
R E V I E W Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Ren et al. Journal of Experimental & Clinical Cancer Research           (2024) 43:96 
https://doi.org/10.1186/s13046-024-03026-7

Introduction
As one of the deadliest and most common types of 
tumors in the world, lung cancer has become the leading 
cause of tumor-related deaths globally [1]. Pathologically, 
lung cancers are classified into small-cell lung cancers 
(SCLC) and non-small cell lung cancers (NSCLC). Of 
these, about 85% of lung cancers are NSCLCs, which 
include lung adenocarcinoma (LUAD) and lung squa-
mous cell carcinoma (LUSC) [2]. Patients diagnosed with 
lung cancer typically exhibit advanced-stage disease, 
often accompanied by distant metastases at the onset of 
symptoms. This contributes significantly to the elevated 
mortality rates and unfavorable prognosis observed in 
patients with lung cancer [3]. Hence, identifying effective 
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Abstract
Lung cancer stands as the most prevalent form of cancer globally, posing a significant threat to human well-
being. Due to the lack of effective and accurate early diagnostic methods, many patients are diagnosed with 
advanced lung cancer. Although surgical resection is still a potential means of eradicating lung cancer, patients 
with advanced lung cancer usually miss the best chance for surgical treatment, and even after surgical resection 
patients may still experience tumor recurrence. Additionally, chemotherapy, the mainstay of treatment for 
patients with advanced lung cancer, has the potential to be chemo-resistant, resulting in poor clinical outcomes. 
The emergence of liquid biopsies has garnered considerable attention owing to their noninvasive nature and 
the ability for continuous sampling. Technological advancements have propelled circulating tumor cells (CTCs), 
circulating tumor DNA (ctDNA), extracellular vesicles (EVs), tumor metabolites, tumor-educated platelets (TEPs), 
and tumor-associated antigens (TAA) to the forefront as key liquid biopsy biomarkers, demonstrating intriguing 
and encouraging results for early diagnosis and prognostic evaluation of lung cancer. This review provides an 
overview of molecular biomarkers and assays utilized in liquid biopsies for lung cancer, encompassing CTCs, ctDNA, 
non-coding RNA (ncRNA), EVs, tumor metabolites, TAAs and TEPs. Furthermore, we expound on the practical 
applications of liquid biopsies, including early diagnosis, treatment response monitoring, prognostic evaluation, and 
recurrence monitoring in the context of lung cancer.
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strategies for early screening and prompt tumor inter-
vention represents a crucial approach to mitigating 
mortality in individuals diagnosed with primary lung 
cancer. Conventional diagnostic methods for lung cancer 
depend on techniques such as endoscopic ultrasonog-
raphy-guided fine-needle aspiration (EUS-FNA), Mag-
netic Resonance Imaging (MRI), and low-dose spiral CT 
(LDCT), along with histopathological diagnostics [4, 5]. 
Nevertheless, each of these diagnostic methods comes 
with certain drawbacks, including invasiveness, elevated 
costs, radiation exposure to patients, a heightened risk 
of false positives, and potential surgical risks associated 
with obtaining tissue biopsies [6]. . Furthermore, despite 
ongoing exploration of the potential role of tumor bio-
markers, there remains a dearth of dependable diagnostic 
biomarkers for lung cancer. Carcinoembryonic antigen 
(CEA) stands out as a widely employed clinical biomarker 
for lung cancer, holding significant diagnostic value in 
lung adenocarcinoma [7]. However, its lack of specificity 
poses a limitation, as it can indicate the presence of vari-
ous tumors, including colorectal and breast cancers, as 
well as benign lung diseases [8, 9]. Consequently, relying 
solely on tumor biomarkers cannot furnish entirely accu-
rate evidence for tumor diagnosis and necessitates evalu-
ation in conjunction with diverse clinical symptoms, 
imaging tests, and other methodologies [10]. Indeed, it 
is highly conceivable that these modalities will have an 
adverse impact or burden on the patient.

Liquid biopsies have garnered widespread attention in 
recent years, primarily owing to their less invasive nature 
and the capability for frequent or continuous sampling, 
enabling the ongoing tracking of tumor progression and 
therapy response [11]. As tumor cells proliferate, liq-
uid biopsies unveil additional insights into tumor char-
acteristics by detecting tumor cells or genetic material 
released into bodily fluids [12]. This highly sensitive 
technique not only diagnoses tumors but also provides 
crucial details about the tumor, such as pathological 
typing, the stage of tumor progression, and mutations 
in tumor-associated genes [13]. While blood remains 
the most commonly utilized liquid biopsy in clinical 
practice, other clinical samples like cerebrospinal fluid, 
saliva, ascites, pleural fluid, and urine are also employed. 
Diverse sample sources contribute to revealing charac-
teristics specific to different tumor types [14]. Presently, 
circulating tumor cells (CTCs), circulating tumor DNA 
(ctDNA), non-coding RNAs (ncRNA), microRNAs (miR-
NAs), tumor-associated antigens (TAA) and extracellular 
vesicles (EVs) stand as potential targets for liquid biopsy 
due to their ability to provide information about tumor 
genomics, transcriptomics, and proteomics [11, 15]. 
Liquid biopsy has proven highly beneficial in managing 
lung cancer, encompassing applications in early diagno-
sis, treatment strategies, therapy response monitoring, 

recurrence monitoring, and prognostic assessment for 
lung cancer patients [16]. This review expounds on liquid 
biopsy-based biomarkers and their detection methods, 
providing a comprehensive overview of the application 
of liquid biopsy in early diagnosis, treatment selection, 
recurrence monitoring, and prognostic evaluation in 
lung cancer. Additionally, the analysis extends to future 
trends and limitations in the hope of enhancing current 
management strategies for patients with lung cancer.

Biomarkers and detection methods for liquid 
biopsy of lung cancer
At present, the incorporation of circulating tumor cells, 
circulating tumor DNA, non-coding RNA, extracellular 
vesicles, tumor metabolites, tumor-associated antigens, 
and tumor-educated platelets holds considerable poten-
tial as valuable biomarkers, steering the trajectory of liq-
uid biopsy applications in the realm of oncology research 
(Fig. 1).

Circulating tumor cells
Circulating tumor cells are cells originating from primary 
or metastatic lesions that enter the bloodstream either 
spontaneously or due to manipulations during diagnos-
tic procedures, leading to cell shedding [17]. The pres-
ence of a significant number of metastatic precursors 
among CTCs heightens the risk of tumor metastasis and 
recurrence. It is now understood that a subset of tumor 
cells within the peripheral blood can evade apoptosis/
phagocytosis, undergo epithelial-mesenchymal transition 
(EMT), and acquire enhanced mobility, adherence, inva-
siveness, and penetration capabilities [18, 19], ultimately 
promoting intravascular infiltration and resulting in dis-
tant tumor metastasis through migration in the periph-
eral blood [20].

Currently, blood tests for CTCs offer diverse avenues 
for assessing tumor-related information, including the 
analysis of tumor morphology or genetic information, 
scrutiny of tumor genotypes and heterogeneity, and 
effective monitoring of patient response to treatment, 
thereby improving clinical prognosis [21, 22]. In addi-
tion, CTCs may illuminate the distinct characteristics 
of tumors, guiding clinicians in providing personalized 
and precise treatment for patients. Substantial evidence 
underscores the clinical significance of CTCs in tumor 
progression, not only for early tumor diagnosis, meta-
static recurrence, and predicting the risk of tumor pro-
gression but also for real-time monitoring of tumor drug 
therapy [23]. Therefore, efficient CTC detection methods 
can potentially facilitate early tumor detection and pal-
liative care monitoring in patients with advanced tumors, 
presenting a promising outlook for the future of lung 
cancer treatment [24].
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The primary process for elucidating tumor proper-
ties through CTCs involves enrichment, detection, and 
characterization of these cells [25]. Immunoenrich-
ment and physical enrichment are the primary methods 
employed for CTC enrichment. Immunoenrichment 
can be achieved through methods such as a microfluidic 
chip-based immunosorbent technique and an immu-
nomagnetic bead method [26]. The CellSearch system, 
as a representative immunomagnetic bead method for 
CTC enrichment, can automatically capture, count, 
and analyze stained cells, targeting epithelial cell adhe-
sion molecules (ECAM) [27]. However, the efficacy of 
the CellSearch system may be impacted by the potential 
loss of epithelial antigens during epithelial-mesenchymal 
transition and variations in CTC abundance among dif-
ferent tumor types. Microfluidic chips form the foun-
dation of the immunosorbent assay, utilizing various 
sizes and structures to manipulate blood flow patterns, 
thereby expanding possibilities for CTC immunosorbent 
techniques and antibody interactions [28]. On the other 
hand, physical enrichment relies on the inherent physical 
distinctions between CTCs and blood cells, such as size, 
relative density, and surface charge. Various materials 
and devices with different sizes are designed for the filtra-
tion and separation of CTCs [29].

Enrichment of CTCs serves the purpose of reducing 
background blood cell levels in peripheral blood, allow-
ing for the detection and analysis of the remaining CTC 
population. Currently, diverse methods, including pro-
tein expression, immunocytochemistry, and molecular 

nucleic acids, are employed for the detection of CTCs 
[30]. Flow cytometry is commonly used to quantify and 
comprehensively characterize protein expression in 
CTCs, enabling the observation of multiple biomarker 
expression profiles. However, the challenge of detect-
ing rare CTC populations remains a limitation of flow 
cytometry [31]. Immunohistochemical staining and 
immunofluorescence are widely applied for the detection 
and characterization of distinct CTCs [32, 33]. Immuno-
fluorescence techniques, leveraging fluorescent labeling 
and isolation by specific antibodies recognizing selected 
markers on CTCs [33], allow for the observation of pro-
tein expression and location information. Consequently, 
immunofluorescence technology is a practical tool for 
assessing tumor protein expression through CTC detec-
tion. In recent years, numerous labeled immunofluo-
rescence panels have been utilized to comprehensively 
evaluate the distribution and expression patterns of 
various CTC subtypes. This not only aids in determining 
tumor staging and subtypes but also establishes a person-
alized basis for the precision treatment of tumor patients 
[34]. Beyond these techniques, imaging histology, tumor 
mutation analysis, and single-cell sequencing are also 
employed for the detection and analysis of CTCs. These 
approaches contribute to mapping tumor heterogene-
ity comprehensively and characterizing CTCs at various 
histological and functional levels. Ultimately, they enable 
effective monitoring of the dynamic evolution of tumor 
heterogeneity [35].

Fig. 1 Liquid biopsy enables the early diagnosis and prognostic evaluation of lung cancer by utilizing circulating tumor cells (CTCs), circulating tumor 
DNA (ctDNA), non-coding RNA (ncRNA), extracellular vesicles (EVs), tumor metabolites, and tumor-educated platelets (TEPs) as biomarkers. Techniques 
including quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, droplet digital polymerase chain reaction (ddPCR), enzyme-
linked immuno sorbent assay (ELISA), microfluidics, and sequencing can be employed for the isolation and detection of liquid biopsies in lung cancer
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While the exact relationship of CTCs in the process 
of tumor proliferation and metastasis necessitates fur-
ther investigation, CTCs offer valuable information for 
liquid biopsy, providing a comprehensive understand-
ing of tumor progression. In the clinical management of 
lung cancer patients, CTCs play an indispensable role in 
early diagnosis, prognostic assessment, and recurrence 
monitoring.

Circulating tumor DNA
Circulating free DNA (cfDNA) consists of DNA frag-
ments released into the bloodstream through pro-
cesses such as apoptosis, necrosis, or active secretion 
from healthy, damaged, inflamed tissues or tumors 
[36]. Within cfDNA, circulating tumor DNA represents 
a specific subset released into the circulatory system 
either through shedding by tumor cells or during apop-
tosis, encoding the genes of the tumor cell [37]. ctDNA 
serves as a distinctive tumor biomarker, and its testing 
enables the detection of minute traces of tumors in the 
blood. Typically, ctDNA fragments are approximately 
160–200 base pairs in length, constituting around 0.01-
90% of cfDNA in peripheral blood [38]. Notably, ctDNA 
is less influenced by tumor heterogeneity compared to 
tumor tissue. Furthermore, in contrast to conventional 
blood proteins, which may take 2–3 weeks for markers 
to appear, ctDNA has a relatively short half-life, ranging 
from approximately 15  min to 2.5  h. This characteristic 
suggests that ctDNA can function as a real-time tumor 
biomarker, providing dynamic monitoring and reflec-
tion of tumor evolution [39]. Interestingly, ctDNA carries 
genetic information relevant to tumors, encompassing 
mutation levels, methylation status, and microsatel-
lite instability [40]. Recently, the FDA has approved liq-
uid biopsy-based tests for ctDNA testing in other tumor 
types or for validation in the clinical setting, such as the 
Epi proColon for colorectal cancer screening and the 
Signatera test for identifying molecular residual lesions 
and recurrence in multiple types of solid tumors [41, 42]. 
These advantages position ctDNA as a next-generation 
liquid biopsy marker superior to traditional markers. It 
not only aids in the early diagnosis of tumor status but 
also offers diverse ways to assess the prognosis of tumor 
patients and monitor recurrence/metastasis.

The detection of ctDNA involves critical steps such 
as ctDNA preparation, library construction, and data 
comparison and analysis. ctDNA testing predomi-
nantly focuses on gene mutations and DNA methyla-
tion, as these alterations have the potential to activate 
oncogenes, disrupt the balance between oncogenes and 
tumor suppressor genes, and stimulate tumor progres-
sion [43]. DNA methylation, in particular, can influence 
DNA conformation, stability, and protein interactions, 
thereby contributing to tumorigenesis by regulating gene 

expression [44]. The low abundance of ctDNA in the 
blood necessitates highly sensitive techniques for muta-
tion detection. Currently, various methods such as the 
amplification refractory mutation system (ARMS), quan-
titative PCR (qPCR), digital PCR, and next-generation 
sequencing (NGS) enable qualitative and quantitative 
analysis of ctDNA with high accuracy [25]. qPCR, for 
instance, monitors DNA amplification in real-time with 
high specificity and sensitivity, making it suitable for 
multiplexed analysis [45]. NGS platforms offer the advan-
tage of comprehensive detection, covering not only cod-
ing regions but also non-coding and regulatory regions, 
as well as structural variants. Digital PCR stands out 
for its high sensitivity, accurate quantification of DNA 
molecules, and stability in detecting rare targets amidst 
complex background interference [46]. Combining gene 
editing technologies, nanomaterials, and other inte-
grated detection strategies with current ctDNA methods 
may enhance the identification of target gene mutations 
in ctDNA by increasing the net amount of mutant frag-
ments [47].

In advanced or metastatic lung cancer, the use of circu-
lating tumor DNA (ctDNA) has various applications such 
as predicting chemotherapy regimens and evaluating 
patient treatment response and survival outcomes. The 
detection of EGFR mutations in ctDNA serves as a highly 
specific molecular marker for both diagnosis and prog-
nosis of tumors. Notably, ctDNA testing can help identify 
unknown tumor tissue variants, particularly in scenarios 
where chemotherapy leads to chemoresistance in spe-
cific tumor cells, resulting in residual clusters of cells. 
Therefore, ctDNA demonstrates significant utility in the 
early diagnosis and prognostication of lung cancer. Liq-
uid biopsy technology is utilized to collect plasma ctDNA 
from NSCLC patients, enabling the detection of genetic 
mutations and the identification of new genetic changes 
associated with acquired drug resistance. Tailored treat-
ment regimens based on these findings significantly 
enhance clinical care efficacy. However, akin to circulat-
ing tumor cells (CTCs), ctDNA levels in cancer patients 
are typically low with a short half-life, making them 
susceptible to interference from normal cell-free DNA 
(cfDNA) and necessitating highly sensitive detection 
methodologies. Advances in DNA sequencing technol-
ogy have enabled the qualitative and quantitative analysis 
of ctDNA directly following DNA amplification through 
established detection techniques like amplification 
refractory mutation system (ARMS), digital polymerase 
chain reaction (PCR), and next-generation sequencing 
(NGS). In addition to standardizing the detection pro-
cess, the clinical utility of ctDNA requires further valida-
tion through extensive clinical trials.
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Non-coding RNA
Non-coding RNAs (ncRNAs) are RNA molecules that 
do not encode proteins, including rRNA, tRNA, snRNA, 
snoRNA, and miRNA with known functions [48]. Despite 
not being involved in protein translation, they play a 
crucial role in regulating gene and protein expression. 
ncRNAs are broadly classified into small non-coding 
RNAs (sncRNAs, less than 200 nucleotides in length) and 
long non-coding RNAs (lncRNAs, more than 200 nucleo-
tides in length) based on their length [49]. These RNAs 
participate in various oncogenic processes, including 
EMT, autophagy, and cellular senescence, by modulat-
ing gene expression, cell proliferation, and differentiation 
[50].

MicroRNAs, among the most extensively studied 
ncRNAs in oncology research, can be identified through 
various liquid biopsy techniques that detect miRNAs 
released by CTCs and tumor cells [51]. Detecting miR-
NAs is of paramount importance as biomarkers for the 
diagnostic assessment of lung cancer. For instance, miR-
125, miR-21-5p, miR-200b, and miR-141 in the blood 
show varying correlations with lung cancer progression 
and tumor chemosensitivity [52–54]. Consequently, miR-
NAs are regarded as potential biomarkers for the early 
diagnosis and prognostic monitoring of lung cancer.

Long non-coding RNAs are widely thought to influ-
ence tumor progression through various life processes, 
including epigenetics and cell cycle regulation. Advances 
in sequencing technologies have facilitated the character-
ization of numerous lncRNAs, establishing their value as 
liquid biopsy biomarkers in lung cancer. lncRNAs such 
as H19, MIR22HG, and LINC-PINT exhibit differential 
expression in lung cancer tissues and are implicated in 
the regulation of lung cancer progression [55–57], mak-
ing them potential diagnostic markers and therapeutic 
targets for lung cancer.

Circular RNAs (circRNAs) are covalently closed-loop 
molecules without a 5′ end cap structure and 3′ end 
poly(A) tail. Rich in miRNA binding sites, circRNAs act 
as miRNA sponges, relieving the inhibitory effect of miR-
NAs on their target genes and participating in the regu-
lation of various diseases, including tumors [58]. Due to 
their closed-loop structure, circRNAs exhibit good stabil-
ity, allowing for consistent and stable expression in cells, 
making them suitable biomarkers for early diagnosis and 
recurrence monitoring of lung cancer [25]. Several cir-
cRNAs, such as circFASRA, circHMGB2, and circSATB2, 
have been implicated in immunosuppression, chemore-
sistance, and tumor progression in lung cancer [59–61]. 
Thus, plasma circRNAs can serve not only as diagnostic 
markers in liquid biopsy for lung cancer but also as thera-
peutic targets and prognostic/recurrence monitors.

Current methods for ncRNA research, similar to those 
for ctDNA and CTCs, include transcriptome sequencing, 

real-time fluorescence quantitative PCR, fluorescence 
in situ hybridization, RNA interference, and immuno-
precipitation of RNA-binding proteins. Among these, 
fluorescence quantitative PCR is widely used as the gold 
standard for detecting non-coding RNA expression [62]. 
In a study by Liang et al. [63], fluorescence signals were 
enhanced to improve the detection sensitivity of miRNAs 
and circRNAs, making them potential early diagnostic 
markers for tumors. Overall, these methods offer a range 
of options for ncRNA detection and hold great potential 
for the clinical screening of lung cancer.

Extracellular vesicles
Extracellular vesicles are nanoscale phospholipid bilayer 
vesicles actively secreted by all cells, playing a crucial 
role in intercellular communication and the regulation 
of cellular activities. EVs carry various genetic materi-
als, including mRNA, miRNA, lncRNA, nucleic acids, 
and proteins, making them essential mediators of cellular 
functions [64]. They actively participate in tumorigenesis, 
progression, and the regulation of the immune microen-
vironment through cellular communication under spe-
cific physiological and pathological conditions, owing to 
their penetrating and migratory abilities [65]. Based on 
the recommendations of the Extracellular Vesicle Associ-
ation, EVs of different origins and sizes are classified into 
three types: exosomes (30–150 nm), microvesicles (200-
1,000  nm), and apoptotic vesicles (800-5,000  nm) [65]. 
Exosomes, in particular, are the most extensively studied 
subtype of EVs due to their stability and penetration abil-
ity, influencing the life progression of tumor cells through 
immune regulation, signaling, and molecular transport 
[66]. Crucially, EVs released by living cells and the mate-
rials they carry provide a more accurate real-time reflec-
tion of tumor foci than the small amounts of circulating 
tumor DNA and possibly necrotic circulating tumor cells 
in peripheral blood [67]. The stability of EVs and their 
ability to characterize tumor status make them a promis-
ing alternative tool to liquid biopsy, offering new options 
for the diagnosis and prognosis of lung cancer.

In recent years, it has become increasingly evident 
that genetic information, such as miRNAs and lncRNAs 
loaded in extracellular vesicles, plays a crucial role in 
the regulation of tumor progression through cellular 
communication. These genetic elements have emerged 
as promising biomarkers with excellent prospects. For 
instance, miRNAs like miR-934, miR-186-5p, miR-
497-5p, and miR-29a-3p carried by EVs have been iden-
tified as regulators of lung cancer progression through 
different signaling axes, positioning them as potential 
biomarkers [68–70]. Similarly, EVs-derived lncRNAs 
such as ZEB2-AS1, UFC1, and circUSP7, along with circ-
SATB2 and tumor-derived exosomal proteins, have dem-
onstrated potential for the early diagnosis of lung cancer 
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[59, 71–74]. Therefore, unraveling the genetic content of 
EVs, including miRNAs, circRNAs, and lncRNAs, may be 
pivotal in understanding and diagnosing lung cancer.

The development of extracellular vesicles in liquid 
biopsies faces numerous challenges, primarily the low 
abundance of EVs in biological samples, which poses lim-
itations on their isolation and characterization. Various 
techniques are currently employed for the separation of 
EVs, including ultracentrifugation, ultrafiltration, molec-
ular exclusion chromatography, polymer precipitation, 
immunoaffinity chromatography, and microfluidics [64]. 
To enhance the efficiency of EVs separation, a combina-
tion of multiple techniques is often necessary, consider-
ing factors such as experimental conditions, procedural 
contamination, and sample characteristics [64]. Each sep-
aration technique has its advantages and disadvantages, 
such as the time-consuming nature of ultracentrifuga-
tion, susceptibility to contamination and denaturation 
of ultrafiltration, and the low content of immunoaffinity 
chromatographic purification [75, 76]. Notably, micro-
fluidics stands out for its portability, rapidity, low cost, 
ease of handling, and low contamination rate compared 
to other EVs separation techniques, making it a promis-
ing option for EVs separation and purification. A novel 
microfluidic technique utilizing zinc oxide nanowires 
and surface charge has been developed to enhance EVs 
capture efficiency [77]. However, these separation meth-
ods require further refinement to optimize EVs separa-
tion efficiency and advance their clinical applications, 
especially in areas such as early tumor screening and 
prognostic evaluation [78].

Following the purification of EVs, their identification 
and characterization are essential for detecting poten-
tial biomarkers they carry. Exosomes, for instance, are 
commonly identified through EV tracing, transmission 
electron microscopy, and particle size detection [79]. 
Moreover, immunoblotting, enzyme-linked immunosor-
bent assay (ELISA), and flow cytometry are frequently 
employed to detect proteins carried by EVs [80]. The con-
tinuous development of new technologies, such as elec-
trochemistry, colorimetry, and nano-biosensors, provides 
additional possibilities for the identification and charac-
terization of EVs, enhancing the sensitivity of EVs detec-
tion [81]. Despite the promising biological properties of 
EVs for the diagnosis, prognosis, and treatment of lung 
cancer, there is an urgent need to optimize isolation tech-
niques and improve the clinical translational efficiency of 
relevant EVs.

Tumor-educated platelet
During tumor tissue development, tumor cells can influ-
ence the RNA message and protein levels of platelets 
through various signaling molecules or receptors, lead-
ing to the formation of tumor-educated platelets (TEPs). 

TEPs provide abundant spliced RNA biomarkers and 
RNA profiles that hold potential for tumor detection 
[82, 83]. Numerous studies have verified that the number 
and size of TEPs can reveal clinically relevant informa-
tion related to tumors, such as tumor presence, location 
details, and molecular signatures. Moreover, these factors 
are associated with increased mortality in several can-
cers, including lung cancer [84, 85]. For instance, tumor-
derived platelet factor 4 (PF4, CXCL4) has been shown to 
promote bone marrow megakaryocyte-mediated throm-
bopoiesis in NSCLC patients, and circulating platelets 
can contribute to tumor progression by modulating the 
tumor immune response [86, 87]. A recent study sug-
gested that platelets in the peripheral blood of NSCLC 
patients could help characterize clinically relevant bio-
markers and provide information about the spread and 
metastasis of tumor foci [88].

The process of detecting platelet RNA involves plate-
let isolation and sequencing of RNA transcripts. Various 
techniques, including platelet RNA sequencing, microar-
ray hybridization techniques, and reverse transcriptase 
polymerase chain reaction (qRT-PCR), have enabled 
platelet RNA to fulfill its significant oncological diagnos-
tic potential in blood liquid biopsies for lung cancer [89–
91]. Additionally, RNA sequencing in next-generation 
sequencing has gained attention for its ability to resolve 
multiple genetic information simultaneously [92]. It is 
important to note that complex isolation procedures and 
the resolution of tumor markers from platelet RNA pose 
challenges. Currently, a critical issue to address is avoid-
ing interference and contamination of TEPs by other 
biomarkers (e.g., ctDNA and EVs) during the isolation 
of TEPs and the resolution of tumor-associated markers 
[93, 94]. In preclinical studies, there is an urgent need to 
optimize and simplify the platelet extraction and RNA 
sequencing process to reduce time consumption and 
expense costs.

Metabolites
Tumor growth and progression often induce physiologi-
cal changes in the body, particularly alterations in over-
all metabolic status. Tumor cells modify their metabolic 
pathways during proliferation and metastasis, releasing 
metabolites into the bloodstream. These metabolites can 
serve as tumor markers in liquid biopsies for the early 
diagnosis, prognostic evaluation, therapy response and 
recurrence monitoring of lung cancer [95].

Crucially, glucose metabolism plays a pivotal role in 
tumor cell proliferation, with glucose metabolites such 
as 2-hydroxyglutaric acid, succinic acid, and fumaric 
acid [96] being significant signaling molecules. Grow-
ing evidence suggests that these metabolites may regu-
late tumor progression through epigenetic enzymes 
and DNA repair, and they have shown associations with 
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survival and clinical prognosis in cancer patients [96, 
97]. Lactate, a major glycolysis metabolite, contributes to 
tumor metastasis through histone modifications that reg-
ulate gene expression and reprogram the tumor microen-
vironment [98, 99]. Additionally, products of tumor lipid 
and amino acid metabolism offer diagnostic possibilities. 
For instance, plasma lipid metabolites like arachidonic 
acid and linoleic acid are identified as potential clinical 
diagnostic markers regulating lung cancer progression 
through the Akt pathway [100]. Amino acid metabolites, 
including tryptophan, leucine, and valine, serve as valu-
able biomarkers to differentiate between tumor and non-
tumor patients [101, 102].

Metabolomics technologies, relying on nuclear mag-
netic resonance (NMR) and mass spectrometry (MS), are 
instrumental in the comprehensive detection and accu-
rate quantification of tumor metabolites [103]. NMR, as 
a spectroscopic technique, is increasingly employed for 
metabolic fingerprint research and in vivo studies [104]. 
In addition, MS is typically classified into three types: cap-
illary electrophoresis-mass spectrometry (CE-MS), gas 
chromatography-mass spectrometry (GC-MS), and liq-
uid chromatography-mass spectrometry (LC-MS) [105]. 
MS is often coupled with chromatographic separations to 
enhance the efficiency of extensive analysis and accurate 
quantification of metabolites. However, the challenges 
posed by the low levels of metabolites in peripheral blood 
and the complexity of sample preparation for metabolo-
mics have driven technological advances. For instance, 
ion mobility spectrometry coupled to mass spectrometry 
(IMS-MS) has been developed to avoid detection overlap 
and extend the range of detectable metabolites. The strat-
egy of acquiring MS1 and MS2 spectra simultaneously 
in IMS-MS improves the accuracy of identifying meta-
bolic biomarkers [106, 107]. Additionally, different assay 
strategies vary, and a combination of multiple strategies 
may be advantageous. Simultaneous acquisition of MS1 
and MS2 spectra improves the accuracy of identifying 
metabolic biomarkers. The combined use of non-targeted 
metabolomics based on the data-dependent acquisition 
(DDA) model and targeted metabolomics based on the 
multiple reaction monitoring (MRM) model enhances 
sensitivity for metabolite detection [106, 108].

The intricate and dynamic evolution of metabolites 
presents a challenge to the application of metabolomics. 
To overcome this challenge, there is a need for improved 
metabolomics methods and instrumentation. These 
advancements should aim to address the current limita-
tions, including limited metabolite detection coverage, 
insufficient detection sensitivity, low qualitative and 
quantitative accuracy, and the absence of spatial informa-
tion about the tumor [109].

Tumor-associated antigens
Tumor-associated antigens (TAAs) are molecular 
markers found on both tumor cells and normal cells, 
encompassing various types like embryonic proteins, 
glycoprotein antigens, and squamous cell antigens. 
Although TAAs are not exclusive to tumor cells, they are 
produced in trace amounts by normal cells and notably 
highly expressed actively dividing tumor cells, earning 
them the term “associated antigens.” Recent investiga-
tions indicate that the abnormal expression of TAAs in 
the bloodstream may contain valuable information about 
tumor cell activity, size, gene mutations, and more. In 
a study conducted by Li and colleagues [110], the pres-
ence of autoantibodies in the serum of patients with lung 
cancer was identified by enzyme-linked immunosor-
bent assay (ELISA). The study suggested that increased 
expression of serum anti-cytosine B1, anti-sufflatoxin 
autoantibodies, and serum anti-p53 autoantibodies 
might indicate tumor proliferation.

Consequently, these biomarkers have promising poten-
tial for non-invasive early diagnosis of lung cancer. 
Additionally, the dysregulation or increased expression 
of TAAs is closely associated with genetic mutations. 
Notably, the well-studied TAA, p53, when deleted or 
mutated in tumors, affects myeloid and T-cell recruit-
ment and activity. This phenomenon the tumor to evade 
the immune system and promotes cancer growth. Addi-
tionally, the role of p53 in immune cells can lead to vari-
ous effects that may impede the progression of the tumor 
[111]. Moreover, other well-known TAAs, such as can-
cer-testis antigens (for instance, GAGE1 and NY-ESO-1) 
and oncofetal proteins, play a crucial role in the develop-
ment of cancer. These TAAs offer promising avenues for 
the early diagnosis of NSCLC [112].

Due to the inherent challenges in identifying TAA in 
lung cancer patients, current research predominantly 
relies on the recognition of known TAAs, coupled with 
the detection of corresponding autoantibodies through 
immunoreactivity in patient sera. Primary techniques 
employed for TAA identification include serological 
analysis of recombination cDNA expression libraries 
(SEREX) and protein microarrays. SEREX, a classical 
experimental method, involves screening patient sera 
against cDNA expression libraries to autoantibod-
ies through serological analysis [113]. This unbiased 
approach to transfer membranes systematically screens 
TAA autoantibodies (TAAb) [114]. For instance, Li and 
colleagues managed to isolate 57 TAAs from a T7 phage 
library specific to NSCLC. Utilizing a combination of 
TAAb with five antigens (HSP70, HSP90, p130, GAGE, 
and BMI-1) resulted in significant diagnostic accuracy, 
evidenced by an area under the curve (AUC) of 0.840, a 
sensitivity rate of 82.0%, and a specificity rate of 83.0%. 
This highlights the method’s effectiveness in pinpointing 
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potential markers for lung cancer using TAA [115]. Pro-
tein microarrays served as practical tools for detecting 
TAAs in cancer patients. This process entails the deposi-
tion of purified recombinant proteins onto a chip using 
microarray printing methods, which is then probed with 
the patient’s serum. This is followed by incubation with 
specific antibodies to detect reactive antigens. Screening 
for antigens using protein arrays allows for the monitor-
ing of an organism’s proteome, facilitated by the use of 
comprehensive separation methods [116]. For example, 
Zhong and colleagues [117] pinpointed GAGE7, EEF1A, 
PMS2P7, NOLC1, and SEC15L2 utilizing a protein 
microarray that comprised 212 immunoreactive phages, 
which are significantly linked to different signaling path-
ways in lung cancer. Similarly, Shan et al. [112] identified 
five TAAs (XAGE-1, ADAM29, NY-ESO-1, MAGEC1, 
and p53) using a microarray containing 72 proteins, 

confirming their connection to the progression of lung 
cancer through ELISA.

Clinical application potential of liquid biopsy in 
lung cancer
In recent years, liquid biopsy has been seamlessly inte-
grated into clinical practice, as illustrated in Fig.  2. The 
identification of multiple tumor biomarkers in body flu-
ids has elevated liquid biopsy to a pivotal role in the early 
screening and diagnosis of lung cancer, as well as in mon-
itoring treatment responses and assessing the prognosis 
of tumor recurrence and metastasis (Table 1).

Lung cancer diagnosis
The current methods for detecting and diagnosing lung 
cancer, such as EUS-FNA, MRI, and CT [118], rely on 
invasive procedures that may pose risks to patients. 
While pathological tissue testing remains the gold 

Fig. 2 Clinical potential of biomarkers (CTCs, ctDNA, ncRNA, EVs, tumor metabolites, TEP) in different biofluids (blood, urine, pleural fluid, saliva) for early 
diagnosis, prognostic evaluation, monitoring treatment response, recurrence and metastasis monitoring of lung cancer
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Biomarker Type Findings Ref
Disease 
diagnosis

CTCs CTCs Increased expression levels of CTCs or CA125 help in diagnosis of NSCLC  [245]

CTCs Combination of CTCs with the lung cancer biomarker CEA improves early 
diagnosis of lung cancer

 [246]

PD-L1 The detection of CTCs and PD-L1 in peripheral blood is helpful for the diagnosis 
of lung cancer patients.

 [247]

ctDNA DNA methylation DNA methylation sequencing of ctDNA allows non-invasive diagnosis of early 
lung cancer

 [4]

ctDNA sequencing ctDNA helps detect early lung cancer  [248]
Tumor mutation Tumor mutation ctDNA analysis is something that can help with early lung 

cancer diagnosis.
 [249]

ncRNA miR-155-5p Early diagnosis of lung cancer via miR-155-5p  [250]
LINC00313/miR-4429 LINC00313/miR-4429 informs NSCLC diagnosis and prognosis  [251]
miR-205-5p miR-205-5p promotes lung cancer progression and is valuable in the diagnosis 

of lung cancer
 [252]

miRNA-21 miRNA-21 can be used as a biomarker for early diagnosis of lung cancer  [253]
EVs miR-21, miR-191 Extracellular vesicles isolated and detected in plasma can be used for lung 

cancer diagnosis
 [254]

NG Detection of extracellular vesicular membrane proteins by Förster resonance 
energy transfer for accurate and convenient early diagnosis of lung cancer

 [255]

miR-520c-3p/miR-1274b miR-520c-3p and miR-1274b in EVs of lung cancer patients contribute to diag-
nosis of NSCLC

 [139]

Metabolites Cytosine, lysine, tyrosine Salivary diethanolamine, cytosine, lysine and tyrosine help in the differential 
diagnosis of lung cancer and benign lung lesions

 [256]

Ornithine Tumor metabolites such as ornithine have potential for early lung cancer 
screening

 [141]

TEP lncRNA lncRNA isolated from TEP enables lung cancer diagnosis and progression 
prediction

 [220]

SNORD55 SNORD55 in TEP could be a potential biomarker for early diagnosis of NSCLC  [146]
TAA NRP2 High expression of NRP2 facilitates early diagnosis of lung cancer  [149]

HMGB3 Autoantibody against HMGB3 has the potential to serve as a serological bio-
marker in early-stage lung cancer

 [150]

Treatment 
monitoring

CTCs CTCs Monitoring drug resistance mutations in lung cancer patients using CTCs to 
assess treatment response

 [257]

CTCs CTCs can dynamically monitor the therapeutic effect of pembrolizumab in 
metastatic NSCLC

 [258]

ctDNA ctDNA sequencing ctDNA analysis can identify residual/recurrent disease earlier than standard 
radiography, thus contributing to early personalized adjuvant therapy

 [259]

ctDNA mutation Evaluation of ctDNA predicts tumor recurrence in lung cancer  [260]
ctDNA mutation ctDNA can monitor for microscopic residual disease  [261]
ctDNA sequencing Detection of microscopic residual disease after lung cancer surgery  [262]

ncRNA microRNA microRNAs can be used as biomarkers in NSCLC to monitor therapeutic re-
sponse to chemotherapy in tumor cells

 [263]

circ_0011292 circ_0011292 is associated with NSCLC progression and chemotherapy 
resistance

 [264]

EVs miRNA-30c Extracellular vesicular miRNA-30c monitors response to radiotherapy treatment 
and assesses prognosis in lung cancer patients

 [265]

circ_0041150 Monitoring chemoresistance in NSCLC treated with chemotherapy regimens by 
circ_0041150 in lung cancer cell-derived EVs

 [266]

Metabolites SN-38 Monitoring the therapeutic response of irinotecan in tumor patients by active 
metabolite (SN-38)

 [267]

Tumor-derived metabolomics data can assess disease staging and chemothera-
py response in NSCLC

 [268]

TEP Tumor-derived RNA TEP can help liquid biopsy monitor treatment resistance  [93]
PD-L1 PD-L1 expressed on TEP can influence immune checkpoint therapy response  [269]

TAA TRIM21 Positive TRIM21 autoantibody combinations in peripheral blood of lung cancer 
are significantly associated with better treatment response

 [186]

Table 1 The clinical potential of liquid biopsy in the diagnosis, treatment monitoring, and prognostic evaluation of lung cancer
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standard, it is essential to acknowledge the invasiveness 
of this approach. Given the substantial time gap between 
the formation of lung cancer and the manifestation of 
symptoms spanning several years, liquid biopsy emerges 
as a crucial tool for early screening. This presents a valu-
able opportunity to enhance treatment outcomes and 
survival rates for lung cancer patients [119].

CTCs can be present at all stages of lung cancer pro-
gression, yet characterizing their status in the blood 
becomes more feasible at advanced stages due to the 
crucial role of CTCs dissemination in distant metastasis 
[120]. The limited presence of circulating tumor cells in 
the bloodstream during the early stages of tumor initia-
tion presents a significant challenge for the prompt diag-
nosis of lung cancer. Fortunately, recent technological 
advancements have made substantial strides in address-
ing these challenges associated with CTC applications 
[121]. Notably, the implementation of CellCollector® in 
vivo CTC capture technology and CTCs next-genera-
tion sequencing has demonstrated a commendable CTC 
detection rate of 62.5% for type I/II NSCLC [121, 122]. 
In addition to these advancements, the identification of 
four high-frequency mutated genes (NOTCH1, IGF2, 
EGFR, and PTCH1) through CTCs NGS holds promise 
for the early diagnosis of lung cancer [123]. Furthermore, 
the application of NGS analysis to CTCs has unveiled 
dozens of differentially expressed metabolites, with 10 

specific metabolites showing potential clinical value in 
diagnosing early-stage lung cancer [124]. The distinctive 
scarcity of CTCs in the blood of non-tumor individuals 
underscores their specificity as biomarkers for early lung 
cancer diagnosis. However, it is crucial to acknowledge 
the pressing need for ongoing development and optimi-
zation of additional techniques to enhance the sensitivity 
of CTC detection.

Besides, circulating tumor DNA presents a compel-
ling potential for early-stage lung cancer diagnosis, 
originating from apoptotic or necrotic tumor cells. Sig-
nificantly elevated plasma ctDNA levels in lung cancer 
patients, compared to patients with respiratory inflam-
mation, underscore its diagnostic relevance. With a sen-
sitivity of 90% and specificity of 80.5%, ctDNA proves 
effective in differentiating between lung cancer patients 
and healthy individuals [125]. Notably, a study revealed 
ctDNA detection in 50% of plasma specimens from stage 
I NSCLC patients, reaching 100% as the tumor pro-
gressed to stages II-IV [126]. The correlation between 
ctDNA levels and tumor volume, along with its ability to 
distinguish residual foci from treatment-related imaging 
changes, highlights its potential for earlier tumor assess-
ment compared to traditional imaging methods [127]. It 
is essential, however, to approach the analysis of ctDNA 
mutations comprehensively, considering the possibility of 
their association with non-neoplastic cells and potential 

Biomarker Type Findings Ref
HMGB1 HMGB1 may predict treatment response and prognosis in patients with ad-

vanced NSCLC
 [188]

Prognosis 
evaluation

CTCs CTCs Circulating tumor cells in patients with lung cancer universally indicate poor 
prognosis

 [270]

DNA Methylation DNA methylation sequencing of CTCs predicts prognosis and provides thera-
peutic strategies for lung cancer

 [21]

ctDNA ctDNA ctDNA predicts prognostic outcomes and tracks early tumor dissemination in 
lung cancer patients

 [271]

ctDNA Combined circulating tumor DNA and protein biomarker assay analyzes prog-
nosis of lung cancer patients

 [272]

ncRNAs lncRNA Immune checkpoint-associated lncRNA identify different subtypes of lung 
cancer and predict immunotherapy and prognosis

 [273]

lncRNA AC079630.4 Expression of lncRNA AC079630.4 is associated with poor prognosis in lung 
cancer patients

 [274]

EVs hY4 RNA EVs carrying hY4 RNA methylation fragments promote lung cancer progression  [275]
miR-126/miR-320 miR-126 and miR-320 in EVs of lung cancer origin induce lung cancer metastasis 

and are associated with poor prognosis
 [276]

Metabolites Creatine/creatinine Tumor metabolites (creatine and creatinine) shown to be useful in assessing 
lung cancer prognosis and monitoring cancer recurrence

 [277]

Creatine nucleoside Tumor metabolites creatine nucleoside and arginine as potential indicators of 
poor prognosis in lung cancer

 [278]

TEP Volume and number of TEP Volume and number of TEP can inform the evaluation of lung cancer prognosis  [279]
ITGA2B ITGA2B in TEP can be applied to diagnostic and prognostic evaluation of NSCLC  [148]

TAA MAGE-B2 MAGE-B2 in lung cancer serum can reflect tumor recurrence and metastasis 
information

 [223]

NG: not given

Table 1 (continued) 
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implications for early tumorigenesis [128]. Hence, it is 
crucial to approach the significance of these mutations in 
ctDNA analysis with a comprehensive and cautious per-
spective to assess the potential for early tumorigenesis. 
Previous studies have successfully utilized blood ctDNA 
to determine the mutational status of the epidermal 
growth factor receptor (EGFR) and establish connections 
between EGFR mutations in ctDNA and the progression 
status of lung cancer. An in-depth analysis of patients 
with EGFR mutations in ctDNA indicated that the L858R 
mutation, whether identified in tumor tissue or ctDNA, 
serves as a marker for shortened overall survival (OS) 
and progression-free survival (PFS), which underscores 
the potential of the L858R mutation in ctDNA as both a 
diagnostic and prognostic marker for lung cancer [129]. 
Notably, the methylation status ctDNA holds promise 
for contributing to the early diagnosis of lung cancer. 
Although further clinical trials are necessary for optimi-
zation, methylation markers present a compelling and 
noninvasive diagnostic strategy for ctDNA in the early 
diagnosis of lung cancer [4, 119].

Definitive studies have underscored the promising 
biomarker potential of miRNAs due to their extensive 
involvement in regulating multiple mechanisms of lung 
cancer proliferation and invasion. Despite this, there 
remains a gap in the widespread use of miRNA in the 
clinical diagnosis of lung cancer. Notably, miR-1246 and 
miR-1290 are implicated in correlating with tumor stage 
and clinical response in NSCLC, as evidenced by their 
significantly elevated expression levels in the blood of 
tumor patients compared to the healthy population [130]. 
An intriguing report sequencing NSCLC tissue samples 
has suggested that specific LCS6 allele variants could 
serve as potential risk factors for NSCLC [131]. Conse-
quently, detecting information related to miRNAs in the 
body fluids of NSCLC patients holds promise as a poten-
tial noninvasive method for early lung cancer diagnosis. 
Notably, Abdollahi et al. [132] have proposed a com-
bined miRNA diagnostic method for NSCLC, presenting 
a miR-panel (miR-21, miR-148, miR-152, and miR-638) 
with a sensitivity and specificity of 86.67%. This finding 
further advocates for the clinical application of miRNA in 
the early diagnosis of lung cancer. However, it is crucial 
to emphasize the efficacy of individual miRNAs in lung 
cancer diagnosis to strike a balance between effectiveness 
and cost. While specific diagnostic models containing 
multiple biomarkers exhibit good predictive diagnostic 
efficacy, their low reproducibility and complex compo-
sition pose substantial challenges for the practical appli-
cation of miRNAs in the early diagnosis of lung cancer 
[133]. Advancements in sequencing technology have led 
to the identification of various lncRNAs and circRNAs 
that exhibit differential expression in lung cancer blood 
and tissue. There is growing evidence that the expression 

of specific lncRNAs and circRNAs may offer valuable 
insights into the clinical features of lung cancer [134]. For 
instance, circFASRA and lncRNA PCAT1 have emerged 
as potential diagnostic markers for lung cancer [135, 
136]. Currently, the analysis of lncRNA and circRNA 
relies predominantly on bioinformatics data prediction, 
highlighting the need for additional experimental and 
clinical studies to substantiate and confirm their diagnos-
tic value in the future.

EVs carry a diverse range of biological information, 
and the characterization of tumor cell-derived EVs has 
gained significant momentum as potential biomarkers 
for the early diagnosis of lung cancer [137]. A study by 
Yuan et al. [138] utilizing microfluidics to analyze EVs in 
plasma revealed their ability to recognize lung cancer-
related markers PTX3 and THBS1, along with the typical 
EV marker CD63. Employing a machine learning-based 
EVs nano-strategy, the study achieved an impressive 
92.3% sensitivity and 100% specificity in distinguishing 
early-stage lung cancer from benign lung disease, out-
performing CT scan-based lung cancer diagnosis (92.3% 
sensitivity and 71.4% specificity). This suggests that EVs 
can serve as biomarkers for the detection of precancer-
ous lesions. Current methods for diagnosing early lung 
cancer using EVs are inclined towards the detection of 
miRNA or lncRNA carried by EVs [139, 140]. For exam-
ple, the elevated expression of miR-520c-3p and miR-
1274b in lung cancer can be detected by EVs for the early 
diagnosis of NSCLC [139]. However, the standardiza-
tion of techniques for the isolation and detection of EVs 
is essential to facilitate the full implementation of EVs in 
the early diagnosis of lung cancer, and broader clinical 
studies are indispensable for further validation.

The use of high-resolution mass spectrometry is 
increasingly prevalent for detecting tumor metabo-
lites as potential biomarkers for the early diagnosis of 
tumors. Metabolomics enables the analysis of metabo-
lites released into the bloodstream due to the metabolic 
reprogramming of tumor tissues [141]. A study con-
firmed that specific metabolites detected in plasma, such 
as palmitic acid, heptadecanoic acid, 4-oxoproline, and 
tridecanoic acid, demonstrate discriminatory accuracies 
and area under the curve (AUC) scores of up to 0.829 and 
0.869 for early-stage lung cancer, highlighting the poten-
tial of tumor metabolites as diagnostic biomarkers [141]. 
Additionally, Guan et al. developed a prediction model 
for early lung cancer based on metabolic indicators and 
identified metabolic biomarkers like ornithine and palmi-
toyl carnitine as potential candidates for screening lung 
cancer (AUC = 0.81, accuracy = 75.29%, sensitivity = 74%) 
[142]. Notably, valine, leucine, and isoleucine may also 
serve as potential early lung cancer diagnostic biomark-
ers [143]. However, the heterogeneity of different tumor 
subtypes may entail different metabolic modes and types 
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of metabolites, necessitating future studies to explore 
more sensitive and specific markers for the early identi-
fication of different subtypes of lung cancers to facilitate 
the effective selection of clinical protocols [144].

In the early stages of tumorigenesis, both RNA and 
proteins of TEPs are changed in tumor patients, and 
detection of this molecular information, which is differ-
entially expressed in healthy individuals/tumor patients, 
offers a potential means for early diagnosis of lung can-
cer [145]. For example, small nucleolar RNA (snoRNA) 
levels were found to differ significantly between NSCLC 
and normal tissues. Specifically, SNORD55 exhibited 
significant reduction and demonstrated good diagnostic 
performance for NSCLC (area under the curve, AUC of 
0.803) in tumor-educated platelets of NSCLC patients 
[146]. Additionally, TEPs enriched with abundant cir-
cRNA is advantageous for the diagnosis of NSCLC. 
Various circRNAs were found to be significantly differ-
entially expressed between asymptomatic individuals 
and NSCLC patients. Both reverse transcription-quan-
titative polymerase chain reaction (RT-qPCR) and RNA 
sequencing results indicated that circNRIP1 was notably 
downregulated in the TEPs of NSCLC patients [147]. 
Furthermore, TEP-derived ITGA2B has been proposed 
as a promising marker for improving the identification 
of stage I NSCLC patients and differentiating between 
malignant and benign lung nodules. In summary, TEPs 
hold the potential to serve as early diagnostic markers for 
NSCLC [148].

The identification of unusual alterations in TAAs 
within a patient’s serum presents a promising avenue 
for the early diagnosis of lung cancer as tumor growth 
takes place. Numerous crucial TAAs associated with 
lung cancer have been identified, participating in various 
biological processes during the onset and progression of 
the disease. Yuan and colleagues discovered several anti-
gens, such as EEF1G, RPS3, NKAP, B2M, HSP90AB1, 
RAB10, EIF3D, and NRP2, associated with lung cancer. 
Their study revealed that a combination of eight corre-
sponding TAAbs enabled early diagnosis with remark-
able accuracy. The profile achieved an impressive AUC 
of 0.969, demonstrating a validity of 90.8% and a specific-
ity of 94.1% in differentiating lung cancer patients [149]. 
Additionally, serum analysis revealed the sensitivity of 
autoantibodies to five TAAs (HMGB3, ZWINT, GREM1, 
NUSAP1, and MMP12) at 57.1%, 42.4%, 38.0%, 36.4%, 
and 20.7%, respectively. With areas under the ROC curve 
(AUC) of 0.85, 0.75, 0.71, 0.73, and 0.70, this highlights 
the substantial diagnostic potential of autoantibodies in 
identifying lung cancer [150]. However, it is important 
to recognize that not every cellular antigen detected by 
autoantibodies in the serum of cancer patients qualifies 
as a TAA. The presence of antibodies against self-pro-
teins in the serum of cancer patients does not necessarily 

imply these proteins play a role in cancer development. 
Consequently, additional research is required to accu-
rately identify genuine TAAs and distinguish them from 
antigens that might also appear in non-cancer patients 
and healthy individuals. Such efforts are directed towards 
enhancing the specificity of early lung cancer diagnosis 
[151].

Monitoring treatment response
Surgical resection remains the most effective treat-
ment for early-stage lung cancer. However, for patients 
with advanced lung cancer who are ineligible for surgi-
cal resection, chemotherapy becomes a crucial option 
to alleviate clinical symptoms and extend survival time 
[152]. Despite its efficacy, chemotherapy resistance 
poses a significant challenge, prompting the exploration 
of strategies such as liquid biopsy to evaluate treatment 
response and develop personalized regimens [153]. Sev-
eral sequencing technologies now enable the character-
ization of molecular features in CTCs, offering insights 
into the treatment response of cancer patients. Sequenc-
ing technologies for CTCs provide a means to monitor 
chemotherapy resistance by analyzing the genes they 
carry, including mutations in KRAS, HER2, and TP53 
[154, 155]. Additionally, assessing the programmed 
death-ligand 1 (PD-L1) status of CTCs enables assess-
ment of the efficacy of monoclonal antibody treatment in 
lung cancer patients [156]. Notably, analyzing the expres-
sion of the chemokine receptor CXCR4 on CTCs can 
help identify patients likely to benefit from or develop 
resistance to lung cancer therapy [157, 158]. For survival 
outcomes in the context of chemotherapy resistance and 
radiotherapy, the persistence of CTCs during treatment 
may indicate a poor prognosis and resistance to chemo-
therapy in advanced NSCLC [159]. Furthermore, the 
number, subtype, and human telomerase reverse tran-
scriptase (hTERT)-positive expression of CTCs in lung 
cancer patients are strongly associated with survival 
outcomes in patients undergoing radiotherapy [160]. In 
summary, the detection and analysis of CTCs prove valu-
able for evaluating and monitoring patient response to 
treatment, offering insights that may contribute to future 
clinical decisions.

The comprehensive resolution of ctDNA enables 
dynamic monitoring of disease trajectories, provid-
ing insights into patient responses to therapy and the 
emergence of microscopic residual lesions. It can be 
considered a valuable biomarker for tracking lung can-
cer progression [161]. Prior studies have demonstrated 
the utility of ctDNA in monitoring disease progression, 
especially in patients treated with tyrosine kinase inhibi-
tors (TKIs). By identifying mechanisms of chemotherapy 
resistance, ctDNA allows for the adjustment of clinical 
treatment strategies [162, 163]. In cases where EGFR 
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TKIs are utilized, it is crucial to check for the most com-
mon resistance mutation on EGFR, T790M. Detection 
of T790M in ctDNA allows for the adjustment of the 
dosing regimen of Osimertinib [164, 165]. If T790M is 
not detected in ctDNA, a tissue biopsy is necessary to 
confirm results and rule out false negatives from blood 
ctDNA testing. Additionally, it helps rule out other 
mechanisms of resistance, such as small-cell transforma-
tion [166]. Notably, ctDNA is believed to detect mini-
mal residual disease (MRD) before it becomes apparent 
through standard clinical examination [167]. Studies have 
confirmed that ctDNA testing can detect MRD earlier, on 
average, by 5 months compared to radiography or other 
clinical methods [167]. Another study focused on peri-
operative ctDNA for detecting MRD markers in patients 
with stage I-III non-small cell lung cancer (NSCLC). The 
results indicated that perioperative ctDNA was more rel-
evant in predicting recurrence-free survival than other 
factors, including tumor TNM stage [168]. While the use 
of ctDNA monitoring in lung cancer cases is still evolv-
ing, these studies underscore the potential of ctDNA 
as a biomarker for the dynamic monitoring of patients’ 
responses to treatment and MRDs.

Therapeutic resistance poses a significant challenge for 
tumor patients undergoing conservative treatment, and 
specific ncRNAs are implicated in the development of 
treatment resistance in lung cancer. For instance, miR-
30b and miR-30c can predict the response to tyrosine 
kinase inhibitors in NSCLC, while miRNA-20a promotes 
chemoresistance in NSCLC through the PTEN/PI3K-
AKT pathway [169, 170]. The expression of miR-16, miR-
29a, miR-144, and miR-150 in blood can be indicative of 
tumor response to radiation therapy and patient progno-
sis [171]. These findings suggest the potential of miRNA 
levels as informative indicators of disease progression 
for dynamically monitoring and assessing treatment 
responses in tumor patients. Accordingly, Shen et al. 
[172] constructed a novel m6A-associated lncRNA model 
for predicting prognosis and response to chemotherapy 
and immunotherapy in lung adenocarcinoma patients to 
identify lung cancer patients suitable for immunotherapy 
and to predict sensitivity to chemotherapeutic agents. 
In addition, circRNA_0006420 was suggested to exacer-
bate lung cancer radiotherapy resistance through HUR/
PTBP1 [173]. These findings highlight the potential of 
ncRNAs as a valuable tool for monitoring lung cancer 
treatment response and assessing tumor drug resistance.

EVs play a crucial role in acquired drug resistance, par-
ticularly with prolonged exposure to chemotherapeu-
tic agents. Studies have demonstrated that the addition 
of cisplatin to lung cancer cells (A549 cells) promotes 
the secretion of EVs, contributing to the development 
of chemoresistance in lung cancer cells [174]. Notably, 
significant changes in the expression levels of several 

miRNAs and mRNAs associated with cisplatin sensitiv-
ity were observed in EVs. These changes mediated cis-
platin resistance in A549 cells, emphasizing the potential 
of monitoring the formation and release of EVs to assess 
therapeutic responses in lung cancer cells [175]. How-
ever, it is essential to note that the development of tumor 
drug resistance is not always irreversible. Macitentan has 
been shown to reverse tumor resistance and improve 
tumor immunotherapy by inhibiting tumor cell-derived 
EVs [176]. These results suggest that EVs can serve as 
valuable tools for monitoring treatment responses in lung 
cancer patients and for developing targeted oncological 
strategies involving EVs.

It is now understood that metabolic reprogramming 
plays a significant role in tumor progression and induces 
chemoresistance in tumor cells to support their further 
development [177, 178]. For instance, glucose metabo-
lism in lung cancer cells contributes to resistance against 
the antitumor activity of cisplatin [177]. The completion 
of tumor cell metabolism releases metabolites into the 
tissues or bloodstream, making the detection of relevant 
metabolites a promising option for monitoring responses 
to therapy in lung cancer patients. In a recent study, a 
novel in vitro cellular immune response was developed 
for the detection of lung cancer by evaluating glycolytic 
metabolic pathways and metabolites to analyze the level 
of immune cell activation and associated metabolite bio-
markers [179]. Additionally, Li et al. [180] conducted a 
liquid biopsy-based metabolic phenotyping of single cells 
from lung cancer patients, revealing extensive metabolic 
heterogeneity of tumor cells. They predicted the killing 
effect of the drug-resistant pilot receptor tyrosine kinase 
AXL on tumor cells through glycolytic phenotypes and 
metabolites. Although metabolites have demonstrated 
good therapeutic response surveillance, the complex 
crosstalk of metabolic programming needs to be resolved 
before their clinical application. Glycemic metabolites do 
not always imply chemoresistance, and products released 
by other metabolic modalities (lipid metabolism, amino 
acid metabolism) are of equal concern [181, 182].

TEPs not only serve as biomarkers for lung cancer 
diagnosis but also have the potential to monitor the 
response to tumor therapy [183]. Studies suggest that 
platelets from lung cancer patients can carry fusion tran-
scripts from tumor cells, and monitoring EML4-ALK 
rearrangement fusion transcripts can predict the thera-
peutic response to ALK inhibitors in lung cancer patients 
[88]. RT-PCR, with 65% sensitivity and 100% specificity 
for the detection of EML4-ALK rearrangements in plate-
lets, demonstrates the noninvasive detection of these 
rearrangements. As patients with ALK rearrangement 
NSCLC often relapse within a year of treatment due to 
acquired resistance, it is crucial to use TEPs to identify 
resistance mutations to crizotinib in NSCLC [184]. Liu 
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et al. [185] suggested that platelet mRNA groups (MAX, 
MTURN, and HLA-B) are associated with chemotherapy 
outcomes, and high expression of MAX, MTURN, and 
HLA-B may be linked to poor chemotherapy outcomes 
in lung cancer patients. These studies highlight the vital 
role of TEPs in the therapeutic monitoring of lung can-
cer, serving as a liquid biopsy marker for the disease.

Advances in oncology have significantly enhanced 
our understanding of the role of TAA in the response to 
tumor therapy, providing an emerging target for person-
alized tumor immunotherapy and chemotherapy. Addi-
tionally, TAAs serve as potential predictors of tumor 
survival prognosis and the effectiveness of immune 
checkpoint blockade [186, 187]. In a study focusing 
on NSCLC, analyzing five TAAs (p53, BRCA2, HUD, 
TRIM21, and NY-ESO-1) in the peripheral blood of lung 
cancer patients demonstrated a significant positive cor-
relation in the combination of autoantibodies against 
these TAAs. This correlation was associated with a bet-
ter objective response rate (ORR: 44.4% versus 13.6%, 
P < 0.001) and improved progression-free survival (PFS) 
(7.6  m versus 3.3  m, P < 0.001). These results suggest 
that autoantibodies against these TAAs could serve as 
potential predictive biomarkers for evaluating response 
and toxicity in treatments involving immune check-
point inhibitors for advanced NSCLC [186]. Similarly, 
the assessment of cancer-testis antigen is valuable in 
evaluating treatment response in lung cancer patients. 
A survival analysis within an immunotherapy cohort of 
NSCLC patients indicated that a high cancer testis anti-
gen burden in patients treated with pabolizumab mono-
therapy correlated with longer survival times [187].

Moreover, a study by Nikolaus and colleagues assessed 
the performance of HMGB1 against well-established 
tumor markers such as CYFRA 21 − 1, CEA, and NSE. 
The results showed that HMGB1 correlated with a 
reduced overall survival in NSCLC patients, suggesting 
its capability as a predictive marker for treatment out-
comes and prognosis in advanced NSCLC cases [188]. 
These findings emphasize the reliability of TAAs as 
tumor markers, proving their value in tracking treatment 
efficacy and predicting clinical outcomes in lung cancer 
patients.

Prognostic assessment, recurrence, and metastasis 
monitoring
Accurate prognostic assessment is crucial in determining 
the appropriate treatment strategy for patients with sur-
gically resectable lung cancer. Ideally, a biomarker for the 
prognostic evaluation should possess both high sensitiv-
ity and specificity, although finding markers that satisfy 
both criteria can be challenging. The selection of mark-
ers for the diagnosis and prognostic evaluation of lung 
cancer should aim to achieve a balance between high 

sensitivity and specificity to meet various clinical needs 
and goals [189].

CTCs and ctDNA hold significant potential in the 
prognostic assessment and surveillance of metastatic 
recurrence in lung cancer patients. These biomarkers 
primarily predict patients’ survival prognosis and trends 
in metastatic recurrence, aiding in the development of 
personalized clinical strategies [190]. Previous studies 
have demonstrated that CTC counting not only allows 
for the early diagnosis of lung cancer but also that spe-
cific subgroups of CTCs can reflect certain aspects of the 
tumor’s status, including its metastatic tendencies [191]. 
For instance, the counts of total CTCs and vimentin-
positive (vim+) CTCs in lung cancer patients can be used 
to assess clinical features, tumor genotype, and survival 
rates [192]. The spatial distribution of CTCs was found 
to be heterogeneous, and CTC counts were predictive 
of 3- and 5-year survival in lung cancer patients [193]. 
In addition, the detection of CTCs and plasma metabo-
lite profiling may aid in diagnosing early-stage lung can-
cer and identifying patients at risk of disease recurrence 
[124]. Increased CTCs in patients undergoing radical 
resection for lung cancer may predict an elevated risk 
of tumor recurrence [194]. Detecting and characterizing 
minimal residual disease, a potential risk factor for recur-
rence after tumor treatment, can be achieved by analyz-
ing CTCs, offering insights into the risk of recurrence 
and metastatic dissemination of lung cancer [195, 196]. 
The TLR4-ERK5 axis has been suggested as a potential 
biomarker for disease recurrence and metastasis in lung 
cancer, as it is associated with the aggregation of CTCs 
and contributes to treatment failure and distant metasta-
sis [197]. Notably, tumor recurrence and metastasis can 
increase the number of CTCs in the blood, possibly due 
to the continued release of CTCs from metastatic tumors 
to support tumor proliferation and invasion [198]. Thus, 
characterization and analysis of CTCs can help to under-
stand the prognosis and monitor recurrence in lung can-
cer patients.

Currently, ctDNA research is focused on analyzing 
multiple mutation information, including EGFR, ALK, 
and KRAS, to assess the prognosis and disease recur-
rence of lung cancer patients [199]. Detecting EGFR 
mutations in lung cancer using ctDNA allows for the 
assessment of various clinical information, such as the 
response to ositinib therapy, survival time, and the risk 
of distant metastasis in lung cancer [200]. Perioperative 
ctDNA analysis can detect MRD of resectable NSCLC 
earlier than conventional radiological imaging, provid-
ing a means to monitor tumor recurrence and metastasis 
[201]. Elevated ctDNA levels in the blood of lung can-
cer patients may predict tumor metastasis, and analyz-
ing and characterizing lung cancer ctDNA can explore 
tumor mutation loads, genotypes, and genotype-specific 
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differences, contributing to the surveillance of NSCLC 
recurrence and risk assessment for metastasis [202, 
203]. Importantly, ctDNA not only monitors lung cancer 
recurrence and metastasis but also offers new avenues for 
ctDNA-driven therapeutic research by characterizing the 
developmental trajectory of lung cancer [204].

Previous studies have confirmed the role of non-cod-
ing RNA (including miRNA, lncRNA, and circRNA) 
in prognostic assessment and tumor metastasis in 
lung cancer. Many of these studies utilized multifacto-
rial predictive risk models to assess the prognosis and 
metastasis of lung cancer through survival analysis and 
tumor TMN staging [205]. Dai et al. [206] constructed 
a lung cancer prognostic model comprising eight miR-
NAs (miR-1260b, miR-21-3p, miR-92a-3p, miR-2467-3p, 
miR-4659a-3p, miR-4514, miR-1471, and miR-3621) to 
evaluate the prognosis and metastatic risk of lung cancer. 
Similarly, prognostic models constructed by lncRNA and 
circRNA can be used for the analysis and evaluation of 
clinical features related to prognosis and metastasis in 
lung cancer [207]. Three circRNAs (hsa_circ_0062682, 
hsa_circ_0092283, and hsa_circ_0070610) are considered 
potential targets for prognostic analysis of lung cancer 
[208], and a lung cancer prediction model composed of 
nine lncRNAs effectively analyzes metastatic risk, prog-
nostic outcomes, and clinicopathological features of lung 
cancer [209]. These results suggest the potential clini-
cal application of non-coding RNA as a liquid biopsy for 
prognostic assessment and metastasis monitoring in lung 
cancer.

For EVs, Jin et al. evaluated the potential of EVs carry-
ing WASL, STK10, and WNK1 for lung cancer diagnosis 
and prognostic assessment [210]. They concluded that 
low expression of STK10 and WNK1 proteins in the EVs 
of lung cancer patients correlated with a good prognosis 
of lung cancer compared to the healthy population. In 
addition, EVs of lung cancer origin enable the charac-
terization of a variety of substances and may contribute 
to the generation of an immunosuppressive microen-
vironment and tumor proliferation. For example, high 
expression of PD-L1 in EVs inhibits CD8+ T cell activity 
to promote lung cancer cells to evade the immune sys-
tem and invade neighboring tissues [211]. Moreover, a 
study suggested that analyzing PD-L1 carried by EVs in 
NSCLC patients treated with immune checkpoint inhibi-
tors is a potential strategy for predicting treatment out-
comes and prognosis in cancer patients [212]. Besides 
PD-L1/PD-1, other immune checkpoints associated with 
EVs and capable of analyzing the prognostic characteris-
tics of lung cancer are also of interest. High expression of 
CD155/TIGIT has been suggested to be potentially asso-
ciated with tumor immune escape and a poor prognosis 
[213, 214]. Notably, the simultaneous use of multiple bio-
markers may offer more benefits than relying on a single 

biomarker. This approach not only enhances the diag-
nosis and monitoring of lung cancer recurrence but also 
aids in the early diagnosis of hidden metastatic lesions in 
lung cancer.

Standard metabolic programs play a crucial role in the 
proliferation and metastasis of tumors. Analyzing clini-
cal information, such as prognosis and metastasis in lung 
cancer, can be facilitated by studying the expression of 
metabolism-related genes. Wang et al. [215] developed 
a prognosis-related model using these genes and identi-
fied PSMC6, SMOX, and SMS as independent prognostic 
factors for lung cancer. They also examined the clinical 
outcomes of lung cancer patients, revealing associations 
between metabolism-related genes, immune cell infiltra-
tion, and immunotherapy effects. Moreover, glutamine 
metabolism-related genes have been proposed as indica-
tors for assessing the prognosis of lung cancer patients, 
with LGALS3 identified as a potential therapeutic target 
[216]. In addition to prognostic models, elevated levels of 
metabolites in the blood or tissues of lung cancer patients 
may signify tumor progression. Monitoring these metab-
olite changes not only aids in evaluating patient prog-
nosis but also in dynamically tracking metastasis and 
recurrence [7]. For example, a high expression of pyrimi-
dine metabolism rate-limiting enzymes in the blood is a 
poor prognostic factor for lung adenocarcinoma and may 
promote lung cancer metastasis [217].

The use of TEP RNA as a liquid biopsy holds great 
promise in revolutionizing tumor prognosis, recur-
rence monitoring, and metastasis assessment as a mini-
mally invasive method to complement traditional tissue 
biopsies. TEP RNA is particularly advantageous in lung 
cancer patients, addressing challenges posed by the inac-
cessibility of tumor sites or patients’ poor physical con-
dition hindering tolerance for a tumor biopsy [218]. Ge 
et al. [219] identified seven TEP liquid biopsy biomark-
ers for tumor prognostic assessment and metastasis 
surveillance. In a separate study, linc-GTF2H2-1 and 
RP3-466P17.2 were significantly down-regulated, while 
lnc-ST8SIA4-12 was significantly up-regulated in TEPs 
from lung cancer patients compared to healthy donors 
(with AUCs of 0.781, 0.788, and 0.725). This offers a 
potential liquid biopsy approach using blood-derived 
TEPs for diagnosing and predicting the progression of 
lung cancer [220]. Similarly, tumor-educated platelet 
integrin α2b has been proposed as a valuable indicator 
for prognostic evaluation in NSCLC [148]. Thus, TEPs 
have emerged as a promising biomarker for the diagno-
sis and prognosis of lung cancer, with further research 
needed to fully unlock its potential as a liquid biopsy bio-
marker [93].

Given the presence of TAAs in the body fluids of 
lung cancer patients, leveraging TAAs for monitor-
ing tumor recurrence and metastasis has emerged as 
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a promising strategy. A comprehensive characteriza-
tion of the expression levels of TAAs in the body fluids 
of lung cancer patients is essential for effectively track-
ing events such as postoperative recurrence and tumor 
metastasis. The tumor-associated antigen L6 (TAA-L6), 
which is expressed in the majority of epithelial cell car-
cinomas, acts as a target for antibody-mediated treat-
ments. Notably, elevated expression of TAA-L6 has been 
associated with an increased risk of early postopera-
tive recurrence (P = 0.034) and decreased survival rates 
(P = 0.025) in patients with squamous cell lung cancer 
[221]. In a study conducted by Jillian A. et al. [222], a liq-
uid biopsy approach was used to assess PD-L1 expression 
on tumor-associated cells to track lung cancer recurrence 
and metastasis in patients undergoing treatment with 
immune checkpoint inhibitors. The study found that a 
significant increase in PD-L1 expression was associated 
with a better prognosis, indicating a lower likelihood of 
lung cancer recurrence and metastasis.

Additionally, the tumor-associated antigen MAGE-
B2, identified during serum sequencing of lung cancer 
patients, proved effective in liquid biopsy monitoring. 
Preoperative observations showed high antibody titers 
against MAGE-B2, which decreased following the sur-
gical removal of the primary tumor. These titers then 
increased in the presence of adrenal metastases and 
decreased once again after the metastatic tumors were 
surgically removed [223]. This study affirms MAGE-B2’s 
efficacy as a TAA in liquid biopsies for monitoring lung 
cancer recurrence and metastasis. It is crucial to note 
that biomarkers with both specificity and sensitivity must 
be carefully selected for the identification and differen-
tiation of TAAs in liquid biopsies. This caution arises 
from the fact that some TAA expressed in tumors may 
also be present in the healthy population. While combin-
ing multiple TAAs for monitoring tumor recurrence and 
metastasis could improve accuracy, this strategy poses 
potential challenges in antigen identification and utiliza-
tion of liquid biopsy techniques.

Liquid biopsies and lung cancer immunotherapy
Tumor immunotherapy is designed to activate the body’s 
immune response against tumors by boosting the immu-
nogenicity of tumor cells and making them more vulner-
able to destruction by effector cells. Within the realm of 
lung cancer immunotherapy, liquid biopsy has emerged 
as a valuable tool for evaluating and monitoring treat-
ment efficacy.

A substantial body of evidence-based medical data 
now supports the prognostic assessment of lung cancer 
patients and the evaluation of immunotherapy effec-
tiveness, particularly through the promising clinical 
applications of CTCs. In a clinical study involving 104 
lung cancer patients, CTCs were detected in the blood 

of one-third of the patients. Their presence indepen-
dently indicated an absence of a sustained response to 
immune checkpoint inhibitors (ICIs) and was associated 
with shorter progression-free survival and overall sur-
vival rates [224]. Consistent findings from other studies 
suggest that an increased number of CTCs in the blood 
may signal a less favorable response to ICI treatment and 
a poorer survival outcome [225]. Furthermore, CTCs in 
liquid biopsies provide valuable information about PD-L1 
expression. Numerous studies have explored the effects 
of PD-L1-positive CTCs on the clinical outcomes of 
lung cancer patients receiving ICIs. Specifically, elevated 
PD-L1 expression in patients treated with natalizumab 
correlated with worse outcomes, and PD-L1-positive 
CTCs were identified in all patients who had received 
immunotherapy [226].

Furthermore, the observed increase in PD-L1-positive 
CTCs during immunotherapy indicates a potential devel-
opment of resistance to immune checkpoint inhibitors in 
tumor patients [227]. However, conflicting studies have 
presented divergent views, asserting that PD-L1 expres-
sion in CTCs does not significantly affect the prognosis 
of lung cancer immunotherapy, and PD-L1 expression 
in tissues remains independent of CTCs [227, 228]. This 
contradiction could be due to the absence of standardized 
procedures for measuring PD-L1 expression, underscor-
ing the need for additional research to establish uniform 
methods for detecting CTCs and analyzing PD-L1 anti-
bodies. Continued investigation in this area is expected 
to enhance our understanding of how PD-L1 expression 
on CTCs interacts with the effectiveness of lung cancer 
immunotherapy.

This study assesses the capability of circulating-free 
DNA (cfDNA) levels in the blood as a predictive marker 
for clinical outcomes in patients undergoing treatment 
with ICIs. The findings reveal a compelling association 
between lower cfDNA levels and improved clinical out-
comes with NSCLC immunotherapy [229]. However, the 
application of total cfDNA levels as a biomarker for lung 
cancer requires further validation due to the variability in 
cfDNA production across different lung cancer subtypes.

Circulating tumor DNA (ctDNA), on the other hand, 
has shown promise as a valuable alternative by provid-
ing information on the actual tumor burden and disease-
specific genomic status. It acts as a prognostic biomarker 
for treatment with ICIs, where significant decreases in 
ctDNA levels are associated with benefits from immu-
notherapy and longer survival in lung cancer patients 
receiving anti-PD-1/PD-L1 therapies [230]. Moding et al. 
[231] presented evidence that the presence of detectable 
ctDNA after chemotherapy in lung cancer patients was 
linked to significantly better prognoses when followed up 
with consolidation therapy using ICIs.
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Conversely, higher ctDNA levels early in the chemo-
therapy suggested a poorer prognosis for patients. Fur-
thermore, ctDNA analysis through liquid biopsy can 
identify point mutations linked to immunotherapy sen-
sitivity, aiding in the identification of patients who may 
derive greater benefits from ICIs. This, in turn, guides 
personalized immunotherapy strategies. The detection of 
co-mutations in STK11/KRAS has been recognized as an 
indicator of worse survival outcomes in patients under-
going treatment with ICIs [232], reinforcing the viability 
of detecting mutation sites associated with immunother-
apy to predict its effectiveness.

Extracellular vesicles (EVs) offer a promising approach 
for assessing the efficacy of tumor immunotherapies. In 
research analyzing PD-L1 mRNA expression in EVs from 
NSCLC patients undergoing treatment with pembroli-
zumab and natalizumab, it was found that PD-L1 mRNA 
levels were notably higher in those who responded to 
treatment compared to those who did not, prior to the 
start of immunotherapy. After two months of treat-
ment, individuals who responded showed a significant 
decrease in PD-L1 mRNA copy numbers, in contrast 
to non-responders, who experienced an increase. This 
indicates that measuring PD-L1 levels in plasma EVs 
could serve as an effective method for evaluating the 
success of immunotherapy [233]. In a study involving 
21 advanced NSCLC patients, a fold increase of PD-L1 
expression ≥ 1.86 in EVs was associated with enhanced 
efficacy of immunotherapy and extended survival [234]. 
This suggests that an increase in PD-L1 mRNA and/
or PD-L1 protein levels in EVs during ICI therapy could 
act as a beneficial biomarker for both the effectiveness 
and prognosis in advanced NSCLC patients. Moreover, 
the genetic content within EVs, including essential non-
coding RNAs, is critical for evaluating the success of lung 
cancer immunotherapy. Peng et al. investigated the role 
of miRNAs in plasma EVs as indicators of the therapeutic 
effects of ICIs. Three miRNAs (has-miR-320b, has-miR-
320c, and has-miR-320d) were identified as predictors for 
assessing response to treatment, and has-micro-125b-5p 
was highlighted as a potential target for enhancing 
anti-PD-1 therapy [235]. Regular tracking of has-miR-
125b-5p levels is recommended as a strategy during 
anti-PD-1 therapy, particularly for patients who show a 
delayed response or experience pseudoprogression. This 
approach aims to provide a more accurate assessment of 
treatment efficacy and guide adjustments in therapy for 
those not immediately showing clear signs of improve-
ment. Alterations in specific circulating miRNAs have 
been observed to influence both the response to treat-
ment and survival rates during ICI therapy in NSCLC 
patients. In a cohort study of NSCLC patients treated 
with immunotherapy, researchers identified 27 miRNAs 
with differential expression patterns—22 were found to 

be highly expressed, and five showed low expression. Fur-
ther validation in a separate group of patients confirmed 
that the upregulation of 10 miRNAs was positively cor-
related with better outcomes from immunotherapy and 
prolonged survival, highlighting the potential of these 
miRNAs as biomarkers for predicting the efficacy of 
ICI treatments [236]. Additionally, another study intro-
duced a miRNA signature classifier comprising 24 miR-
NAs that successfully differentiated NSCLC patients who 
responded favorably to anti-PD-L1 immunotherapy from 
those who did not benefit [237]. These results suggest the 
potential of EVs and non-coding RNAs, particularly miR-
NAs, in predicting immunotherapy responses in NSCLC 
patients in a non-invasive manner in lung cancer. More-
over, the exploration of other non-coding RNAs, such as 
circular RNAs and lncRNAs, holds equal promise in con-
tributing to our understanding of lung cancer and refin-
ing predictive markers for immunotherapy outcomes.

The investigation of plasma metabolites as potential 
targets for prognostic assessment and metastasis moni-
toring in lung cancer patients presents an intriguing 
avenue for informing immunotherapy strategies. A study 
focusing on refractory large B cell lymphoma identified 
six markers, such as acetylspermidine, diacetylspermi-
dine, and various lysophospholipids, through metabo-
lomics analysis of liquid biopsies. This research, which 
concentrates on polyamines, suggests that the levels of 
these metabolites can predict responses to CAR-T cell 
therapy. Specifically, elevated levels of these metabolites 
may indicate a lower likelihood of a positive response 
to CAR-T cell treatment, offering valuable insights 
into patient stratification and the potential customiza-
tion of therapeutic approaches [238]. Additionally, an 
increase in amino acid metabolites, specifically indole-
amine 2,3-dioxygenase 1, in ascites of ovarian cancer 
patients suggested the ineffectiveness of immunotherapy 
in these individuals [239]. While these studies are indi-
rectly related to lung cancer immunotherapy, they are 
a good stimulus for guiding immunotherapy research 
in lung cancer. The efficacy of metabolites in lung can-
cer immunotherapy remains to be uncovered in future 
investigations.

The current literature regarding TEP in lung cancer 
immunotherapy is limited. However, available evidence 
points to an increase in PD-L1 expression within TEP 
among patients with lung cancer. Intriguingly, admin-
istration of atezolizumab, a PD-L1 targeting monoclo-
nal antibody, has been observed to lead to a reduction 
in PD-L1 expression in TEP. This change suggests TEP’s 
potential role in tracking responses to immune-based 
treatments in lung cancer [240]. For TAAs, studies 
by Anne et al. revealed correlations between different 
immune cell populations in lung cancer and immunopep-
tidomes. A notable discovery was the higher frequency 
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of predicted neoantigens at HLA-I presentation hotspots 
in tumors where CD3 + CD8 + T cells were not present, 
indicating a possible connection between these neoan-
tigens and immune recognition. This relationship could 
influence the process of immunoediting, affecting tumor 
mutations and the efficacy of immunotherapy in lung 
cancer patients [241]. Moreover, employing TAA-specific 
T-cell receptor (TCR) gene-modified T cells has shown 
considerable promise in anti-tumor immunotherapy, 
with hematopoietic lineage-converted T cells armed with 
TCRs targeting TAAs demonstrating effective tumor 
cell elimination capabilities [242]. These findings dem-
onstrate the potential of TEP and TAA in lung cancer 
immunotherapy, although further studies are essential 
for the validation and confirmation of these potential 
therapeutic avenues.

Conclusions and future prospects
Lung cancer represents a significant menace to human 
health, emerging as the foremost cause of cancer-
related fatalities [243]. Many individuals are diagnosed 
at advanced tumor stages, precluding the possibility of 
surgical intervention, with radiotherapy and chemother-
apy being the primary conservative treatment choice. 
The challenges of chemotherapy resistance and radia-
tion-induced damage further compound the prognosis 
dilemma for patients. Even post-surgical resection and 
radio-chemotherapy, there remains a risk of tumor recur-
rence and metastasis, as the accuracy of imaging results 
in assessing prognosis and recurrence is not always reli-
able [244]. Therefore, there is an urgent need for new bio-
logical tools to ameliorate the present difficulties.

Liquid biopsies, as a groundbreaking biomedical testing 
method, exhibit promising advantages over traditional 
tissue biopsies in terms of affordability and convenience, 
particularly when physical constraints impede the acqui-
sition of tissue specimens. By detecting relevant biomark-
ers released by tumor cells during progression, liquid 
biopsies offer insights into tumor heterogeneity, thereby 
enhancing the accuracy of tumor diagnosis and progno-
sis assessment. Liquid biopsies allow clinicians to con-
tinuously sample and dynamically observe tumors and 
make informed decisions based on tumor progression to 
improve clinical treatment strategies. Additionally, the 
application of liquid biopsy involves the comprehensive 
evaluation and monitoring of lung cancer patients for 
recurrence and metastasis. This encompasses the devel-
opment of more favorable clinical protocols, particularly 
beneficial for surgically treated patients and those who 
missed the optimal treatment window. This aspect is par-
ticularly crucial in high-fatality diseases like lung cancer.

Nevertheless, the preclinical application of liquid 
biopsy faces several challenges. The technology for char-
acterizing biomarkers through liquid biopsy is still in a 

nascent stage, characterized by complex processes and 
inefficient equipment that hinder its full development. 
Detecting biomarkers, particularly low levels of ctDNA 
and EVs in the blood of oncology patients, remains a 
challenge, emphasizing the need to improve detection 
efficiency for the advancement of liquid biopsy. Digital 
PCR (dPCR) stands out for its high sensitivity, making it 
adept at detecting rare variants and subtle copy number 
variations. Its reproducibility is noteworthy, allowing for 
easy calculation of performance metrics and error rates 
through mathematical equations, thereby facilitating 
workflow optimization. Moreover, dPCR is stable, mak-
ing it a valuable tool for validating other techniques. The 
simplicity of its workflow reduces bench time and overall 
costs. However, hurdles hinder its routine clinical appli-
cation, such as that (i) dPCR requires perfect pre-analyt-
ical and analytical procedures, (ii) the standardization of 
samples is still an obstacle that must be overcome, (iii) 
and the limited number of detectable targets, necessitat-
ing prior next-generation sequencing (NGS) testing for 
comprehensive assessment. NGS technology is another 
commonly used liquid biopsy technology, offering com-
prehensive information on individual gene mutations in 
ctDNA, CTCs, and EVs. This capability aids in overcom-
ing tumor heterogeneity, allowing for a comprehensive 
analysis of the tumor mutation landscape and facilitat-
ing clinical monitoring of tumor mutation load. Despite 
its advantages, challenges impede NGS’s full clinical 
potential. The intricacies of NGS library construction 
and the lack of consensus on sample standardization 
pose hurdles, potentially limiting sensitivity and accu-
racy. Collaborative efforts, including industry, techni-
cians, and clinicians, are crucial for realizing the clinical 
application of NGS. Addressing the following issues, 
including continuous optimization and expediting data-
base construction and analysis process, building drug-
mutation correlation databases, implementing strict and 
standardized evidence grading for clinical interpretation, 
and fostering close collaboration between detection and 
treatment, will propel the development of NGS tech-
nology. These measures are vital for creating industry 
consensus and a shared knowledge base, ultimately ben-
efiting patients.

Additionally, to comprehensively understand the com-
plex features of tumors and mitigate individualized dif-
ferences, it is essential to integrate other diagnostic tests 
such as CT, MRI, and ultrasound with liquid biopsy 
results. Recognizing that biomarkers in body fluids from 
various sources may reflect different tumor character-
istics. For instance, urine may reveal characteristics of 
bladder tumors, while cerebrospinal fluid may respond 
to brain tumor progression. In the context of lung can-
cer, focusing on pleural fluid may prove more effec-
tive. Furthermore, while numerous liquid biopsy-based 
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biomarker models have emerged from data analyses, 
their accuracy in prognostic assessment and metastasis 
surveillance in lung cancer patients requires confirma-
tion through additional experiments. As ctDNA, CTCs, 
EVs, TEPs, and other assays undergo refinement, their 
potential as robust biological tools for various aspects of 
lung cancer management becomes increasingly evident. 
These advancements hold promise for improving early 
diagnosis, monitoring treatment responses, and assessing 
the recurrence and metastasis of lung cancer. In essence, 
the evolution of liquid biopsy represents a significant 
stride in the realm of precision medicine, and it stands 
poised to transition from a promising concept to a tan-
gible clinical reality in the future.
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