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Abstract 

Background  Plasma cell-free DNA (cfDNA) fragmentomics has demonstrated significant differentiation power 
between cancer patients and healthy individuals, but little is known in pancreatic and biliary tract cancers. The aim 
of this study is to characterize the cfDNA fragmentomics in biliopancreatic cancers and develop an accurate method 
for cancer detection.

Methods  One hundred forty-seven patients with biliopancreatic cancers and 71 non-cancer volunteers were 
enrolled, including 55 patients with cholangiocarcinoma, 30 with gallbladder cancer, and 62 with pancreatic can-
cer. Low-coverage whole-genome sequencing (median coverage: 2.9 ×) was performed on plasma cfDNA. Three 
cfDNA fragmentomic features, including fragment size, end motif and nucleosome footprint, were subjected to con-
struct a stacked machine learning model for cancer detection. Integration of carbohydrate antigen 19–9 (CA19-9) 
was explored to improve model performance.

Results  The stacked model presented robust performance for cancer detection (area under curve (AUC) of 0.978 
in the training cohort, and AUC of 0.941 in the validation cohort), and remained consistent even when using 
extremely low-coverage sequencing depth of 0.5 × (AUC: 0.905). Besides, our method could also help differenti-
ate biliopancreatic cancer subtypes. By integrating the stacked model and CA19-9 to generate the final detection 
model, a high accuracy in distinguishing biliopancreatic cancers from non-cancer samples with an AUC of 0.995 
was achieved.
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Background
Biliopancreatic cancers including cholangiocarcinoma 
(CCA), gallbladder cancer (GBC), and pancreatic can-
cer (PAC) are a group of malignancies characterized by 
extremely poor prognosis, which mainly attributes to late 
diagnosis and limited therapeutic intervention [1, 2]. To 
better manage these diseases and improve patient sur-
vival, accurate detection, especially early detection, is of 
critical importance. With the rapid development of liq-
uid biopsy, cell-free DNA (cfDNA) has provided a non-
invasive approach for the diagnosis of solid malignancies 
[3]. Normally, cfDNA originates mostly from hematopoi-
etic cells, while in cancer patients, a fraction of cfDNA 
molecules could be released from the malignant cells [4]. 
Previous studies have demonstrated that plasma cfDNA 
carried genetic and epigenetic information of their tissue 
of origin [5, 6]. However, due to the low concentration of 
tumor-related cfDNA in plasma, detectable variations are 
limited among patients, especially at early stages [7]. To 
improve the practicality of cfDNA, recent research has 
focused more on its detailed physical and molecular fea-
tures, which held great promise for clinical application 
[8].

Plasma cfDNA fragmentomics is an emerging field that 
covers various features like fragment size, end point and 
nucleosome footprint, where many studies have dem-
onstrated that significant difference could be observed 
between cancer patients and healthy individuals [9–12], 
even at early stages [13–16]. Cristiano et  al. introduced 
an approach focusing on the fragmentation size ratio in 
a multi-cancer cohort, in which the machine learning 
model had sensitivities of detection ranging from 57% 
to > 99% among seven cancer types at 98% specificity, 
with an overall AUC of 0.94 [9]. The fragment size fea-
ture based models were also reported in the early detec-
tion of primary liver cancer which showed excellent 
sensitivities in detecting early-stage cancer (I: 95.9%, II: 
97.9%) and small tumor (≤ 3 cm: 98.2%) [15]. Besides, the 
end motif feature was widely studied for construction of 
stacked machine learning models in the early detection 
of multiple cancers such as colorectal adenocarcinoma 
and lung adenocarcinoma [14, 16]. Since the genomic 
distribution of nucleosomes was considered to be cell-
type specific [17], nucleosome footprint was found to be 
another important feature that could inform the tissues 
contributing to cfDNA. A recent study on hepatocellular 

carcinoma has revealed that nucleosome footprint was 
the best individual diagnostic feature for differentiating 
hepatocellular carcinoma from liver cirrhosis in both 
validation (AUC = 0.971) and test sets (AUC = 0.973) [13]. 
However, among biliopancreatic cancers, detection mod-
els based on these fragmentomic features still remain less 
investigated.

In this study, we constructed a fragmentomics-based 
machine learning model for detecting the closely located 
biliopancreatic cancers including CCA, GBC, and PAC 
using low-coverage whole-genome sequencing data. The 
stacked model by fragment size, end motif, and nucleo-
some footprint showed excellent performance in detect-
ing biliopancreatic cancers, which exhibited higher 
sensitivity and specificity when integrated with carbo-
hydrate antigen 19–9 (CA19-9). Moreover, our method 
demonstrated the potential utility of cfDNA fragmen-
tomics in differentiating biliopancreatic cancer subtypes.

Methods
Patients enrollment and sample collection
Patients with treatment-naïve clinically diagnosed bili-
opancreatic malignancies were collected from Chang-
hai prospective database (Changhai Hospital, Shanghai, 
China). Blood samples were collected before surgery 
or biopsy for cfDNA extraction and CA19-9 examina-
tion (Roche Diagnostics GmbH, 11,776,193: 39  IU/mL 
as cut off value). Exclusion criteria were as follows: (1) 
Patients without biliopancreatic cancers confirmed by 
pathological examination. (2) Patients with inconclusive 
pathology results. (3) Patients simultaneously suffering 
from other tumors. (4) Blood specimens with hemoly-
sis levels > grade 4. Patients were staged according to the 
8th edition of the American Joint Committee of Cancer 
(AJCC) tumor-node-metastasis (TNM) staging system. 
All participants provided signed written informed con-
sent to use their blood samples and clinical data, and 
were divided randomly into a training cohort and a vali-
dation cohort. This study was conducted in accordance 
with the national guideline and approved by the Ethics 
Committee of Changhai Hospital (CHEC2018-112).

Plasma cfDNA extraction
Blood samples were collected in BEAVER Cell Free DNA 
Tubes (Beaver, 43,803). To harvest plasma, the blood sam-
ples were centrifuged at 1600 g for 10 min at 4 °C, after 

Conclusions  Our model demonstrated ultrasensitivity of plasma cfDNA fragementomics in detecting biliopancre-
atic cancers, fulfilling the unmet accuracy of widely-used serum biomarker CA19-9, and provided an affordable way 
for accurate noninvasive biliopancreatic cancer screening in clinical practice.
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which the hemolysis level was determined and recorded. 
The samples with hemolysis level ≤ grade 3 were used for 
further experiments. The collected supernatant was cen-
trifuged at 16,000 g for 15 min at 4 °C to remove the cell 
debris. Then, the supernatant was stored in 1 mL aliquots 
at − 80 °C prior to DNA extraction. Plasma samples were 
thawed in a 37  °C water bath and centrifuged at 1600 g 
for 10  min at 4  °C. QIAamp Nucleic Acid Kit (Qiagen) 
was used to isolate plasma cfDNA. Qubit 3.0 fluorometer 
(Thermo Fisher) and Agilent 2100 bioanalyzer (Agilent 
Technologies Inc.) were used to detect the cfDNA con-
centration, purity, and fragment distributions.

Plasma cfDNA library construction and low‑coverage WGS
The qualified cfDNA samples were used for cfDNA 
library construction followed by low-coverage WGS. The 
library was prepared using KAPA DNA Hyper Prep Kit 
(KAPA, KK8504) in accordance with the manufacturer’s 
instructions. The input amount of each cfDNA sample 
was 10 ng. The base end was replenished, and an “A” tail 
was added. Then, the joint was connected and purified, 
and seven circulating enrichment libraries were amplified 
by PCR. After purification and elution in 25 µL of eluent, 
the plasma cfDNA library concentration and the frag-
ment distribution were determined by Qubit (Thermo 
Fisher) and Agilent 2100 bioanalyzer (Agilent Technolo-
gies), respectively. NovaSeq 6000 platform (Illumina) was 
used for WGS with a sequencing strategy of 2 × 150  bp 
and sequencing volume of ~ 10 G (~ 3 ×).

Sequencing alignment and quality control
The raw sequencing data were trimmed by Trimmomatic 
as part of the quality control protocol. The qualified reads 
were then mapped onto the human reference genome 
(ftp://​ftptr​ace.​ncbi.​nih.​gov/​1000g​enomes/​ftp/​techn​ical/​
refer​ence/​human_​g1k_​v37.​fasta.​gz) using the sequence 
aligner BWA after PCR duplicates were removed by 
Picard toolkit (http://​broad​insti​tute.​github.​io/​picard/). 
The final coverage depths for these samples ranged from 
1.9 × to 4.4 × (median coverage 2.8 ×).

Data processing
After removing adapters, the sequencing data in FASTQ 
format were aligned to the hg19 reference genome. Low-
quality and repetitive reads were removed. Only reads 
meeting the following criteria were kept: (1) Aligned to 
autosomes; (2) Quality score greater than 20; (3) Inser-
tion size between 150 and 600 bp; (4) Properly paired; (5) 
Reference region without degenerate bases.

Identifying fragmentomics features
Following the approach called “DNA evaluation of frag-
ments for early interception” (DELFI) method [9], the 

genome was divided into 504 5-Mb bins. Coverage of 
short and long fragments in each bin was calculated, 
where short fragments were defined as those with a 
length [130,177] and long fragments were those with 
a length [177, 237]. The z-score standardized short and 
total (short and long) fragment coverage in the 504 bins 
was used as the input for machine learning with 1008 fea-
tures in total.

For end motif features, we defined the 6th bp on the 5’ 
end of a cfDNA fragment as the 1st position due to our 
unique molecular identifier (UMI)-attached sequence 
data. UMI is commonly introduced into sequencing to 
increase accuracy, while we found that they affected the 
frequencies of end motifs. Comparison of samples with 
and without UMIs showed that the motif frequencies of 
UMI attached samples could match those of UMI-unat-
tached samples in previous studies when counting from 
the 6th position rather than the 1st position (Figure S1). 
3-bp motifs from the 1st, 4th, and 7th positions of the 5’ 
end of the cfDNA fragments were counted for each sam-
ple. One 3-bp motif has 64 different combinations. Their 
frequencies were combined into a 9-bp codon motif with 
192 (64 × 3) features.

To compute nucleosome footprint features, we defined 
the central region of a gene as ± 250  bp around tran-
scription start site (TSS) and the reference region of 
the gene as the sum of the upstream [− 2000, − 1000] 
bp region and the downstream [1000, 2000] bp region 
around its TSS. The nucleosome footprint of a gene was 
then defined as the mean coverage of the central region 
divided by the mean coverage of the reference region. A 
total of 24,639 genes were selected as features based on 
their nucleosome footprint profiles across samples.

Machine learning
Ten-fold cross-validation on the training cohort was used 
to select models and optimize criteria. The cutoff was 
selected as the value that minimized Gini impurity in the 
training cohort. LinearSVC was selected as the machine 
learning model for fragment size and nucleosome foot-
print features. RandomForest was selected as the model 
for end motif features. A stacked model trained on the 
three cfDNA features were built using stacking learning 
with logistic regression as the meta-learner. When train-
ing models for a specific cancer type, only non-cancer 
samples and samples of the specific cancer type were 
used.

To construct the CF (CA19-9 and fragmentomics) 
model which is based on CA19-9 and stacked model 
scores, log2(x + 1) transformation of CA19-9 and ten-fold 
cross-validated estimates of the stacked model were com-
puted in the training cohort as input scores. LinearSVC 

ftp://ftptrace.ncbi.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz
ftp://ftptrace.ncbi.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz
http://broadinstitute.github.io/picard/
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was selected as the machine learning classifier for the 
final model.

Statistics
The P-values of the risk scores were computed using 
the Mann–Whitney U (Mann–Whitney U test) func-
tion in the Python SciPy package. The heatmaps were 
constructed using the Python Seaborn package (https://​
seabo​rn.​pydata.​org/​citing.​html). P-values less than 0.05 
were considered to be statistically significant.

Ethics statement
The study was conducted in accordance with the Decla-
ration of Helsinki. This study was approved by the Ethics 

Committee of Changhai Hospital (CHEC2018-112). All 
participants provided signed written informed consent to 
use their blood samples and clinical data.

Role of the funding source
The sponsors did not have any role in the study design, 
data collection, data analysis, interpretation, or writing of 
the manuscript.

Results
Participant characteristics in the cohorts
A total of 232 participants were recruited in this study, 
including 73 non-cancer volunteers and 159 patients 
clinically diagnosed with biliopancreatic cancers (Fig. 1). 

Fig. 1  Study design. The training cohort (n = 89) included 16 cholangiocarcinoma (CCA), 14 gallbladder cancer (GBC), 28 pancreatic cancer 
(PAC) patients and 31 non-cancer volunteers. The validation cohort (n = 129) included 39 CCA, 16 GBC, 34 PAC patients and 40 non-cancer 
volunteers. Blood samples were collected from biliopancreatic cancer patients and non-cancer individuals. cfDNA was extracted from plasma 
samples, subjected to low-coverage WGS, and analyzed to determine cfDNA fragmentomics features across the genome. Three different 
features, including fragment size, end motif, and nucleosome footprint, were calculated to build detection models using the LinearSVC algorithm 
or the RandomForest algorithm with tenfold cross-validation. The single-feature models were then assembled into a large matrix to train 
the stacked model. CA19-9 was integrated with cfDNA fragmentomics features to generate the final CA19-9 and fragmentomics for cancer 
detection (CF) model

https://seaborn.pydata.org/citing.html
https://seaborn.pydata.org/citing.html
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After excluding two patients who did not have pathologic 
biliopancreatic cancers, four with inconclusive pathology 
results, and eight who did not meet the quality control 
standards, 147 patients and 71 non-cancer volunteers 
finally remained. The training cohort consisted of 89 
individuals, including 58 patients (16 with CCA, 14 with 
GBC, 28 with PAC) and 31 non-cancer volunteers. The 
validation cohort contained 129 individuals, including 89 
patients (39 with CCA, 16 with GBC, 34 with PAC) and 
40 non-cancer volunteers. The clinical characteristics of 
the patients are shown in Table  1. Blood samples were 
obtained before surgery, and plasma cfDNA was sub-
jected to low-coverage WGS. The average coverage depth 
was 2.9 × (Range: 1.9 × –4.4 ×).

Identifying cfDNA fragmentomics features
We extracted cfDNA features including fragment size, 
end motif, and nucleosome footprint from the WGS 
data following the workflow shown in Fig.  2A. Consist-
ent with previous studies, our training cohort showed 
that the modal size was approximately 166 bp which was 
related to nucleosomal structure [18], and the fragment 
size distribution had a series of successive peaks about 
10  bp in the 90–160  bp range, and compared to non-
cancers, the concentration of fractional plasma cfDNA in 
cancers increased, resulting in the size profile of plasma 
cfDNA shifting toward the left (Fig. 2B-C) [12, 19]. Fol-
lowing the DELFI approach, we defined short fragments 
with a length [130, 177] and long fragments with a length 
[177, 237], and used z-score standardized short and total 
(short and long) fragment coverage as features.

For end motif features, 4-bp end motif has been stud-
ied most [13, 20], while others proposed that 6-bp end 
motif might be better [14]. After examining the GC con-
tent from the 5’ end of the cfDNA fragments, we found 
that its deviation from the mean extended up to 9  bp 
(Fig.  2D), which indicated that a 9-bp end motif could 
provide more information. However, a direct 9-bp motif 
would develop numerous combinations. To simplify, we 
then examined the correlations between base occur-
rences around the starting positions of the cfDNA frag-
ments on the reference genome and found that they 
were more likely to be correlated in adjacent positions 
(Fig. 2E). Therefore, we divided the 9-bp motif into three 
3-bp motifs with a total of 192 features (Fig.  2F). Fig-
ure 2G shows six representative motifs with significantly 
different frequencies between cancer patients and non-
cancer individuals. Three motifs (1-GTT, 7-GTC, and 
1-GTC) were more concentrated in non-cancer individu-
als, while the other three (7-ACA, 4-ATG, and 1-AAG) 
showed higher frequencies in cancer patients. We found 
that the 9-bp codon motif performed better than the 

more commonly used 4-bp motif in the training cohort 
(Figure S2).

In 2016, Ulz et al. developed a computational approach 
for whole-genome sequencing of plasma DNA called 
nucleosome footprint to infer gene expression [21]. By 
identifying two discrete regions at TSSs, a 2000-bp region 
centered on the TSS (2  K-TSS coverage) and a − 150  bp 
to + 50  bp region with respect to the TSS (NDR cover-
age), nucleosome occupancy results in different read 
depth coverage patterns for expressed and silent genes 
[21]. To examine whether the nucleosome footprint in 
our study could inform gene expression, we compared 
the calculated the average DNA coverage patterns around 
gene TSSs to the expression profile of non-cancer indi-
viduals from public database (GTEx) [22], which showed 
that nucleosome depletion around TSS was closely asso-
ciated with gene expression (Fig. 2H-I).

Machine learning models construction for biliopancreatic 
cancers
Diagnostic models for biliopancreatic cancers were con-
structed based on the cfDNA fragment size (Fragment, 
Fig.  3A), end motif (Motif, Fig.  3B), and nucleosome 
footprint (NF, Fig. 3C) alone or in combination (Stacked, 
Fig. 3D). The area under curve (AUC) values of the frag-
ment size, the end motif, the nucleosome footprint, and 
the stacked models in the training cohort were 0.970, 
0.965, 0.910, and 0.983, respectively, and their AUCs in 
the validation cohort were 0.941, 0.835, 0.914, and 0.941, 
respectively (Fig. 3A-D, Table S1, Table S2), which dem-
onstrated that the stacked model was superior to the 
three single feature models in distinguishing biliopan-
creatic cancer patients from non-cancer volunteers. To 
optimize model performance and avoid overfitting, ten-
fold cross-validation was performed based on the train-
ing cohort (Fragment AUC: 0.970, 95% CI: 0.889–1.000; 
Motif AUC: 0.965, 95% CI: 0.889 − 1.000; NF AUC: 0.905, 
95% CI: 0.833 − 1.000; stacked AUC: 0.978, 95% CI: 
0.944 − 1.000) (Table S3). Heat map visualizations of the 
fragment size (Fig.  3E), the end motif (Fig.  3F), and the 
nucleosome footprint feature matrices (Fig.  3G) exhib-
ited clear separation between non-cancer volunteers 
and cancer patients. Cancer scores were calculated from 
the stacked model, with the scores being significantly 
higher in cancer patients than in non-cancer volunteers 
(Fig. 3H).

We then used lower coverage WGS data to explore 
the limit of detection for the machine learning model. 
The WGS data was downsampled to 1 × and 0.5 × cov-
erage before training the model using one feature alone 
or three features in combination. Although the perfor-
mance of the stacked model gradually decreased with 
the lowering of the sequencing depth, the AUC trained 
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Table 1  Participant characteristics

Cohort Training (n = 89) Validation (n = 129)

Non-cancer Total, n (%) 31 (34.8%) 40 (31.0%)

Female, n (%) 12 (38.7%) 12 (30.0%)

Cancer All Total, n (%) 58 (65.2%) 89 (69.0%)

Female, n (%) 25 (43.1%) 24 (27.0%)

Age, mean ± SD 62.7 ± 10.2 62.2 ± 10.0

Stage TNM, n (%) I 10 (17.2%) 9 (10.1%)

II 21 (36.2%) 39 (43.8%)

III 21 (36.2%) 29 (32.6%)

IV 6 (10.3%) 12 (13.5%)

CA19-9 (U/ml), n (%)  ≤ 39 18 (31.0%) 19 (21.3%)

 > 39 40 (69.0%) 70 (78.7%)

PAC Total, n (%) 28 (31.5%) 34 (26.4%)

Female, n (%) 14 (50.0%) 8 (23.5%)

Age, mean ± SD 67.5 ± 7.1 65.0 ± 9.6

Stage TNM, n (%) I 8 (28.6%) 8 (23.5%)

II 13 (46.4%) 18 (20.6%)

III 3 (10.7%) 7 (23.5%)

IV 4 (14.3%) 1 (2.9%)

Tumor size (cm), n (%)  < 3 9 (32.1%) 14 (41.2%)

3–5 15 (53.6%) 13 (38.2%)

 > 5 4 (14.3%) 7 (20.6%)

CA19-9 (U/ml), n (%)  ≤ 39 7 (25.0%) 5 (14.7%)

 > 39 21 (75.0%) 29 (85.3%)

GBC Total, n (%) 14 (15.7%) 16 (12.4%)

Female, n (%) 7 (50.0%) 7 (43.8%)

Age, mean ± SD 59.1 ± 10.9 58.9 ± 10.1

Stage TNM, n (%) I 0 (0%) 0 (0%)

II 0 (0%) 1 (6.2%)

III 12 (85.7%) 8 (50.0%)

IV 2 (14.3%) 7 (43.8%)

Tumor size (cm), n (%)  < 3 2 (14.3%) 4 (25.0%)

3–5 9 (64.3%) 7 (43.8%)

 > 5 3 (21.4%) 5 (31.2%)

CA19-9 (U/ml), n (%)  ≤ 39 3 (21.4%) 4 (25.0%)

 > 39 11 (78.6%) 12 (75.0%)

CCA​ Total, n (%) 16 (18.0%) 39 (30.2%)

Female, n (%) 4 (25.0%) 9 (23.1%)

Age, mean ± SD 57.4 ± 9.7 61.0 ± 9.5

Stage TNM, n (%) I 2 (12.5%) 1 (2.6%)

II 8 (50.0%) 20 (51.3%)

III 6 (37.5%) 14 (35.9%)

IV 0 (0%) 4 (10.2%)

Tumor size (cm), n (%)  < 3 9 (56.2%) 28 (71.8%)

3–5 6 (37.5%) 9 (23.1%)

 > 5 1 (6.2%) 2 (5.1%)

CA19-9 (U/ml), n (%)  ≤ 39 8 (50.0%) 10 (25.6%)

 > 39 8 (50.0%) 29 (74.4%)
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on 0.5 × data still remained 0.905 in the validation cohort 
(Figure  S3A). Among the models based on single fea-
tures, we found that the fragment size models were 

affected least by downsampling (0.5 × data AUC: 0.903), 
while the NF models were affected most (0.5 × data 
AUC: 0.619) (Figure  S3B-D), which was consistent with 

Fig. 2  Identification of cfDNA fragmentomics features. A Flowchart for model construction. B Fragment size frequency distributions of 89 plasma 
samples from 58 cancer patients and 31 non-cancer individuals of the training cohort in percentage. C The average fragment size frequency 
distribution of the cancer samples subtracted by that of the non-cancer samples. D The GC content of 140-bp cfDNA reads from the 5’ end. 
The locally enlarged figure shows the first 20 bp. E The correlation matrix of occurrence frequencies of nucleic acid bases around the 5’ end 
of the cfDNAs on the reference genome. Zero is the starting base of each cfDNA fragment. F Schematic illustration of the determination of plasma 
DNA 9-bp (3 × 3-bp) code end motifs. G Box plot of six representative motifs showing differential frequencies between non-cancer and cancer 
patients in the training cohort. H Average plasma DNA coverage patterns around the transcription start sites (TSSs) of genes with varied expression 
levels in a non-cancer individual (green, TPM = 0; orange, TPM > 0.72 and < 3; blue, TPM > 6.6). I Plasma DNA coverage patterns around the TSS of one 
specific gene in a non-cancer individual. TPM, transcripts per million
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previous studies that the performance of NF relied on 
the sequencing depth [6, 23]. The sensitivities at 95.0% 
specificity of the 1 × model and 0.5 × model also slightly 
decreased compared with the original model (1 × model: 
0.742, 0.5 × model: 0.708, original model: 0.809) 
(Table  S4). Taken together, these results suggested that 
our model showed good performance for biliopancreatic 
detection even when using extremely low-coverage WGS 
data (0.5 ×).

Model differentiating biliopancreatic cancer subtypes
We first evaluated the performance of the machine 
learning models on each subtype (Fig.  4A-C, Table  S2). 
The AUCs of the fragment size models were relatively 
stable among all three cancer types, reaching 0.937 for 
CCA, 0.989 for GBC and 0.922 for PAC in the valida-
tion cohort, while the classification powers of end motif 
models and nucleosome footprint models were not even 
among different subtypes (End motif model AUCs: 0.948 
for CCA, 0.973 for GBC and 0.826 for PAC in the vali-
dation cohort; Nucleosome footprint model AUCs: 0.835 
for CCA, 0.934 for GBC and 0.933 for PAC in the valida-
tion cohort). The stacked models trained on CCA, GBC, 
and PAC samples had an AUC of 0.948, 0.991, and 0.927 
in the validation cohort, respectively. Heat maps of each 
cfDNA feature revealed distinctive patterns among the 
three cancer subtypes (Fig.  4D-F), suggesting that they 

might contribute to identifying the tissue of origin of 
cancers.

To examine whether the cfDNA features could provide 
differentiation of biliopancreatic cancer subtypes, we 
then trained independent models on one feature alone 
or three features in combination (Figure S4). Among all 
of the models, we found that the nucleosome footprint 
feature exhibited the highest AUC in distinguishing PAC 
from CCA or/and GBC (AUC: 0.750 for CCA, 0.686 for 
GBC, 0.755 for CCA and GBC), while the fragment size, 
end motif, or stacked models showed unsatisfying perfor-
mance in distinguishing different cancer subtypes, which 
indicated that nucleosome footprint might be the most 
helpful feature for inferring tissue of origin.

Next, we try to further explore the role of nucleosome 
footprint on differentiating subtypes. The gene coef-
ficients were extracted from the NF model (Table  S5), 
and the top 500 genes that contribute to predicting PAC 
against CCA/GBC were selected for enrichment analy-
sis in ToppGene [24]. The enrichment analysis showed 
that the selected genes were significantly enriched in 
“olfactory receptor activity” (GO MF), “OLFACTORY 
SIGNALING PATHWAY” (Reactome Pathways), and 
“OLFACTORY TRANSDUCTION” (KEGG Pathways) 
(Table S6). Olfactory receptors were reported to be highly 
expressed in the pancreas and regulate insulin secretion 
[25], and the olfactory transduction pathway was found 

Fig. 3  Construction and evaluation of machine learning models for cancer detection using cfDNA fragmentomics features. A-D The receiver 
operating characteristic (ROC) curves of the training and validation cohorts to evaluate the performance of the models built on different cfDNA 
features (fragment size (A), end motif (B), nucleosome footprint (C), stacked features (D)) using machine learning algorithms in distinguishing 
patients with biliopancreatic cancer from non-cancer individuals. E–G Heat map visualization of the cfDNA fragmentomics features 
including fragment (E), motif (F), and nucleosome footprint (G) for cancer patients or non-cancer individuals. H Box plots illustrating cancer scores 
calculated from the stacked model in the non-cancer and cancer groups in the validation cohort. ****, P < 0.0001
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as one of the most significant pathways associated with 
risk of pancreatic cancer [26]. Our results suggested that 
the activity of this pathway was discernable in the cfDNA 
nucleosome footprint and helped to differentiate PAC 
from CCA/GBC.

Cancer scores of machine learning models and clinical 
characteristics
Cancer scores were computed for the samples in the 
validation cohort using either the stacked model or the 
models trained on each cfDNA feature. As shown in 
Fig.  5A-D, the cancer scores of the Stacked model, the 
Fragment model, the Motif model, and the NF model 
were significantly higher in the cancer groups than in 
the non-cancer group. Meanwhile, it should be noted 
that there was no significant difference in cancer scores 
between early and late clinical stages among the three 
cancer types, suggesting that these models have similar 
performance in detecting both early- and late-stage bili-
opancreatic cancers.

Since CA19-9 is a commonly used biomarker for bili-
opancreatic patients in clinical practice [27], we then 

examined the performance of cancer score from the 
Stacked model and CA19-9 in detecting cancer sam-
ples. The positive rates of CA19-9 (> 39 U/mL) in the 
training and validation cohort were 69.0% and 78.7% 
for all patients, 50.0% and 74.4% for CCA patients, 
78.6% and 75.0% for GBC patients, and 75.0% and 
85.3% for PAC patients (Table 1). We grouped the par-
ticipants in the validation cohort into a CA19-9 nega-
tive group and a CA19-9 positive group and found that 
the cancer score of the CA19-9 positive group was 
significantly higher than that of the CA19-9 negative 
group (P < 0.0001) (Fig.  5E). According to the CA19-9 
classification, there was one non-cancer sample in the 
CA19-9 positive group, while a significant proportion 
of the samples in the CA19-9 negative group (32.8%, 
19/58) were actual cancer patients, suggesting the 
high specificity but low sensitivity of CA19-9. To meet 
this striking deficiency, we investigated the diagnostic 
ability of cancer score from the Stacked model in the 
CA19-9 negative group. As shown in Fig.  5F, the can-
cer scores of patients were significantly higher than that 
of non-cancer volunteers in the CA19-9 negative group 

Fig. 4  Contributions of the detection models using cfDNA fragmentomics features for each biliopancreatic cancer type. A-C ROC curves showing 
the performance of the models trained on each cfDNA feature alone or stacked of the CCA (A), GBC (B), and PAC (C) validation cohorts. D-F Heat 
map visualization of the cfDNA fragmentation features including fragment size (D), motif (E), and nucleosome footprint (F) of CCA, GBC, and PAC 
samples
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(P < 0.0001). Furthermore, we found that, in the CA19-9 
negative group, the cancer score from the Stacked 
model achieved high sensitivity (18 out of 19, 94.7%) in 
differentiating cancer samples from non-cancer sam-
ples (Fig. 5G). These results suggested that cancer score 
generated by the cfDNA fragmentomics model could 
be an important complement to CA19-9 in distinguish-
ing biliopancreatic cancers from non-cancer samples.

Construction of the final CF model integrating cfDNA 
fragmentomics and CA19‑9
According to above, we wondered whether the inte-
gration of CA19-9 and the stacked model would help 
optimize the detection of biliopancreatic cancers. We 
then trained a LinearSVC classifier as the CA19-9 and 
fragmentomics (CF) model on the training cohort 
using the cancer scores from the Stacked model and the 

Fig. 5  Correlation analysis between cancer scores and clinical characteristics of patients with biliopancreatic cancer. A-D The patients were 
separated into two groups, stage I/II and stage III/IV, for each cancer type, and the cancer scores of the stacked model (A), the fragment size 
model (B), the end motif model (C), and the NF model (D) were calculated and compared with non-cancer volunteers. E Comparison of cancer 
scores of the stacked model in CA19-9 positive (CA19-9 ≥ 39 IU/mL) or negative (CA19-9 < 39 IU/mL) patients. F Comparison of cancer scores 
between non-cancer and cancer patients in the CA19-9–negative group. G Patient classification of the stacked model in the CA19-9–negative 
group. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, no significance
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log2-transformed CA19-9 values as the features. Visu-
alized as a single line in the two-dimensional feature 
space, the classifier separated the cancer and non-can-
cer samples well (Figure  S5A) and performed excel-
lently with an AUC of 0.982 and sensitivity of 97.8% at 
95.0% specificity in the training cohort (Figure  S5B). 
Next, we applied the trained classifier to the validation 
cohort, and similar performance was observed with an 
AUC of 0.995 and sensitivity of 97.8% at 95.0% specific-
ity (Fig.  6A-B, Table  S7). Cancer scores were also cal-
culated from the CF model, which were significantly 
elevated in all cancer patients (Figure S5C) and in each 
biliopancreatic cancer type (Fig. 6C, Figure S5D) com-
pared with non-cancer individuals. We then tested 
similar models on biliopancreatic cancer subtypes, 
which showed AUC of 0.978 and sensitivity of 94.9% at 
95% specificity for CCA, AUC of 0.995 and sensitivity 
of 100% at 95% specificity for GBC and AUC of 1.000 
and 100% at 95% specificity for PAC in the validation 
cohort (Fig. 6D, Figure S5E-M, Table S7). These results 
supported that our integrated predictive model with 
CA19-9 and cfDNA fragmentomics features demon-
strated an excellent detection ability for biliopancreatic 
cancers, shedding light on more accurate noninvasive 
biliopancreatic cancer screening in clinical practice.

Discussion
Liquid biopsy, particularly cfDNA, has been widely 
studied to facilitate noninvasive cancer screening for 
improve patient prognosis [8]. With recent advance-
ment in sophisticated technologies such as machine 
learning, cfDNA fragmentomics exhibited great poten-
tial for distinguishing cancer-derived cfDNA and deter-
mining tissue of origin [28]. Among the most common 
malignancies like liver cancer, colorectal adenocar-
cinoma and lung adenocarcinoma, machine learning 
models based on cfDNA fragmentomics have been 
well established to provide accurate assays for cancer 
detection and early screening [14–16, 29]. However, 
for the biliopancreatic cancers with very dismal out-
comes, the characteristics of cfDNA fragmentomics 
and its performance on cancer diagnostics remains 
largely unknown. To the best of our knowledge, this 
study provided the first systematic characterization of 
cfDNA fragmentomics in biliopancreatic cancers. We 
investigated the potential application of cfDNA frag-
mentomics in detection biliopancreatic cancers, reveal-
ing that the ensemble stacked machine learning model 
of fragment size, end motif and nucleosome footprint 
showed high prediction accuracy in differentiating bili-
opancreatic cancer patients from healthy volunteers, 
which performed better when combined with CA19-9. 
Besides, our method could also be used to distinguish 

Fig. 6  Performance evaluation of the CF model. A The LinearSVC classifier visualized as a single line in all cancer patients in the validation cohort. 
B ROC curve of the stacked model (pink), CA19-9 model (green) and CF model (orange) in the validation cohort. C Comparison of cancer scores 
calculated from the CF model in each biliopancreatic cancer type. D ROC curves of the CF model generated for each biliopancreatic cancer type. 
****, P < 0.0001
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biliopancreatic cancer subtypes. This study offered 
valuable support for the clinical application of cfDNA 
fragmentomics in improving diagnostics of biliopan-
creatic cancers.

The fact that cfDNA has a very short half-life (~ 2  h) 
makes it an ideal biomarker, which carries the genetic 
and epigenetic information of its origin tissues reflect-
ing the current state of a disease [28]. We previously 
demonstrated that preoperative detection of main 
driver mutations in the plasma cfDNA could be used 
to inform the prognosis of resectable PAC patients and 
help in optimizing surgical selection, but this requires 
prior knowledge of critical alterations in tumors [30]. 
Our recent research on cfDNA methylation signature 
found that genome-wide methylation profiles provided 
potential utility for noninvasive detection of early PAC 
[31]. Moreover, methylation-based approaches has the 
advantages over detection of mutations to detect organ-
specific cfDNA fragments by reducing false-positive test 
results due to clonal haematopoiesis [32]. Recently, Ben-
Ami and colleagues have proved that the combination of 
9-loci cfDNA methylation panel, CA19-9 and serum pro-
tein marker TIMP1 exhibited greater discrimination of 
early stage PDAC than CA19-9 alone [33], and Hartwig 
et al. developed a methylation biomarker panel with bet-
ter greater discrimination power for pancreato-biliary 
cancers than CA19-9 [34]. However, high cost and com-
plexity as well as the relatively small number of detect-
able epigenetic alterations could be the limitations for 
further clinical application [31]. To increase the sensitiv-
ity of cancer detection with cfDNA, many genome-wide 
approaches for analysis of cfDNA fragmentation pro-
files has been developed, which exhibited the potential 
to identify a large number of tumor-derived changes in 
the circulation. For PAC, it has been reported that, com-
pared to healthy control, plasma cfDNA had significantly 
shorter fragment size and higher concentration in patient 
samples, which were associated with worse outcomes 
[35]. Similar results could also be observed in CCA and 
GBC that the concentration of plasma cfDNA in patient 
samples were markedly higher than that in non-cancer 
controls and increased with tumor stage or tumor size 
[36, 37]. In this study, we found that fragment size was 
a powerful biomarker for differentiating biliopancre-
atic cancers from healthy volunteers. Besides, end motif 
and nucleosome footprint were identified as another 
two critical features for biliopancreatic cancers detec-
tion. Furthermore, the stacked model based on these 
fragmentomics features exhibited excellent sensitivity 
and specificity in biliopancreatic cancers diagnostics, 
even at extremely low sequencing depth of 0.5 × , provid-
ing new insights for revolutionizing blood-based cancer 
detection.

Since nucleosome occupancy patterns are different 
among various tissues [12], it is possible to use cfDNA 
fragmentation patterns to infer the characteristics of the 
epigenome for determining its tissue origin. Based on 
fragment size feature alone, DELFI approach has dem-
onstrated the potential to distinguish between seven 
different cancers, which had a 61% accuracy (95% CI 
53% − 67%) that increased to 75% (95% CI 69% − 81%) 
when assigning ctDNA to one of two sites of origin [9]. 
Later, a multidimensional model developed by Bao et al. 
based on five distinct fragmentomics features cover-
ing cfDNA fragmentation size, motif sequence and copy 
number variation showed promising results in detecting 
cancers from distant anatomical locations (97.4%, 94.3% 
and 85.6% for primary liver cancer, colorectal adenocar-
cinoma and lung adenocarcinoma, respectively) [16]. 
In addition, cfDNA fragmentomics could also be used 
to classify cancer subtypes. A recent study on cfDNA 
fragmentomics of primary liver cancer revealed that the 
fragmentomics-based machine learning model showed 
potential for distinguishing intrahepatic cholangiocarci-
noma from hepatocellular carcinoma (AUC: 0.776) [15]. 
In this study, we focused on the three closely located 
biliopancreatic cancers including CCA, GBC and PAC, 
which could be more difficult in differentiating due to 
similar development backgrounds. As expected, differ-
entiation between CCA and GBC was not satisfying by 
either one fragmentomics feature or stacked model, while 
it was easier to differentiate PAC from biliary tract can-
cers (CCA and GBC) (Figure S4). Particularly, we noticed 
that the patterns of NF carried more cell-type-specific 
information compared to fragment size and end motif, 
which was consistent with other studies [38]. Accord-
ing to the gene set enrichment analysis of top 500 genes 
that contribute to predicting PAC against CCA/GBC, 
olfactory related pathways were found most significantly 
enriched. It has been reported that in addition to the 
olfactory system, olfactory receptors were also expressed 
in other human tissues like pancreas and might play a 
crucial role in the initiation of different cancers [39]. In 
pancreatic cancers, many somatic mutations were found 
in olfactory receptor genes [40], and gene expression in 
the olfactory pathway were mostly significantly affected 
in pancreatic cancer [41]. Moreover, the differentially 
methylated and expressed genes of pancreatic cancer 
were also found mainly related to olfactory transduction 
[42]. With these results, our study provided important 
evidence to confirm the potential utility of cfDNA frag-
mentomics in identifying the tissue of origin.

As the most widely used biomarker in biliopancreatic 
cancers, CA19-9 (also called sialyl Lewis A antigen) plays 
an indispensable role in cancer diagnosis and prognostic 
prediction [43]. However, CA19-9 is not ideal. In addition 
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to false positive results caused by biliary tract obstruc-
tion and inflammation, pancreatitis and other digestive 
cancers, false negative results that Lewis antigen negative 
individuals, occurring in 5% to 10% of the population, 
have very low or even absent secretion of CA19-9 could 
be the major shortfall for its clinical application [44]. 
Therefore, the development of new biomarkers to assist 
CA19–9 in biliopancreatic cancers is highly necessary. 
Previous studies have proposed that traditional tumor 
biomarkers carcinoembryonic antigen (CEA) and CA125 
had the potential to be applied in Lewis negative patients 
with pancreatic cancer [44]. Our recent research found 
that genome-wide methylation profiles could help accu-
rately identify CA19-9-negative PAC cases [31]. In this 
study, we revealed that the fragmentomics-based stacked 
model achieved high sensitivity (18 out of 19, 94.7%) in 
differentiating biliopancreatic cancers from healthy vol-
unteers in the CA19-9-negative group. Furthermore, 
after integrating the stacked model with CA19-9, the 
final CF model showed great performance in biliopan-
creatic cancers detection (AUC = 0.995). According to 
above, our study suggested that cfDNA fragmentomics 
could be an important complement to CA19-9 in bili-
opancreatic cancers detection, which paved the way for 
the development of new diagnostic strategies, especially 
for patients in the CA19-9-negative group.

Although our preliminary results of using cfDNA frag-
mentomics to facilitate non-invasive detection of bilio-
pancreatic cancers were encouraging, several limitations 
should be acknowledged. The relatively small size of the 
study cohort might impair the performance of our model, 
which needs to be validated with a larger population. 
In addition, the sample sizes of several key categories 
such as stage I of PAC, CCA and GBC were also limited. 
Therefore, there might be overestimation of model sen-
sitivity, and the model could need some optimization for 
early detection or screening purposes in biliopancreatic 
cancers. Finally, our models were constructed based only 
on cancer and healthy cases. Further inclusion of sam-
ples from benign biliopancreatic diseases would help 
improve the performance of our model in distinguishing 
biliopancreatic cancers patients and promote its clinical 
application.

Conclusions
In summary, we reported a machine learning model 
based on fragmentomics features of plasma cfDNA for 
detecting biliopancreatic cancers. Our method relying 
on only low-coverage WGS data remained great per-
formance in distinguishing biliopancreatic cancers and 
helped in differentiating subtypes. The final model that 
integrated cfDNA fragmentomics features with CA19-9 

exhibited excellent clinical potential for its ultrasen-
sitivity and provided an affordable way for improving 
cancer detection in clinical practice.
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