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Abstract 

PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate ele-
ments of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multi-
meric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still 
in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary 
targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANo-
ptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic 
applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis 
and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvi-
ronment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.
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Background
Cell death is a vital mechanism for preserving the normal 
functioning of tissues and the overall health of the body. 
Additionally, its manipulation serves as a fundamental 
approach in cancer therapy. Cell death can be divided 
into uncontrollable, accidental cell death (ACD) and 
regulated cell death (RCD), depending on whether the 
process is controlled or not [1]. As a type of RCD, pro-
grammed cell death (PCD) is intricately linked to vari-
ous human diseases, particularly cancer [2]. In the past 
few decades, apoptosis, necroptosis, and pyroptosis were 
commonly viewed as distinct forms of PCD, and their 

regulatory mechanisms are the most clearly studied. They 
not only play an important regulatory role in the initia-
tion, transduction, and execution of cell death, but are 
also involved in both homeostasis and disease.

Although apoptosis, pyroptosis, and necroptosis fol-
low distinct signaling pathways, increasing evidence 
from numerous studies indicates the existence of mutual 
crosstalk among them (Fig.  1), ultimately leading to the 
concept of PANoptosis. PANoptosis as a new type of 
PCD was proposed in 2019 by Dr. Kanneganti et al. [3]. 
This mode of death combines the key features of pyrop-
tosis, apoptosis, and necroptosis, which correspond to 
"P", "A", and "N", respectively, in PANoptosis terminology. 
PANoptosis is regulated by the PANoptosome complex 
[4]. This complex is a polymeric complex formed by the 
cascade regulation of upstream receptors and molecular 
signals, which acts as an activation platform for down-
stream molecules and a "master switch" that initiates the 
three PCD pathways. Upstream molecules of the PANop-
tosome include Z-DNA-binding protein 1 (ZBP1), absent 
in melanoma 2 (AIM2), and receptor-interacting serine/
threonine protein kinase 1 (RIPK1), which can sense 
specific stimuli and trigger the assembly of PANoptosis 
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bodies to form the PANoptosome with different sensors 
and regulatory factors [5].

While the precise molecular mechanisms governing 
PANoptosis remain unclear, there is evidence suggest-
ing its potential benefits in human diseases, particu-
larly in addressing drug resistance and enhancing tumor 
immunotherapy [6, 7]. This review discusses the origins 
of PANoptosis, explores its link to the diverse forms of 
death pyroptosis, apoptosis and necroptosis, and exam-
ines how PANoptosis is regulated in the context of cancer 
development and treatment. It also highlights the prom-
ise of PANoptosis-targeting strategies in cancer therapy.

The distinct molecular mechanisms of apoptosis, 
pyroptosis and necroptosis
Apoptosis is a fundamental biological phenomenon of 
cells that plays a necessary role in multicellular organ-
isms to eliminate unwanted or abnormal cells [8]. It 
plays an important role in the evolution of organ-
isms, the stability of the internal environment, and 
the development of multiple systems [9]. In general, 
apoptosis can be triggered by both internal and exter-
nal apoptotic signaling pathways (Fig. 1A) [10, 11]. The 
intrinsic apoptosis pathway, commonly referred to as 

the mitochondria-dependent pathway, is mainly trig-
gered by mitochondrial outer membrane permeabiliza-
tion (MOMP) induced by intracellular stressors [12]. 
MOMP is regulated by Bcl-2 family proteins, which 
cause the release of cytochrome C (cytc) into mito-
chondrial intermembrane space. Cytc binds to apop-
totic protease activator 1 (APAF-1) and then interacts 
with pro-caspase-9 to form a complex called the apop-
tosome. Subsequently mature caspase-9 is able to acti-
vate downstream effectors caspase-3 and caspase-7, 
allowing them to perform their executioner functions. 
The extrinsic apoptosis pathway is triggered by cell sur-
face death receptors such as FAS and the tumor necro-
sis factor receptor (TNF-R) family [13]. When the death 
receptor binds to the corresponding ligand, recruit-
ment of FAS-associated proteins (FADD), RIPK1 and 
caspase-8 occurs, during which the two death domain 
effectors, caspase-8 and FADD, interact isotopically. 
Pro-caspase-8 is automatically processed into mature 
caspase-8, which cleaves and activates caspase-3 and 
caspase-7. Thus, caspase-9 and caspase-8 are initiat-
ing caspases for endogenous and exogenous apoptotic 
pathways, respectively, which ultimately complete the 
apoptotic process via caspase-3 and caspase-7.

Fig. 1 The regulatory mechanisms of apoptosis, pyroptosis, necroptosis and PANoptosis. A Apoptosis is divided into intrinsic and extrinsic 
pathways, which activate the executioner protein caspase-3/7 via the cleavage proteins caspase-9 and caspase-8, respectively. B Pyroptosis 
activates the GSDM family proteins through caspase-1-dependent inflammatosome formation or directly through caspase-4/5/11/8, forming 
pores in the cell membrane and inducing cell death. C Necroptosis phosphorylates MLKL by activating RIPK1 and/or RIPK3 and disrupts the cell 
membrane to execute death. D Under different external stimuli, the composition of the PANoptosome complex is different and thus regulates 
the downstream PANoptosis pathway by different mechanisms. The PANoptosome is regulated by upstream sensors and molecular signals 
that assemble into a polymeric complex. These sensors mainly include ZBP1, AIM2, RIPK1 and NLRP12. The signaling molecules mainly include 
NLRP3, ASC and caspase-1 (pyroptotic proteins), RIPK3 (necroptotic protein), caspase-8 (apoptotic protein)
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Pyroptosis is an inflammatory death pathway medi-
ated by the inflammasome, which can be divided into 
the canonical (caspase-1-dependent) and non-canonical 
(caspase-4, -5, and -11-dependent) pathways according 
to the activation mechanism (Fig. 1B) [14]. There are four 
main members of the inflammasomes, namely NOD-
like receptor family pyrin domain 1 (NLRP1), NOD-like 
receptor protein 3 (NLRP3), NLR family CARD domain-
containing protein 4 (NLRC4) and AIM2 inflammasomes 
[15, 16]. In the canonical pathway, the inflammasome can 
sense the external stimulation signal of the cell, recruit 
and activate caspase-1, which cleaves the peptide seg-
ment of the N-terminal active domain of gasdermin D 
(GSDMD), inducing membrane perforation, cell rupture, 
and content release, and causing inflammation [17]. In 
the non-canonical pathway, activated caspase-4, -5 and 
-11 are stimulated by signals such as bacteria, and then 
cleave GSDMD to form peptides containing the nitro-
gen-terminal active domain of GSDMD. In the presence 
of NLRP3 and ASC, caspase-4 activates caspase-1 to split 
the preforms of IL-1β and IL-18 to form their mature 
forms [18]. Membrane perforation and cell rupture are 
induced, and the cell contents are released, triggering an 
inflammatory response.

Necroptosis is a programmed lytic cell death pathway, 
and the key proteins involved in this process include 
RIPK1, RIPK3, and mixed lineage kinase like (MLKL) 
(Fig.  1C) [19]. When the activity of caspase 8 is inhib-
ited, RIPK1 and RIPK3 play a key role in TNF-induced 
necroptosis [20]. RIPK1 and RIPK3 interact to form 
a necrosome with RIP homotypic interaction motifs 
(RHIMs), which phosphorylates MLKL protein, and then 
destroys cell membrane integrity, eventually leading to 
death. TLR3/4 of the toll-like receptor family can trig-
ger necroptosis if the activity of the protease caspase-8 
is compromised [21]. TLR3 and TLR4 can recruit TIR 
domain containing adapter-inducible interferon B (TRIF) 
to respond to double-stranded RNA and TLR4 lipopoly-
saccharide (LPS), respectively. TRIF contains the RHIM 
domain, which binds RIPK3 and phosphorylates down-
stream MLKL, leading to necroptosis independent of 
RIPK1. In addition, ZBP1, a RHIM-containing protein, 
was also found to induce necroptosis [22].

Crosstalk between apoptosis, pyroptosis, 
and necroptosis
The complexity of the associations between pyropto-
sis, apoptosis, and necroptosis suggests that there is a 
dynamic network of molecular interactions between 
them, rather than separate, isolated pathways. Not only 
do they operate with their own distinct regulatory mech-
anisms, but they also constrain and influence each other 
to synergistically regulate cellular processes (Fig.  2). 

Within this framework, there has been a growing body of 
research exploring the interconnection among apoptosis, 
pyroptosis, and necroptosis, culminating in the emer-
gence of the concept of PANoptosis.

Crosstalk between apoptosis and pyroptosis
Pyroptosis and apoptosis are PCD processes that depend 
on caspases for their execution (Fig. 2A) [23]. Caspase-1 
plays a certain regulatory role in both apoptosis and 
pyroptosis and acts as a bridge between them. When 
GSDMD is absent, the inflammasome triggers caspase-1 
to change mitochondrial MOMP and initiates apoptosis 
and pyroptosis via caspase-3 and -7, respectively [24]. 
Researchers have found that caspase-1 and -7 are related, 
and the regulatory mechanism is that caspase-1 can 
mediate the activation of endogenous caspase-7 in mac-
rophages. However, the activity of caspase-7 is not com-
pletely dependent on caspase-1 [25]. Studies showed that 
both caspase-3 and -7 were involved in apoptosis, but 
they have different activation mechanisms in response to 
microbial stimulation and bacterial infection [26]. Studies 
also showed that in the absence of downstream GSDMD, 
caspase-1 cleaves caspase-3 and promotes the occur-
rence of apoptosis [24]. GSDMD is a protein of great 
interest between members of the GSDM family as the 
first identified executor of cell pyroptosis, acting down-
stream of inflammatory caspase in response to cellular 
inflammation regulation [27]. By studying the regulatory 
relationship between GSDMD and caspases, the transi-
tion of cells from pyroptosis to apoptosis was uncovered 
[28, 29].

GSDME/DFNA5 is another member of the GSDMs, 
and its N-terminal structural domain can form holes in 
the cell membrane and induce pyroptosis [30]. GSDME 
can be cleaved by caspase-3, thereby converting nonin-
flammatory apoptosis to pyroptosis in GSDME-express-
ing cells [30–32]. When GSDME is highly expressed, 
caspase-3 activity can be activated, leading to cell swell-
ing and rupture, and then pyroptosis. Intriguingly, low 
expression of GSDME can also induce cell apoptosis 
[33]. The N-terminus resulting from GSDME cleavage 
not only triggers pyroptosis but also increases reactive 
oxygen species (ROS). This increase in ROS levels can 
reduce mitochondrial membrane potential and release 
cytochrome C, ultimately culminating in caspase-3-de-
pendent apoptosis [34, 35].

Crosstalk between pyroptosis and necroptosis
Necroptosis and pyroptosis are often accompanied by 
the release of potential immunostimulatory molecules 
(Fig.  2B) [36–38]. Pyroptosis is mainly regulated by the 
canonical signaling pathway mediated by caspase-1 
and the non-canonical signaling pathway mediated by 
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caspase-4, -5 and -11 [39]. Activation of caspase-1 not 
only disrupts the integrity of cell membranes and causes 
cell swelling, but also promotes the release of IL-1β and 
IL-18 [40, 41]. When caspase-4, -5 and -11 are acti-
vated, they can cleave GSDMD and lead to pyroptosis. 
Necroptosis is regulated by RIPK1, RIPK3, and MLKL 
[42]. The link between necroptosis and pyroptosis comes 
from a study showing that necrosulfonamide, an inhibi-
tor of MLKL, can suppress GSDMD [43]. In addition, 
MLKL in the activated state can trigger the NLRP3 
inflammasome in a cell-intrinsic manner [44]. Addi-
tional studies indicate that necroptosis signaling initiates 
a RIPK3-MLKL-NLRP3-caspase-1 axis, leading to the 
maturation of IL-1β [45, 46]. NLRP3 serves as a crucial 
bridge, linking necroptosis and pyroptosis.

Crosstalk between apoptosis and necroptosis
It is worth noting that caspase-8 plays a pivotal role 
in both apoptosis and necroptosis (Fig.  2C) [47]. Cas-
pase-8 not only participates in apoptotic signaling but 

also regulates necroptotic signaling through the cleav-
age of RIPK1 and possibly RIPK3 [20, 48]. One study 
investigated the effects of caspase 8 depletion on apop-
tosis and necroptosis of TNFα-stimulated ovarian cancer 
cells [49]. Mechanistically, suppressing NF-κB signal-
ing in ovarian cancer cells changed the effect of TNFα 
signaling from promoting proliferation to inducing cell 
death. While cancer cells with high levels of caspase-8 
underwent apoptosis, caspase-8 depletion downregu-
lated NF-κB signaling, increased RIPK1 stability, and 
facilitated necroptotic cell death. These findings have 
implications for improving anticancer approaches to 
benefit patients with cancers that express low levels of 
caspase-8. It is also believed that RIPK1 mutations at 
Y383F/Y383F promote RIPK1 kinase activation and 
enhance TNF-induced apoptosis and necroptosis [50]. 
As a downstream substrate protein of caspase-8, RIPK1 
is also involved in apoptosis and necroptosis mediated 
by caspase-8 [20]. The RIPK1-death domain mediates 
its dimerization and enzyme activity during necroptosis 

Fig. 2 Crosstalk between apoptosis, pyroptosis and necroptosis. A The protein caspases link apoptosis and pyroptosis. The inflammasome 
is involved in the activation of caspase-1, and in addition to cleaving its typical substrate GSDMD, caspase-1 can also mediate the pro-apoptotic 
protein tBID, which triggers the formation of apoptotic bodies in MOMP. The apoptotic executioner caspase-3 can target the pyrogenic executioner 
GSDME for proteolysis, resulting in pyrogenic death. B The executioner MLKL acts as a bridge between necroptosis and pyroptosis. Regulation 
of RIPK3 by the exogenous death receptor or ZBP1 leads to phosphorylation of the executioner molecule MLKL, resulting in the formation 
of pores in cell membranes, including the plasma membrane. In turn, MLKL can activate NLRP3, leading to inflammasome assembly and cleavage 
of caspase-1 to mediate the formation of GSDMD and IL-1β. C Apoptotic and necroptotic are tightly linked, as extrinsic death receptor signaling 
through the RIPK1/FADD/caspase-8 complex can lead to signal transduction. When RIPKs are inhibited, extrinsic apoptosis occurs via caspase-8 
homodimerization. When caspases are inhibited, necroptosis is activated by RIPK1-RIPK3 oligomerization
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and RIPK1-dependent apoptosis [51]. In apoptosis-com-
petent cells, complex I (TNFR1 or TNF-RSC) transitions 
into complex IIa (RIPK1, FADD and caspase-8) to pro-
mote apoptosis. When apoptosis is suppressed, necrop-
tosis can be triggered through the assembly of complex 
IIb, comprising RIPK1, FADD, caspase-8, and RIPK3 
(Fig.  2C). This complex facilitates the phosphorylation 
and oligomerization of MLKL, leading to the initiation 
of necroptosis. The phosphorylation of RIPK1 plays an 
important regulatory role in SMYD2 mediating TNF 
induced apoptosis and necroptosis of colon cancer cells 
[52]. RIPK3, a member of the receptor interacting protein 
kinase family, interacts with RIPK1 to form necroptotic 
complexes, activating MLKL and initiating necroptosis, 
thereby repressing cancer development [36, 53]. In addi-
tion, it has been found that RIPK3 can interact with ZBP1 
receptor to mediate necroptosis and PANoptosis [54].

Historic definitions of PANoptosis
Historically, there has been a consensus that the three 
types of cell death were distinct processes operating 
independently within cells (Table  1). Extensive research 
has elucidated the corresponding regulatory mecha-
nisms and biological functions associated with each 
(Table  1) [55, 56]. Typically, upon death signal stimu-
lation, caspase-8 can regulate apoptosis mediated by 
internal and external pathways. Caspase-8 is not only 
critical in death receptor-mediated apoptosis, but also 
plays an important role in preventing death receptors, 
toll-like receptors TLR3 and TLR4, and T-cell receptors 

from inducing necroptosis [57, 58]. With the deepen-
ing of related research, caspase-8 was one of the first 
discovered bridges between different types of cell death 
[20, 59]. Several studies revealed that caspase-8 induced 
cleavage of GSDMs, such as GSDMD and GSDME, the 
two well-established effectors of pyroptosis [60–62], sug-
gesting the involvement of caspase-8 in the process of 
apoptosis and pyroptosis. These discoveries provide sub-
stantial theoretical underpinnings to shape and articulate 
the concept of PANoptosis, which was first reported in 
2016 and formally introduced in 2019 [3, 63]. PANopto-
sis emerged from studies exploring the interplay between 
the inflammasome/pyroptosis and apoptosis and necrop-
tosis. This form of PCD, identified as an inflammatory 
process, is unique in that it incorporates elements of 
pyroptosis, apoptosis, and necroptosis, defying a singu-
lar explanation by any one of these processes alone [3]. 
Recently, the study of PANoptosis has been mainly con-
cerned with diseases related to the immune response, 
cancer, infectious diseases, and others.

Evolution and interaction network 
of the PANoptosome
PANoptosis has been observed in different diseases, such 
as cytokine storms and cancer [7, 64]. To date, studies 
have shown that PANoptosis, caused by certain infections 
and cellular stress, is diverse and the regulatory process is 
complex [65–67]. This complex regulation is achieved by 
the PANoptosome. The PANoptosome is a multiprotein 
complex that provides a molecular scaffold containing 

Table 1 Distinct features and interrelationships between apoptosis, pyroptosis, and necroptosis. Apoptosis, pyroptosis, and 
necroptosis are the three vertices of the cell death triangle. The reciprocal transformation between them is mainly regulated by 
intermediary molecules and finally, under certain conditions, PANoptosis occurs
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key proteins that activate pyroptosis, apoptosis, and 
necroptosis [55]. The skeleton of the PANoptosome is 
mainly formed by the interaction of homologous and 
allotypic domains between proteins. Each PANoptosome 
comprises three essential components: pathogen-asso-
ciated molecular patterns (PAMPs), damage-associated 
molecular patterns (DAMPs), and catalytic effectors or 
executioners [68]. ZBP1 and RIPK1 have been identified 
as two upstream molecules of the PANoptosome that can 
trigger assembly of the PANoptosome and can respond 
to specific stimuli [69]. Moreover, the proteins involved 
in regulating the upstream and downstream signaling 
pathways of the PANoptosome include ASC, NLRP3, 
caspase-8, RIPK3, caspase-6, transforming growth fac-
tor kinase 1 (TAK1) and nucleotide-binding leucine-rich 
repeat-containing receptor 12 (NLRP12) [70–73]. In 
other words, the PANoptosome contains key molecules 
associated with pyroptosis, apoptosis, and necroptosis 
that enable the activation of these three modes of cell 
death to carry out a pro-inflammatory cell death process 
and ultimately PANoptosis.

The regulatory mechanisms of PANoptosis
PANoptosis is a recently identified mode of cell death 
typically characterized by preserved cell membrane 
integrity and cellular swelling, often mediated by inflam-
masome sensors including members of the NOD-like 
receptor (NLR) family, the DNA receptor AIM2, and 
the pyrin receptor (Table 1). External stimuli induce the 
formation of the PANoptosome, which subsequently ini-
tiates the onset of PANoptosis (Fig.  1D). Caspase-8 is a 
typical cysteine protease encoded by the caspase-8 gene, 
located on chromosome 2q33-34 [74]. It is a central 
mediator in the extrinsic apoptotic pathway via FADD 
or TNFR1 and TRAIL associated via death domain 
receptors [75–77]. Studies have shown that caspase-8 
is involved in the cleavage of GSDM family proteins to 
induce pyroptosis in endogenous apoptotic pathways. 
It has been reported that the expression of enzymati-
cally inactive caspase-8 (C362S) can cause embryonic 
lethality and inflammatory tissue destruction in mice by 
inducing necroptosis and pyroptosis [78]. As one of the 
earliest identified bridges between different cell death 
forms, caspase-8 plays an important regulatory role in 
the process of PANoptosis under certain conditions 
[23, 61]. Recently, it was discovered that the metabolite 
α-ketoglutaric acid (α-KG) triggered pyroptotic cell death 
by promoting GSDMC cleavage via caspase-8 [79]. This 
research not only elucidates a pyroptotic pathway asso-
ciated with metabolites but also unveils a previously 
unreported central pathway extending from ROS-trig-
gered DR6 endocytosis to caspase-8-mediated cleavage 
of GSDMC, suggesting potential clinical applications in 

tumor therapy. Caspase-6, a caspase executor that medi-
ates apoptosis, has been recently identified to play a dual 
role, not only in the regulation of pyroptosis through 
GSDMD but also in mediating necroptosis via its influ-
ence on MLKL, thereby contributing to its involvement 
in tumorigenesis and immunotherapy [72].

Increasing evidence suggests that PANoptosis may be 
related to the tumor immune microenvironment (TIME) 
and drug resistance in the development of cancer. Here, 
we mainly introduce the role of PANoptosis in the TIME 
and review the important role of PANoptosis in tumor 
immunotherapy and drug resistance.

PANoptosis and the TIME
The occurrence and development of tumor is the result of 
interaction and co-evolution between tumor cells and the 
TIME. The TIME refers to the immune microenviron-
ment around tumor cells, including tumor cells, inflam-
matory cells, immune cells, various signaling molecules 
and extracellular matrix [80]. In the realm of immunity, 
tumor cells have developed diverse anti-immune mech-
anisms, including downregulation of antigen expres-
sion, inhibition of DC antigen presentation capabilities, 
and suppression of cytotoxic T cell tumor infiltration. 
Understanding infection and PANoptosis is crucial for 
developing effective strategies to prevent and control 
infectious diseases, particularly those caused by highly 
virulent pathogens. Examples of pathogens that may 
induce PANoptosis include certain strains of the Ebola 
virus and some highly virulent strains of influenza [81]. 
Increasing evidence suggests that PANoptosis may play 
a role in cancer development and the TIME [82]. There-
fore, inducing highly immunogenic PANoptosis within 
tumors could serve as a promising therapeutic approach. 
This would activate the cancer innate immune response 
by DAMPs, ultimately enhancing the antitumor function 
of antigen-specific T cells.

Cells within the tumor microenvironment (TME) pos-
sess the ability to modulate the immunosuppressive 
milieu, thereby influencing cancer cell proliferation [83]. 
As one of the most abundant immune cells in tumor inva-
sion, neutrophils can enter tumor tissues to form tumor-
associated neutrophils (TANs) [84]. TANs are not only 
involved in the initiation and development of tumors, 
but also regulate the TME [85, 86]. Research has identi-
fied a tumor-promoting cluster of TANs characterized by 
increased expression of HMGB1 that may interact with 
the TME through HMGB1-TIM-3 axis [87]. Moreover, 
HMGB1-positive TANs were recruited to tumor lesions 
and closely associated with the pathological grades of 
primary tumors, facilitating immune evasion via the 
GATA2/HMGB1/TIM-3 axis. Thus, tumor-promoting 
TAN clusters with HMGB1 overexpression could serve 



Page 7 of 14Gao et al. J Exp Clin Cancer Res          (2024) 43:168  

as a prognostic indicator and gauge immunotherapeutic 
responses.

The great potential of nanomedicine in the treatment 
of cancer prompted researchers to study their role in 
PANoptosis and the TME. It has been reported that an 
ultrasonic nanomaterial using nano/genetically engi-
neered extracellular vesicles was assembled from ultra-
sound (US) and PLEP (PFH@Lipo-PpIX@EVs) [88]. The 
combination of US and PLEP had a remarkable impact 
on the expression of pyroptotic protein GSDMD, 
apoptotic protein caspase-3, and necroptotic protein 
MLKL, compared to the control group. Additionally, 
the proportion of immunosuppressive regulatory T 
cells (Tregs) was significantly reduced in the US + PLEP 
group compared to other groups. This reduction may 
be attributed to the critical role of PANoptosis in 
reshaping the immunosuppressive TME. Consequently, 
US + PLEP nanomedical drugs modulated PANopto-
sis and bolstered  CD8+ T cells-mediated antitumor 
immunity [89]. By analyzing the correlation between 
PANoptosis-related molecular subtypes and prognostic 
models and the TIME, researchers aimed to explore the 
mechanism of PANoptosis in pancreatic cancer [90]. 
This study found that patients with increased  CD8+ T 
cells, monocytes, and naïve B cells were more sensitive 
to irinotecan, oxaliplatin, and sorafenib, while patients 
with increased macrophages, activated mast cells, and 
DCs were more sensitive to erlotinib, selumetinib, 
and trametinib [90]. Xi et  al. analyzed the correlation 
between GSDMD and  CD8+ T cell markers through 
the Cancer Genome Atlas (TCGA) database and found 
that the expression of GSDMD is positively correlated 
with  CD8+ T cell marker levels in tumor samples [91]. 
GSDMD is required for  CD8+ T cell cytotoxicity and 
its deficiency reduced the cytolytic capacity of  CD8+ 
T cells. When  CD8+ T cells were activated, GSDMD 
was cleaved by caspase-4 and -11. To further clarify 
the effects of different PCD on the ability of DCs to 
cross-present and initiate  CD8+ T cell responses, we 
constructed apoptosis and necrosis models. Although 
DAMPs release can trigger an inflammatory response, 
they do not promote strong cross-priming. Fur-
ther studies showed that RIPK1-mediated induction 
of NF-κB and its downstream target genes played a 
key regulatory role in initiating  CD8+ T cell adaptive 
immunity [92]. RIPK3, a critical protein in the necrop-
tosis pathway, plays a significant role in cell death 
regulation. In cancer cells, its activation relies on the 
downregulation of TRIM28. This activation of RIPK3 
contributes to antitumor immunity by promoting the 
production of immune-stimulating cytokines within 
the TME [93]. Furthermore, GSDME has been impli-
cated in the pathogenesis of tumors and other diseases. 

Studies have shown that GSDME expression promotes 
the phagocytosis of tumor cells by tumor-associated 
macrophages and enhances both the quantity and func-
tionality of tumor-infiltrating natural killer cells and 
 CD8+ T lymphocytes [94].

By integrating the data from TCGA database and 
three Gene Expression Omnibus (GEO) databases of 
clear cell renal cell carcinoma (ccRCC), Wang and col-
leagues constructed a PANoptosis-related microRNA 
signature using bioinformatics approaches, reveal-
ing the potential significance of a PANoptosis-related 
microRNA signature in clinicopathological features 
and tumor immunity [95]. Researchers also constructed 
a PANscore scoring system to quantitatively assess 
the PANoptosis pattern in individual gastric can-
cer (GC) patients. Pan-cancer analysis revealed that 
high PANscore was associated with low expression of 
immune checkpoints, high expression of TGF-β, and 
dense infiltration of CAFs and M2-type macrophages 
[96]. Hepatocellular carcinoma (HCC) is one of the 
most common malignant cancer, and it was reported 
that PANoptosis-related genes and relevant clus-
ters were associated with the survival and immunity 
of patients. The abundance of immune cells, expres-
sion of immune checkpoints, and immunotherapy and 
chemotherapy were also considered to be associated 
with the risk score, and the prognosis of a high-risk 
score was poor [97]. Another study, using bioinformat-
ics analysis of expression data for 19 genes identified 
in previous studies and clinical data for colon cancer 
patients in TCGA and GEO databases, revealed that a 
patient’s survival prediction risk score was associated 
with immune cell abundance, cancer stem cell (CSC) 
index, checkpoint expression, and response to immu-
notherapy and chemotherapy drugs [5]. To clarify the 
role of PANoptosis in GC, researchers analyzed GC 
specimens and established molecules through expres-
sion patterns of PANoptosis regulators and the immune 
landscape clusters associated with PANoptosis-related 
genes (PRGs) and corresponding immune characteris-
tics. In this study, five selected variables demonstrated 
significant associations with infiltrating immune cells 
and immune-related pathways [98]. This analytical 
model may be applicable for assessing the risk and 
immune response of GC patients. The above studies 
highlight that the majority of current research involves 
bioinformatic analysis to identify associations between 
PANoptosis-related genes and the TIME. Subsequent 
experimental verification tends to be preliminary and 
straightforward. However, there is a paucity of studies 
that delve into detailed molecular mechanism explora-
tion, indicating a potential avenue for future research 
efforts.
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PANoptosis and antitumor immunity
In recent years, the emergence of immunotherapy 
has prolonged the median survival of certain patients 
with advanced tumors. Complementing traditional 
approaches such as surgery, radiotherapy, chemother-
apy, and targeted therapy, immunotherapy presents a 
promising avenue for treating advanced tumors [38, 99]. 
PANoptosis, with its ability to dynamically regulate PCD 
through the PANoptosome, stands as a component of 
the host’s innate immune defense [3, 82]. The PANopto-
some acts as a molecular scaffold to regulate the trans-
mission and interaction of its key protein signals in an 
orderly manner, providing the host with the ability to 
resist viruses or bacteria [81]. Programmed death mol-
ecule ligand-1 (PD-L1) is an important immunosuppres-
sive factor, which can convert TNF-α induced apoptosis 
of cancer cells into pyroptosis, leading to tumor necrosis 
[100]. The specific mechanism is that p-Stat3 physically 
interacts with PD-L1 to promote its nuclear translocation 
and enhances transcription of the GSDMC gene under 
low oxygen conditions. GSDMC is specifically cleaved by 
caspase-8 and TNF-α stimulation to produce the N-ter-
minal domain of GSDMC, which forms pores in the cell 

membrane and induces pyroptosis (Fig.  3A) [100]. This 
study demonstrated for the first time that nuclear PD-L1, 
caspase-8, and GSDMC are essential for macrophage-
derived TNFα-induced tumor necrosis. Another study 
found that TNF-α and IFN-γ were able to induce PANo-
ptosis in 13 different human cancer cell lines from colon, 
lung, melanoma, and leukemia, through the activation of 
GSDMD, GSDME, caspase-8, caspase-3, caspase-7 and 
MLKL (Fig.  3B) [101]. In addition, ultrasound nanoma-
terials utilizing nano/genetically engineered extracellu-
lar vesicles can prompt tumor immunoediting therapy, a 
strategy that induces tumor highly immunogenic PANo-
ptosis and activates the cancer innate immune system to 
produce enough antigen-specific T cells to form a protec-
tive immune response by repeatedly releasing damage-
related molecules [95]. This study suggests that targeting 
PANoptotic cell death patterns provides a new strategy 
for overcoming immune escape. In addition, administra-
tion of CBL0137, a potent anticancer drug that kills can-
cer cells by changing their DNA structure, either alone 
or in combination with LPS induced ZBP1-mediated 
PANoptosis in macrophages. This process was linked to 
the generation of Z-DNA in the nucleus independent 

Fig. 3 The role of PANoptosis in antitumor immunity. A Under hypoxia, p-Stat3 binds to PD-L1 and promotes its nuclear translocation to bind 
to GSDMC. GSDMC is specifically cleaved by caspase-8 and TNFα stimulation to generate the N-terminal domain of GSDMC, which forms pores 
in the cell membrane and induces pyroptosis. B TNF-α and IFN-γ produced by the intrinsic immune system can induce PANoptosis by activating 
proteins such as GSDME, c aspase-8, caspase-3, caspase-7, and MLKL
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of NLRP3, likely resulting in assembly of the PANopto-
some [102]. Another study analyzed the MSigDB data-
base related to prostate adenocarcinoma PRGs and found 
that the PANoptosis signature could improve antitumor 
immunity and promote the infiltration of immune cells 
[6]. It was also suggested that molecular clustering and 
prognostic features based on PANoptosis have poten-
tial application value in predicting survival and TIME of 
colon cancer patients [5]. Immunotherapy, exemplified 
by immune checkpoint inhibitors (ICIs), has achieved 
remarkable breakthroughs in cancer treatment. However, 
a significant number of tumors show poor or no response 
to ICIs, which is often attributed to the insufficient pres-
ence of tumor-infiltrating lymphocytes (TILs), thereby 
limiting the widespread efficacy of ICIs. As the interplay 
between PANoptosis and tumor immunity, understand-
ing this interaction may reveal the potential utility of 
targeting PANoptosis to enhance the efficacy of immuno-
therapy in the treatment of malignant tumors [6, 96].

PANoptosis and drug resistance
Drug resistance refers to the resistance of tumor cells to 
antitumor drugs, which, once developed, significantly 
reduces the therapeutic effect of drugs. At present, the 
problem of drug resistance has seriously hindered the 
wide application of antitumor drugs in clinical practice 
and has brought great challenges to therapeutic impact 
for patients. Factors contributing to drug resistance in 
tumor cells typically encompass tumor heterogeneity, the 
blood–brain barrier, tumor size, the immune system, the 
TME, and selective treatment pressure, among others 
[103–105]. As a newly identified PCD mode, the applica-
tion of PANoptosis in solving drug resistance problems is 
increasing [7]. Bioinformatics has been employed to scru-
tinize the potential regulatory roles of long non-coding 
RNAs (lncRNAs) associated with metastasis and PANop-
tosis in colorectal adenocarcinoma (COAD). This conclu-
sive analysis revealed a significant correlation of SNHG7, 
an lncRNA, with COAD prognosis, tumor stage, lymph 
node metastasis, and drug resistance [106]. Reportedly 
through the construction of a prognostic signature to 
predict prognosis and recognize ideal patients for cor-
responding chemotherapy and immunotherapy, it was 
suggested that risk score could be a biomarker to predict 
the response to ICIs, TACE, and sorafenib therapy [107]. 
There are only few reports on experimental studies that 
link PANoptosis with drug resistance for antitumor pur-
poses. A study based on the biological function of NFS1 
found that its deletion significantly enhanced the sensi-
tivity of colorectal cancer cells to oxaliplatin. In vitro and 
in vivo results show that NFS1 deficiency synergistically 
induces PANoptosis with oxaliplatin by increasing the 
level of intracellular ROS [108].

Therapeutic applications of PANoptosis in cancer
PANoptosis serves as a critical protective mechanism 
for cells exposed to various stresses and injuries; thus, 
activation of PANoptosis may render cancer cells more 
susceptible to treatments and thereby improve thera-
peutic outcomes [109]. Currently, PANoptosis is widely 
acknowledged as an inflammatory form of PCD gov-
erned by the PANoptosome complex [15]. Nevertheless, 
certain chemotherapeutic agents have the ability to trig-
ger inflammasome-independent PANoptosis, thereby 
increasing cancer cell susceptibility to chemotherapy. 
Sulconazole, an FDA-approved drug, which has exhibited 
encouraging anti-tumor properties by impeding prolif-
eration and migration while also inducing PANoptosis 
in esophageal cancer cells (Fig. 4A) [67]. The mechanism 
by which sulconazole induces PANoptosis involves mito-
chondrial oxidative damage, triggering the release of 
ROS and cytc, as well as prompting abnormal expression 
of Bcl-2 family proteins, leading to the cleavage of cas-
pase-3 and PARP protein and subsequent apoptosis. Fur-
thermore, activated caspase-3 can cleave GSDME into its 
N-terminal fragment (N-GSDME), ultimately resulting in 
pyroptosis. Simultaneously, ROS released by mitochon-
dria can activate RIPK1 and RIPK3 via caspase proteins, 
leading to the phosphorylation of MLKL and initiation of 
necroptosis. In addition, findings from both in vitro and 
in vivo models indicate that deficiency in cysteine sulfase 
(NFS1) synergistically induces PANoptosis by elevating 
intracellular ROS levels and activating caspase-8 and cas-
pase-9, respectively, suggesting that inhibition of NFS1 
could be used as a promising strategy to improve prog-
nosis of platinum-based treatment in colorectal cancer 
(Fig. 4B) [108]. Interestingly, the combination of TNF-α 
and IFN-γ, two pro-inflammatory cell molecules, can also 
activate the JAK/STAT1/IRF1 signaling axis, inducing 
nitric oxide production and driving caspase-8/FADD-
mediated PANoptosis [101]. IRF1 is closely related to the 
occurrence of colorectal tumors and is an upstream regu-
lator of PANoptosis, which can induce cell death during 
tumorigenesis associated with colitis [110]. Kanneganti 
et al. found that IRF1 can activate the PANoptosome via 
ZBP1, AIM2, RIPK1, NLRP12 and pyrin. In addition, 
IRF1 is involved in regulating cell death when inflam-
masomes together with caspase-8 and RIPK3 form the 
PANoptosome [111]. Targeting IRF1 represents a thera-
peutic strategy for inflammatory and infectious diseases 
and cancer. Sodium sulfite (SS), a common food and drug 
additive, has been reported to induce hepatic PANoptosis 
by promoting mitochondrial ROS accumulation and acti-
vating the BAX/Bcl-2/caspase-3 pathway to induce apop-
tosis and the RIPK1/RIPK3/p-MLKL pathway to induce 
necroptosis (Fig.  4C) [93]. In this study, p-MLKL can 
also induce the release of cathepsin B (CTSB) through 
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lysosomal membrane perforation, which binds to NLRP3 
to induce pyroptosis [112]. Moreover, a significant cor-
relation between high expression of apurinic/apyrimi-
dinic endonuclease 1 (APE1) protein and poor prognosis 
was observed in NSCLC. Building upon this, researchers 
conducted a screening of APE1 protein inhibitors from 
a compound library (NO.0449–0145). As expected, the 
newly identified APE1 inhibitors exhibited the ability 
to induce PANoptosis and effectively overcome resist-
ance to cisplatin and erlotinib in NSCLC cells [113]. One 
research group developed a computational framework 
to explore the pan-cancer clinical significance of PANo-
ptosis and explore potential targetable biomarkers [114]. 
This study revealed that elevated expression of PANop-
tosis-related genes was detrimental in low-grade glioma 
and kidney renal cell carcinoma but beneficial in mela-
noma. This study also identified and validated key innate 
immune biomarkers derived from PANoptosis [114]. 
The onset and progression of adrenal cortical carcinoma 
(ACC) has been linked to CDK1 dysfunction. Cucurbi-
tacin E (CurE), a CDK1 inhibitor, was found to regulate 
ACC cell PANoptosis by binding to the PANoptosome in 
a ZBP1-dependent manner (Fig. 4D) [115].

Challenges and prospects
PANoptosis is recognized as an inflammatory cell death 
mode characterized by a sophisticated regulatory process 
involving multiple signaling molecules that may contrib-
ute to infection, inflammation, and cancer. While the lit-
erature on PANoptosis is limited, its initial implication 
in cancer development and drug resistance suggests its 
potential as a therapeutic target. At present, most stud-
ies have focused on correlating PANoptosis-related genes 
with cancer development through bioinformatic analysis. 
Only a small fraction of studies has undergone in  vivo 
and in vitro validation, indicating a potential avenue for 
future research efforts. There is an urgent need to iden-
tify new upstream targets for PANoptosome regulation 
and to discover chemical agents capable of inducing the 
PANoptosome. It is also imperative to delve deeper into 
the intricate molecular mechanisms of PANoptosis in 
various cancers and identify key regulatory molecules.

In recent years, immunotherapy has shown significant 
antitumor efficacy, and future research could focus on 
the development of novel drugs or combination strategies 
that can induce PANoptosis in cancer cells by mediating 
RIPK1, caspase-8, caspase-3, MLKL and other pathways 

Fig. 4 Application of PANoptosis in cancer therapy. A Sulconazole shows induction of PANoptosis in esophageal cancer cells. B NFS1 deficiency, 
which acts synergistically with oxaliplatin, induces PANoptosis by increasing intracellular reactive oxygen species (ROS) levels. C Sodium sulfite (SS), 
a common food and drug additive, induces hepatic PANoptosis. D CurE induces PANoptosis in ACC cells by binding to the ZBP1 PANoptosome
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to kill tumor cells and reverse the unfavorable TME. 
While PANoptosis plays a critical role in tumor suppres-
sion by stimulating antitumor immunity, some studies 
have reported that elevated caspase-8 can promote tumor 
growth and progression [78], suggesting that PANoptosis 
may also facilitate tumor development under certain con-
ditions. Research in melanoma and prostate cancer has 
shown that tumor cells can use DNA damage-induced 
nuclear caspase-8 to override the p53-dependent G2/M 
cell cycle checkpoint [116]. In addition, high expression 
of caspase-8 can prevent typical endogenous apoptosis 
and induce mitosis, thereby promoting tumor progres-
sion [116]. This finding is consistent with the observation 
in HCC, where high nuclear caspase-8 expression was 
associated with poor survival after partial hepatectomy 
[117]. Increased caspase-8 activity in various tumor cell 
lines has also been associated with increased caspase 
activity, motility and aggressiveness [118, 119]. Therefore, 
it is of great importance to selectively target caspase-8, 
to further regulate its role in promoting and inhibiting 
cancer, and to study its involvement in PANoptosis. It is 
noteworthy that when targeting PANoptosis as a strategy 
to enhance antitumor immunity, it is crucial to monitor 
the activation levels of immune effector cells to prevent 
the occurrence of cytokine storms.

While there is optimism surrounding the potential 
of new drugs capable of inducing PANoptosis for can-
cer treatment, it is important to recognize that despite 
their theoretical safety and efficacy, there is currently a 
dearth of patient treatment studies targeting PANoptosis. 
Research in this area is still in its infancy and no clini-
cal trials have been conducted to date, underscoring the 
need for further investigation and validation before ther-
apies targeting PANoptosis can be considered for clinical 
use.

Conclusion
As PANoptosis has been implicated in various tumors, 
research into the molecular mechanisms and key regula-
tors of PANoptosis in cancer will fill existing gaps in the 
field and provide innovative and practical therapeutic 
approaches for cancer treatment. Although the concept 
of PANoptosis in cancer therapy is promising, further 
research is essential to fully elucidate its mechanisms, 
refine therapeutic strategies, and evaluate efficacy and 
safety of PANoptosis-related drugs in clinical settings.
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