive dissection of the role of ERO1α in the 
infiltration, differentiation, and functional execution of 
immune cells, as well as the underlying mechanisms.

For T cells, it has been confirmed that ERO1α in tumor 
cells instigated the dysfunction of CD8+ T cells, which 
was characterized by increased exhausted markers (Lag3, 
Havcr2 and Odcd1) and decreased ability of prolifera-
tion, degranulation and secretion of inflammatory cyto-
kines [111]. Mechanistically, ERO1α in tumor cells was 
revealed to promote the transmission of ER stress to T 
cells, triggering the CHOP-dependent apoptosis and 
resulting in dysfunction of T cells [97, 111]. In addition, 
deletion of ER stress in T cells restrained in vivo tumor 
growth and restored the sensitivity to ICIs [97]. However, 
besides being transmitted from tumor cells, ER stress 
can also be induced in T cells when tumor antigens are 
submitted to T cells, resulting in a huge protein synthesis 
burden. Katie et al. reported that the ER stress in CD8+ 

T cells up-regulated ERO1α expression by the PERK/
ATF4/CHOP branch of the UPR, in which ERO1α was 
identified as a key downstream effector of ATF4/CHOP 
to promote global protein synthesis [117]. Neverthe-
less, the high level of H2O2 resulting from up-regulated 
ERO1α overloaded the processing capability of cells, ulti-
mately leading to mitochondrial exhaustion of CD8+ T 
cells [117]. Of interest, tumor cells and T cells show dis-
tinct fates when they encounter up-regulated ERO1α and 
H2O2. Though, tumor cells possess a more potent antiox-
idant capacity than T cells [53, 118]. Whether their ability 
to reduce oxidizing agents, such as H2O2, is sufficient to 
control cell fate (i.e., die or survive) remains in question 
[53, 119].

Taken together, the up-regulation of ERO1α is a cru-
cial adaptive mechanism by which tumor cells respond 
to unfavorable microenvironment. ERO1α contributes to 
the formation of a tumor-supporting immunosuppressive 
microenvironment by affecting the recruitment and dif-
ferentiation of immune cells, triggering the dysfunction 
of T cells, and regulating the PD-1/PD-L1 pathway.

Glucose metabolism
It is widely known that aerobic glycolysis is the main 
pathway of energy metabolism in tumor cells (i.e., the 
Warburg effect), as well as the pentose phosphate path-
way (PPP) [120, 121]. ERO1α has been demonstrated 
to promote aerobic glycolysis in pancreatic cancer and 
cervical cancer [68, 89]. In the study of pancreatic can-
cer, ERO1α was found to promote tumor growth via 
enhancing aerobic glycolysis, whereas inhibition of aero-
bic glycolysis partially abrogated the supportive effects of 
ERO1α on tumor growth [68]. Mechanistically, H2O2 was 
identified as the mediator for the effects of ERO1α on 
aerobic glycolysis. However, it remains unclear whether 
ERO1α can directly regulate the aerobic glycolysis pro-
cess, and warrants further investigation. Aerobic gly-
colysis supplies abundant metabolic intermediates, such 
as glucose-6-phosphate (G-6-P) for the PPP to produce 
reduced nicotinamide adenine dinucleotide phosphate 
(NADPH) and GSH, two essential reductants for H2O2. 
Therefore, ERO1α confers upon tumor cells an aug-
mented antioxidant capacity relative to normal cells by 
promoting aerobic glycolysis. In addition to its impacts 
on aerobic glycolysis and PPP, further studies to explore 
the regulatory roles of ERO1α in other antioxidant sys-
tems are needed.

Chemoresistance
Hypoxia and ER stress have been well-documented as 
major contributors to the chemotherapy resistance of 
tumor cells, by multiple mechanisms including apoptosis 
inhibition, metabolic rewiring, anti-oxidant defences and 
drugs efflux [79]. Meanwhile, hypoxia-/ER stress-induced 
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ERO1α also shows contribution to the chemoresis-
tance of tumor cells. In gastric cancer, silencing ERO1α 
rendered tumor cells more sensitive to 5-Flouroura-
cil (5-FU) and paclitaxel, suggesting a chemoresistance 
role of ERO1α in tumor cells [100]. In a breast cancer 
study, ERO1α inhibition was reported to blunt the tumor 
resistance to paclitaxel by down-regulating UPR [122]. 
Numerous anti-tumor drugs, including 5-FU and pacli-
taxel, have been shown to act by inducing lethal ER stress 
in tumor cells [20, 123, 124]. Mechanically, increased sus-
ceptibility of tumor cells to ER stress upon ERO1α inhibi-
tion may explain the drug-resistant role of ERO1α [111]. 
Furthermore, ERO1α was also shown to undermine anti-
tumor immunity by inducing PD-L1 on tumor cells [64, 
97, 111].

Cell survival
ERO1α was demonstrated to rescue tumor cells from 
death under ER stress or therapeutic interventions. Abla-
tion of ERO1α resulted in hyper-activation of PERK and 
an imbalance between IRE1a and PERK, leading to tumor 
cells apoptosis via the CHOP and Caspase-12 pathways 
[111]. Similarly, in a colon cancer research, deletion of 
ERO1α was found to promote tumor apoptosis via the 
miR-101/EZH2/Wnt/β-catenin pathway [125]. In addi-
tion to apoptosis, ERO1α was also associated to immu-
nogenic cell death (ICD). In lung cancer, ERO1α deletion 
triggered lethal ER stress in tumor cells and promoted 
host anti-tumor immunity via ICD [111]. However, it 
is unclear whether ERO1α is related to other tumor cell 
death modes, such as autophagy, ferroptosis, pyroptosis 
and necroptosis.

Prognostic significance
The high expression of ERO1α implies the clinical signifi-
cance of ERO1α in tumor patients. Data obtained from 
online databases and clinical follow-up showed that high 
level of ERO1α in patients was negatively correlated with 
overall survival (OS), as well as recurrence-free survival 
(RFS) and disease-free survival (DFS). In addition, results 
from multivariate Cox regression analysis revealed that 
high level of ERO1α was also recognized as an inde-
pendent prognostic factor in breast cancer, lung cancer, 
pancreatic cancer and bile duct cancer (Table  2). We 
retrieved prognostic data of ERO1α in tumor patients 
from public online databases. From the Gene Expres-
sion Profiling Interactive Analysis 2 (GEPIA2) database, 
an integrated result showed that ERO1α expression was 
negatively associated with patients’ overall survival (OS) 
with a hazard ratio (HR) of 1.7 (p < 0.0001) across 33 can-
cer types (Fig.  3A). Specifically, data from the Kaplan-
Meier Plotter database showed that ERO1α was identified 
as an indicator of poor prognosis in 9 out of 20 different 
cancer types (Fig. 3C). Furthermore, we also analyzed the 

prognostic value of PDIA1, the canonical member of the 
PDI family members and the major substrate of ERO1α, 
in tumor patients and showed similar results to ERO1α 
(Fig. 3B and D).

In addition, ERO1α was also included into multi-
gene models as a predictor for poor prognosis of tumor 
patients. Differentially expressed genes (DEGs) between 
tumor patients and normal individuals were computa-
tionally identified and then screened to construct risk 
score models. In these models, ERO1α was found to be 
associated with poor prognosis and was proposed for the 
prognosis prediction in lung cancer [126–128] and pan-
creatic cancer [129].

Other tumoral-favoring effects of ERO1α
In lung cancer, ERO1α promoted IL-6 receptor (IL-6R) 
secretion by promoting oxidative folding, and increased 
soluble IL-6R in turn led to the activation of NF-κB 
[65]. IL-6 and NF-κB are two well-known effectors to be 
involved in tumor initiation and progression [130, 131]. 
Since the availability of public databases has allowed 
researchers to explore different perspectives of cancer 
biology, one can recognize that the ERO1α protein is also 
present in tumor-derived exosomes of bladder, liver and 
squamous cell carcinomas (retrieved from the ExoCarta 
database). Thus, providing a new avenue to understand 
the exosome biology behind ERO1α in tumors.

Taken together, ERO1α shows a lot of versatility on 
both tumor cells and TME (Fig.  4). It not only endows 
tumor cells with faster growth and aggressive phenotype, 
but also induces an immunosuppressive TME by improv-
ing the angiogenesis, the recruitment and differentiation 
of immunosuppressive cells, and by causing dysfunction 
of favorable immune cells. Meanwhile, further investiga-
tions to unveil a comprehensive landscape of the effects 
of ERO1α on immune cells in TME are warranted. The 
impact of ERO1α on tumor cells primarily hinges on 
enhanced oxidative protein folding, which can be com-
pensated by other redundant oxidoreductases, as men-
tioned above [42–44]. However, current in vivo and in 
vitro experiments did show a significant reduction in the 
expression of ERO1α target genes, such as VEGF, PD-L1, 
HIF-1α and MMPs, upon the inhibition of ERO1α, 
suggesting these compensatory counterparts may be 
impaired. Therefore, to reveal how tumor cells coordinate 
ERO1α and its compensatory mechanisms becomes an 
intriguing avenue of exploration.

Targeting ERO1α for anti-tumor treatment
Despite accumulating evidence that ERO1α exerts a pro-
found influence on tumors and would be an attractive 
target for anti-tumor therapy, few pharmacological inhib-
itors are available for further validation and none are 
approved for clinical use. The challenge predominately 
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arises from the highly conserved structure of the FAD 
cofactor-binding domain across enzymes, suggesting 
that inhibitors not only recognize the FAD domain in 
ERO1α, but also other FAD-containing enzymes, such 
as lysine specific demethylase 1 (LSD1), monoamine oxi-
dases A and B (MAO-A and MAO-B) [132]. To date, sev-
eral compounds have been reported to target ERO1α in 
mammals (Fig. 5). EN460 and QM295 stand as the first 
two identified ERO1α inhibitors through a biochemical 
high-throughput screen and have been shown to inter-
act with reduced ERO1α and prevent re-oxidation [133]. 
PB-EN-10 is an azide derivative of EN460 and shows 
similar effects [132]. Erodoxin, a dinitrobromobenzene 
compound, acts as a selective inhibitor of yeast ERO1, 
but has somewhat weaker activity against mouse ERO1α 

[133, 134]. However, these inhibitors lack selectivity for 
ERO1α, and indeed, they inhibit other FAD-containing 
enzymes as well [132]. Recently, Brennan et al. reported 
a novel ERO1α inhibitor named T151742, a sulfuretin 
derivative, showing heightened activity (IC50: 8.27µM) 
compared to EN460 (IC50: 16.46µM) and isozyme speci-
ficity for ERO1α as compared to that for ERO1β and no 
detectable binding to the FAD-containing enzyme LSD-1 
[135]. However, further investigations are warranted to 
determine its in vivo efficacy and safety.

Given that PDI directly interacts with ERO1α, targeting 
PDI would also be a viable approach to block oxidative 
protein folding. In fact, PDI has also been shown to be 
up-regulated in a variety of cancer types and exhibit pro-
tumoral roles [136]. Various chemical inhibitors of PDI 

Fig. 3 The pan-cancer prognostic value of ERO1α and PDI. Integrated Kaplan-Meier curves from the GEPIA2 database showing the prognostic effect of 
ERO1α (A) and PDI (B) expression with patients’ survival across 33 types of cancers. Prognostic analyses from the Kaplan-Meier Plotter database indicat-
ing the correlations of ERO1α (C) and PDI (D) with survival in specific cancers. ERO1α, endoplasmic reticulum oxidoreductase 1 alpha; PDIA1: protein 
disulfide isomerase A1; HR: hazard ratio. BLCA, Bladder urothelial carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma 
and endocervical adenocarcinoma; ECA, Esophageal adenocarcinoma (EAC); ESCC, Esophageal squamous cell carcinoma; HNSC, Head and neck squa-
mous cell carcinoma; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung 
adenocarcinoma; LUSC, Lung squamous cell carcinoma; OV, Ovarian serous cystadenocarcinoma; PDAC, Pancreatic ductal adenocarcinoma; PCPG, Pheo-
chromocytoma and paraganglioma; READ, Rectum adenocarcinoma; SARC, Sarcoma; STAD, Stomach adenocarcinoma; TGCT, Testicular germ cell tumors; 
THCA, Thyroid carcinoma; THYM, Thymoma; UCEC, Uterine corpus endometrial carcinoma
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Fig. 5 Timeline of the ERO1α inhibitors

 

Fig. 4 The regulation and the oncogenic roles of ERO1α on tumors. For the regulation of ERO1α, only hypoxia is shown in this figure. In the TME, hy-
poxia enhances ERO1α via up-regulating HIF-1α. ERO1α not only endows tumor cells with an aggressive phenotype and promotes aerobic glycolysis 
of tumor cells, but also contributes to induce an immunosuppressive TME by activating immunosuppressive cells while inhibiting immunocompetent 
cells. ERO1α, endoplasmic reticulum oxidoreductase 1 alpha; PDI, protein disulfide isomerase; EMT, epithelial-mesenchymal transition; VEGF, vascular 
endothelial growth factor; MMP, matrix degrading enzyme; ECM, extracellular matrix; MDSC, myeloid-derived suppressor cell; G-CSF, granulocyte colony-
stimulating factor; CXCL1/2, C-X-C motif chemokine ligand 1/2. PD-L1, programmed cell death ligand-1
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have been identified and some of them showed potential 
anti-tumor effect [137]. However, the presence of over 20 
structurally similar PDI homologues in eukaryotes limits 
the development of specific inhibitors. Considering the 
inextricable interplay between ERO1α and PDI, a more 
effective and specific strategy involves developing inhibi-
tors that disrupt the interaction between ERO1α and 
PDI. Recently, Zhang et al. reported that valine (Val) 101, 
a hydrophobic residue in the active site-containing loop 
of ERO1α, is crucial for the recognition of PDI catalytic 
domain [63]. Mutation of Val101 weaken the activity of 
ERO1α in oxidative protein folding, and more impor-
tantly, impaired tumor progression. This finding not 
only provides a reliable target site for inhibitor develop-
ment, but also a paradigm for targeting the ERO1α-PDI 
interface.

The highly conserved structure of the FAD-binding 
domain limits the development of ERO1α inhibitors. In 
recent years, proteolysis-targeting chimera (PROTAC) 
has been emerged as a novel technology for targeted pro-
tein degradation [138, 139]. PROTAC is a bifunctional 
molecule consists of three domains: a protein of inter-
est (POI) ligand, a E3 ubiquitin ligase ligand, and a linker 
which covalently interconnects with these two ligands. 
Upon binding to the target protein, the PROTAC mol-
ecule can recruit E3 ubiquitin ligase for protein ubiqui-
tination, which is subjected to proteasome-mediated 
degradation [140]. Therefore, with respect to ERO1α, the 
development of PROTAC molecules does not require 
targeting the active center of ERO1α, but only the abil-
ity to specifically recognize ERO1α protein, which would 
greatly help to avoid off-target effects of the current 
ERO1α inhibitors. Notably, however, there are also some 
challenges for PROTAC to be a successful drug develop-
ment approach [141].

Strategies to disturb UPR or to increase the protein 
accumulation in the ER are the current approaches in 
anti-tumor treatment targeting ER stress [26, 27]. For 
instance, inhibition of the UPR proteins, such as PERK, 
IRE1 or eIF2α, has been reported to show anti-tumor 
properties [26]. Tunicamycin, an antibiotic, has been 
shown to inhibit the N-glycosylation of proteins in the 
ER, thereby inducing overwhelming ER stress [142]. In 
addition, proteasome inhibitors, widely used as anti-
tumor drugs (especially in hematological tumors), such as 
bortezomib, have been shown to induce tumor death by 
inhibiting proteolysis, thereby increasing protein accu-
mulation in the ER and resulting in lethal ER stress [143]. 
Given that ERO1α is a crucial player in the ER protein 
homeostasis, synergistic inhibition of ERO1α and other 
ER stress-inducing targets mentioned above would be a 
promising approach in anti-tumor treatment. For exam-
ple, the combined treatment with proteasome inhibi-
tors, which retards the oxidative folding and proteolysis 

of proteins concurrently, could induce ER stress more 
efficiently than their single use. Actually, the synergistic 
effect of this dual inhibition has been in vitro confirmed. 
ISRIB, a small molecule that inhibits the phosphoryla-
tion of eIF2α and removes its inhibition on global protein 
translation, was found to synergistically interact with the 
genetic deficiency of ERO1α and to impair breast tumor 
growth and spread [122]. However, the in vivo avail-
ability and utility of the dual inhibition strategy remain 
unclear, given the current absence of clinically available 
ERO1α inhibitors. Therefore, the development of highly 
specific and efficient ERO1α-targeting drugs is a critical 
objective.

A few key considerations about ERO1α
As mentioned earlier, reports on ERO1α expression as 
a prognostic indicator in various cancers raise a few 
important questions: (1) can we target ERO1α with-
out affecting other FAD-containing enzymes, (2) how 
ERO1α affects the response of cancer immunotherapies, 
and is there a synergistic effect of the combination treat-
ment with other known ER stress/UPR targeting drugs, 
(3) ERO1α-PDI interactions have been known for years, 
and while both are of central importance, it is still dif-
ficult to determine which one predominates. Given that 
both ERO1α and PDI are overexpressed in tumors and 
their close interplay, can we rule out the possibility that 
targeting ERO1α might also act by affecting PDI, and 
how this differs from directly targeting PDI, (4) which 
cancer immunotherapy approach would benefit from 
the combined treatment with ERO1α inhibition. Cyto-
kine-induced killer (CIK) cell immunotherapy has been 
successfully demonstrated to reinforce immune system 
to fight against tumors due to its attributes such as non-
toxic, heterogeneous cell population (T cells, NKT cells 
and NK cells) and synergistic compatibility with ICIs 
[144]. Therefore, in our opinion, CIK cell immunotherapy 
may represent an opportunity in this setting.

Though we mainly focus on cancer, it is worth men-
tioning that ER-related dysregulation (especially involv-
ing ERO1α) has also been found in other diseases such 
as diabetes [145, 146], neurodegenerative diseases (e.g., 
Parkinson’s disease [147], Alzheimer’s disease [148, 149], 
Huntington’s disease [150] and amyotrophic lateral scle-
rosis [151, 152]), and cardiovascular diseases [153–155]. 
Therefore, it is important to gain more comprehensive 
insights into the involvement of disease-specific genetic/
epigenetic processes and cellular mechanisms affecting 
ERO1α in general.

Concluding remarks
ERO1α plays a role for tumor support, and targeting 
ERO1α holds promise as an antitumor strategy. Besides, 
the dual characteristics of ERO1α, i.e., flexibility to ER 
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stress in tumors and modulation with immunosuppres-
sive TME, make it a strong candidate for future research 
on its crucial adaptive mechanisms. Certainly, with the 
advent of new technologies, the peculiar way of molec-
ular recognition of ERO1α in the cancer landscape is 
awaited.
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IRE1  Inositol requiring enzyme 1
JNK  c-Jun N-terminal kinase
LAG-3  Lymphocyte activation gene 3
LSD-1  lysine specific demethylase 1
MAO-A/B  Monoamine oxidases A/B
MDSCs  Myeloid-derived suppressor cells
MMPs  Matrix degrading enzymes
NADPH  Nicotinamide adenine dinucleotide phosphate
NFIB  Nuclear factor IB
NK cells  Natural killer cells
NOX  NADPH oxidase
OS  Overall survival
PDHs  Prolyl hydroxylases
PD-L1  Programmed cell death ligand-1
PDI  Protein disulfide isomerase
PERK  Protein kinase R (PKR)-like endoplasmic reticulum kinase
PMN-MDSCs  Polymorphonuclear-MDSCs
POI  Protein of interest
PPP  Pentose phosphate pathway
PRDX4  Peroxiredoxin 4
PROTAC  Proteolysis-targeting chimera
PrxIV  peroxiredoxin IV
RFS  Recurrence-free survival
RyR  Ryanodine receptor
TAM  Tumor associated macrophage

TCGA  The cancer genome atlas program
TIM-3  T-cell immunoglobulin and mucin domain 3
TME  Tumor microenvironment
UPR  Unfolded protein response
VEGF  Vascular endothelial growth factor
VKOR  vitamin K epoxide reductase
XBP1  X-box protein 1
5-FU  5-Flourouracil
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