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Abstract
Background Tumor recurrence and mortality rates remain challenging in cancer patients despite comprehensive 
treatment. Neoadjuvant chemotherapy and immunotherapy aim to eliminate residual tumor cells, reducing the risk 
of recurrence. However, drug resistance during neoadjuvant therapy is a significant hurdle. Recent studies suggest a 
correlation between RNA methylation regulators (RMRs) and response to neoadjuvant therapy.

Methods Using a multi-center approach, we integrated advanced techniques such as single-cell transcriptomics, 
whole-genome sequencing, RNA sequencing, proteomics, machine learning, and in vivo/in vitro experiments. 
Analyzing pan-cancer cohorts, the association between neoadjuvant chemotherapy/immunotherapy effectiveness 
and RNA methylation using single-cell sequencing was investigated. Multi-omics analysis and machine learning 
algorithms identified genomic variations, transcriptional dysregulation, and prognostic relevance of RMRs, revealing 
distinct molecular subtypes guiding pan-cancer neoadjuvant therapy stratification.

Results Our analysis unveiled a strong link between neoadjuvant therapy efficacy and RNA methylation dynamics, 
supported by pan-cancer single-cell sequencing data. Integration of omics data and machine learning algorithms 
identified RMR genomic variations, transcriptional dysregulation, and prognostic implications in pan-cancer. High-
RMR-expressing tumors displayed increased genomic alterations, an immunosuppressive microenvironment, 
poorer prognosis, and resistance to neoadjuvant therapy. Molecular investigations and in vivo/in vitro experiments 
have substantiated that the JAK inhibitor TG-101,209 exerts notable effects on the immune microenvironment of 
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Introduction
Cancer is not be underestimated public health prob-
lem in the world, which has become the second most 
lethal disease in the United States after heart disease 
[1]. Medication is a selective available to improve clini-
cal benefits for cancer patients, including chemotherapy, 
neoadjuvant chemotherapy, targeted therapy, endocrine 
therapy, immunotherapy, and other therapies. Preopera-
tive neoadjuvant chemotherapy was administered before 
curative-intent surgery in treatment-naïve patients to 
reduce the size of the tumor and improve the surgical 
resectability [2]. Neoadjuvant therapy followed by sur-
gery could improve patient survival and reduce tumor 
recurrence [3]. However, multiple physiological and 
pathological factors can lead to cancer resistance [4]. 
The therapeutic effect of drugs on tumors was limited 
and there was no accurate molecular phenotype to guide 
tumor treatment.

RNA methylation modifications, mainly including 
m6A, m5C, m1A, and m7G, have been widely reported 
in promoting tumor progression and development. The 
enzymes regulating the methylation levels of RNAs 
can be categorized as “writers,” “erasers,” and “readers” 
according to their function. Writers install methylation 
on RNA, while erasers tend to remove modifications 
from RNAs. Readers can identify methylation on RNAs 
and carrier-conserved structures recognized as func-
tional domains by the corresponding proteins. Among 
these RNA methylation modifications, m6A RNA meth-
ylation is regarded as the most prevalent and abundant 
RNA modification in eukaryotic cells, influencing RNA 
stability and translational speed [5, 6]. m6A sites are 
produced by adding a methyl group to the sixth nitro-
gen atom position of adenosine and are often generated 
at the consensus motif of RRACH (R represents G or 
A, and H represents C, A or U) and DRACH (D repre-
sents A, G or U) [7, 8]. m6A methylation plays a vital 
role in mammals, and they are involved in processes 
including stress responses, neurogenesis, embryonic 
development, sex determination, circadian rhythm, and 
tumorigenesis [9, 10]. It has been demonstrated that 
genetic and transcriptional changes in m6A enzymes 

influence cell proliferation, apoptosis, developmental 
defects, impaired self-renewal capacity, tumor progres-
sion and metastasis, and immune dysregulation [11–
13]. m5Cs in RNAs mainly include NOL1/NOP2/SUN 
domain (NSUN) family members containing seven pro-
teins (NSUN1-7) in humans and the DNA methyltrans-
ferase (DNMT) homolog DNMT2 [14]. In all members 
of the NSUN family, the catalytic cysteine is preceded 
by threonine, while the DNMT family uses conserved 
glutamate to promote covalent bond formation [15]. 
m5Cs are involved in multiple processes, including 
mRNA export [16], RNA stability [17], long-distance 
transport [18], translation, alternative splicing of viral 
RNA [19], stress response [20], and tumor progression 
and migration [21]. m1A refers to methylation at the 
N1 position of RNA base A and occurs in tRNA, rRNA, 
mRNA, and mitochondrial (mt) transcripts [22]. It was 
first found to be a highly conserved modification in 
tRNA and rRNA. Then, it was also reported to be pres-
ent in mRNA via m1A-seq and other mapping technolo-
gies [23]. m1A occurs in 0.015–0.054% of total cytosine 
residues in mammalian mRNA [24], and the relatively 
low incidence may be due to the difficulty in mapping 
m1A on the transcriptome. In most cancer subtypes, 
the m1A demethylase ALKBH3 plays an oncogenic role 
in the development of cancer through various regula-
tory mechanisms [25]. The TRM6–TRM61 complex 
is an m1A writer that catalyses methylation on rRNA, 
tRNA, and mRNA, but this only occurs with a small 
probability [26]. N7-methylguanosine (m7G), one of 
the conserved modifications in eukaryotic RNA, usu-
ally appears at the 5’ caps of mRNA or internal posi-
tions in rRNA and tRNA of various species [27]. It has 
been documented that m7G modification participates 
in several disorders, including chromosomal abnormal-
ity diseases, excessive stem cell proliferation, and aber-
rant differentiation [28, 29]. m7G methylation also plays 
a crucial role in tumor development and is correlated 
with diverse biological activities in tumorigenesis [30]. 
Among m7G regulators, METTL1 methyltransferase is 
well characterized and participates in various tumor-
related processes [31]. Its dysregulation is related to cell 

tumors, rendering high-RMR-expressing pan-cancer tumors, particularly in pancreatic cancer, more susceptible to 
chemotherapy and immunotherapy.

Conclusions This study emphasizes the pivotal role of RMRs in pan-cancer neoadjuvant therapy, serving as predictive 
biomarkers for monitoring the tumor microenvironment, patient prognosis, and therapeutic response. Distinct 
molecular subtypes of RMRs aid individualized stratification in neoadjuvant therapy. Combining TG-101,209 adjuvant 
therapy presents a promising strategy to enhance the sensitivity of high-RMR-expressing tumors to chemotherapy 
and immunotherapy. However, further validation studies are necessary to fully understand the clinical utility of RNA 
methylation regulators and their impact on patient outcomes.
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cycle progression, tumor invasion, cancer cell migra-
tion, and tumor metastasis.

It had been reported that RNA methylation regulators 
were related to treatment resistance in cancer. Many 
studies have demonstrated that m6A was associated 
with cisplatin resistance in tumors. Cancer cell sensitiv-
ity to cisplatin was recovered by ALKBH5 knockdown 
or inhibition of the JAK/STAT3 signaling pathway 
[32]. In pancreatic cancer, METTL3 modulates the 
MAPK pathway to enhance the resistance of pancre-
atic tumors to chemotherapy and radiotherapy [33]. In 
the HeLa cell line, the combined knockdown of NSUN2 
and METTL1 increased the sensitivity of cells to 5-FU 
[34]. YTHDF1 depletion restores CD8 + T cell activ-
ity to inhibit cancer growth and promotes cancer cell 
death in combination with PD1 inhibitors [35]. Elimi-
nation of the m6A methylation transferase METTL3/
METTL14 increases the efficacy of anti-PD1 in colorec-
tal cancer and melanoma patients [36]. However, there 
is no precise molecular typing of RNA methylation to 
guide pan-cancer treatment. Hence, exploring how 
RNA methylation affects the mechanism of tumor drug 
resistance and constructing RMRs stratification therapy 
become a key focus for us.

By comparing single-cell transcriptome levels of treat-
ment non-responders and responders in pan-cancer, 
RNA methylation was proven to correlate with cancer 
treatment resistance. For the first time, we combined 
multi-center single-cell sequencing, whole genome 
sequencing, transcriptome sequencing, proteomic data, 
and in vivo/in vitro experiments, which depicted RMRs’ 
widespread genomic variation, transcriptomic dys-
regulation, proteomic abnormalities, and poor patient 
prognosis in pan-cancer. Random forest machine learn-
ing algorithm and multi-omic data established accurate 
RMRs subtypes guiding cancer therapy strategies. The 
high-expression RMRs group was more malignant and 
insensitive to traditional chemotherapy drugs or immune 
checkpoint inhibitors across cancer types. Based on small 
molecule drug prediction, RNA sequencing of our cohort, 
and in vivo/in vitro pan-cancer cell line experiments, 
we predicted and validated the effective JAK inhibi-
tor TG-101,209. The co-administration of TG-101,209 
increased effector CD8 + T cells and enhanced sensitiv-
ity to neoadjuvant chemoimmunotherapy in high-RMR-
expressing tumors. This study illustrated that RMRs took 
an important role in pan-cancer progression, tumor envi-
ronment components, patients’ prognosis, and therapy. 
RMRs’ molecular subtype provided precise stratifica-
tion guidance for neoadjuvant therapy. A combination of 
TG-101,209 and neoadjuvant chemoimmunotherapy will 
be an effective treatment strategy for high-RMR-express-
ing tumors in pan-cancer.

Methods
Patient and public datasets collection
The study protocol complianced with the ethical guide-
lines and was accepted by the Clinical Research Ethics 
Committee of Tianjin Medical University Cancer Hospi-
tal. 16 pancreatic cancer specimens were obtained from 
the Tianjin Medical University Cancer Hospital and were 
performed RNA sequencing. All the patients provided 
written informed consent. Single-cell RNA datasets and 
bulk transcriptomes of patients who received chemo-
therapy or immunotherapy were collected from the GEO 
database under a specific GEO accession number. The 
normalized mRNA expression data (FPKM data), somatic 
mutation, copy number variation (CNV), and clinical 
data of 33 cancer types were downloaded from the TCGA 
database (https://portal.gdc.cancer.gov/). The CNV seg-
mentation data were processed by the GISTIC 2.0 algo-
rithm (https://www.broadinstitute.org/cancer/cga/gistic) 
to identify the amplification and deletion events. The 
somatic mutation frequency of RMRs was calculated for 
samples with nonsilent mutations. Single nucleotide vari-
ations (SNV) data was processed by the “maftools” pack-
age. The cell line expression data were obtained from the 
(Genomics of Drug Sensitivity in Cancer) GDSC database 
(https://www.cancerrxgene.org/), and the IC50 value 
matrix was also included for drug sensitivity analysis. 
The Human Protein Atlas (https://www.proteinatlas.org/) 
database was adopted to collect immunohistochemistry 
images of tumors and normal tissues.

RNA-sequencing library construction
Strand-specific libraries were constructed using the 
TruSeq Stranded mRNA Sample Prep Kit (Illumina) 
according to the manufacturer’s instructions. Poly-ade-
nylated RNA from intact total RNA was refined using 
oligo-dT beads. The complementary DNA fragment was 
3′ end adenylated and ligated to Illumina paired-end 
sequencing adapters and amplified by PCR. The libraries 
were sequenced with 65 base pair (bp) single-end reads 
on a HiSeq 2500 System in high output mode using V4 
chemistry (Illumina). Raw reads were aligned to GRCh38 
using a STAR RNA-seq aligner after which gene expres-
sion levels were quantified by Salmon (see URLs) using 
default parameters for both applications.

Single-cell RNA sequencing data analysis
We used the “Seurat” R package to eliminate low-quality 
cells, normalize scRNA-seq data, and cluster different cell 
types. The reference data from the Human Primary Cell 
Atlas and representative marker genes annotated different 
single-cell clusters. We used the Wilcoxon rank sum test 
and “FindMarkers” Seurat functions for differential gene 
analysis. Significant genes were determined with P < 0.05. 

https://portal.gdc.cancer.gov/
https://www.broadinstitute.org/cancer/cga/gistic
https://www.cancerrxgene.org/
https://www.proteinatlas.org/
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The “CellChat” R package was employed to construct com-
munication networks between cell subpopulations [37].

Unsupervised clustering of 46 RMRs
Before clustering, we normalized the RMR expression in 
each cancer type by using the sweep function to subtract 
the median expression value for each RMR. Then, we 
combined RMR expression data from all cancers, used 
the “ConsensusClusterPlus” R package for unsupervised 
clustering, chose the KM clustering algorithm, and con-
ducted 1000 repetitions to ensure stability.

Random forest (RF) model construction and validation
The feature matrix was 46 RMRs median centered 
expression data of the TCGA samples, and the samples 
belonged to three clusters as an outcome variable. The 
R package caret was used to train the model through a 
random forest algorithm, and the training algorithm was 
optimized via the following two important parameters: 
tenfold cross-validation resampling method and param-
eter range less than the number of features. The predict 
function was implemented in the R package randomFor-
est. We performed tenfold cross-validation, and the area 
of the ROC curve was calculated and plotted by the “sur-
vivalROC” package.

Gene set variation analysis (GSVA), Gene set enrichment 
analysis (GSEA), Kyoto encyclopedia of genes and genomes 
(KEGG), and Gene ontology (GO) annotation
To study the differences in the RMRs clusters in biologi-
cal processes, we used the “GSVA” R package to conduct 
GSVA enrichment analysis. Single-gene GSEA was used 
to annotate the RMRs-related pathways, and the path-
ways with enrichment P values < 0.05 were considered 
significant. KEGG and GO analysis for RMR-related 
genes was performed in the R package ‘clusterProfiler’ 
with a cut-off value of P < 0.05. The gene sets “hallmark.
v7.4” and “c2.cp.kegg.v7.4” for pathway enrichment anal-
ysis were downloaded from the MSigDB database.

Calculation of TME (Tumor Microenvironment) cell 
infiltration in RMRs clusters
We used the xCell algorithm to examine whole-tumor 
gene expression data to score the relative abundance 
across tumors of 64 types of immune and stromal cells. 
The ssGSEA algorithm was employed to quantify the rel-
ative abundance of 28 types of immune cells in multiple 
cancer types. The comparison of immune cell infiltration 
among the three clusters used the Kruskal‒Wallis test 
with a P-value threshold of 0.05.

Prediction of potential targeted drugs against RMRs
The Connectivity map analysis (CMap) online tool 
(http://clue.io) has been demonstrated to be useful in 

silico drug screening tools to target disorders. This tool 
was formally developed and widely used in 2007 to dis-
cover the mechanisms of small-molecule drugs [38]. It 
was further refined in 2017, complementing the L1000 
platform to more accurately identify small-molecule 
drugs [39]. The CMap helped to unearth targeted drugs 
for SPOCK1 in lung cancer [40]. Multi-omics analysis 
and CMap association to identify drug candidates that 
may restore ATRX-deficient transcriptional changes in 
gliomas [41]. The top 20 genes that positively correlated 
with RMRs were subjected, and the query result was a 
list of drugs with a “connectivity score” ranging from 
+ 1 (positive connectivity) to -1 (negative connectiv-
ity). Drugs with a positive connectivity score may gen-
erate similar gene expression outcomes with the state 
of interest (query state), whereas those with a negative 
score produce reverse gene expression patterns with the 
query. Drugs with consistently negative scores in most 
cancers were potential drugs targeting RMRs, we tended 
to choose JAK inhibitor because it appeared the most 
frequently.

Reverse transcription PCR (RT-PCR)
According to the manufacturer’s instructions, the total 
RNA was extracted from tumor tissues and adjacent nor-
mal tissues using TRIzol (Invitrogen). The cancer types 
were Pancreatic adenocarcinoma (PAAD), bladder can-
cer (BLCA), Breast invasive carcinoma (BRCA), Colon 
adenocarcinoma (COAD), Rectum adenocarcinoma 
(READ), Liver hepatocellular carcinoma (LIHC), Lung 
squamous cell carcinoma (LUSC), Esophageal carcinoma 
(ESCA), Stomach adenocarcinoma (STAD), and Ovarian 
cancer (OV). For each cancer type, we selected 6 pairs of 
tissue samples. Then, the mRNA was used for first-strand 
cDNA synthesis with the Reverse Transcription PCR 
System (Bimake), and the cDNA levels were analyzed by 
real-time fluorescence quantitative PCR. Each RT-PCR 
experiment was independently repeated at least three 
times. β-actin was used as a positive control. The relevant 
primers were listed in the supplementary table (Table S3).

Western blot
Cells were lysed using RIPA lysis mixed with phosphatase 
inhibitors and protease inhibitors. Protein concentrations 
were measured by BCA protein assay. The same amount 
of protein was separated by sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE). Membranes 
with blot proteins were incubated overnight at 4 °C with 
related antibodies which were diluted at 1:1000. Horse-
radish peroxidase-conjugated goat anti-rabbit antibody 
and goat anti-mouse antibody as secondary antibody 
were diluted at 1:5000. The blots were detected with a 
Chemi-Scope exposure machine. Antibodies for western 
blot are supplemented in Table S13.

http://clue.io
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Cell culture
The human breast cancer cell line MCF-7, human liver 
cancer cell line Hep-G2, human lung cancer cell line 
A-549, human colorectal cancer cell line SW480, and 
human pancreatic cancer cell line SW1990 were obtained 
from Tianjin Cancer Institute. The murine breast cancer 
cell line 4T1 and murine lung cancer cell line LLC1 were 
obtained from the Type Culture Collection Committee 
of the Chinese Academy of Sciences (Shanghai, China). 
The murine colorectal cancer cell line MC38 was pur-
chased from Korean Cell Line Bank (Seoul, Republic of 
Korea). The murine hepatocellular carcinoma cell line 
Hepa1-6 was purchased from the American Type Cul-
ture Collection (Manassas, VA, USA). The murine pan-
creatic cancer cell line KPC1 and KPC2 was derived from 
KrasLSL−G12D/+, Trp53LSL − R172H/+, and Pdx1-Cre mice. 
All these cell lines were overexpressed RMRs. Myco-
plasma contamination was excluded in these cell lines 
at the beginning of this study. These cells were cultured 
in DMEM and RPMI1640 basic medium supplemented 
with 10% Fetal Bovine Serum (FBS) at 37℃ in a humidi-
fied atmosphere of 95% air and 5% CO2.

Subcutaneous mouse model
The 4-6-week-old BALB/C nude mice were subcutane-
ously transplanted human cancer cell lines to evaluate 
chemotherapy and TG-101,209 effects. The murine can-
cer cells were utilized to establish subcutaneous xeno-
graft in 4-6-week-old C57/B6 mice for immunotherapy 
assessments. Mice were randomly assigned to each treat-
ment group of six. For the subcutaneous tumor model, 
the indicated cancer cells of high expression RMRs at a 
dilution range of 1 × 106 were suspended in a 40  µl PBS 
and then subcutaneously transplanted into each mouse’s 
flank. Related drugs were intraperitoneally injected one 
week later. The observers and recorders in the study were 
blinded to the grouping. Tumor growth was monitored 
every three days using a caliper and tumor volumes were 
calculated by the following formula: Volume = 1/2 L1 × 
(L2)2, where L1 is the length of the long axis and L2 is 
the length of the short axis. The survival of mice was also 
recorded at the same time.

Multiplex fluorescent IHC
The subcutaneous tumors in mice performed into paraf-
fin sectioning were used for immunological assessment 
of Ki67. Ki67 was labeled by Opal 690(676–694 nm). Iso-
type controls were used for all assays. Stained slides were 
scanned over the whole slide using the Vectra Polaris 
system (PerkinElmer). Phenochart slide reviewer (Perki-
nElmer) was used to systematically capture tissue hetero-
geneity in an unbiased manner. The selected images were 
then captured with a 20× lens using the Vectra Polaris 
system. Form cell Analysis software 2.4 (PerkinElmer) 

was used to evaluate the counts of Ki67 positive points 
per high power field (HPF; 200x). Tumor areas were 
manually outlined to exclude stromal nuclei. DAPI was 
used to identify nuclei. Ki67 was then measured in a cell-
nucleus-based mode.

Flow cytometry
The indicated murine cancer cells and T lymphocytes 
were co-cultured at a ratio of 1:1. The harvested cells 
were divided into separate tubes for each antibody stain-
ing. Add appropriate concentrations of fluorochrome-
conjugated antibodies CD8, IFNγ, TNFα, GzmB, 
perforin, and PD-1 (Table S13), and incubate for 30 min, 
protected from light. The above samples were detected 
using a Beckman flow cytometer. The data were analyzed 
using the software Flow Jo 10.0.

CD8 + T cells killing assay
The CTLs were used as effector cells and 4T1, LLC1, 
MC38, Hepa1-6, KPC1, and KPC2 cell lines were used 
as tumor target cells. The Cell Counting Kit-8 (CCK-
8) assay kit was used to conduct a killing assay of CTLs 
and tumor target cells in vitro. Resuspend tumor target 
cells at a concentration of 4 × 104/ml and place them on a 
96-well cell culture plate, 100µL/well, which means 4,000 
cancer cells per well. Resuspend CTLs at a concentra-
tion of 4 × 104/ml and place them on a 96-well cell culture 
plate, 100µL/well, with an effector-target cells ratio of 1:1. 
Set target cells control group and effector cells control 
group. After 48 hours of co-cultivation, add 20 µl CCK-8 
solution to each well and incubate for 4 hours to detect 
the absorbance A value of 450. Killing rate calculation = 
[1- (experimental well absorbance A value - effect con-
trol group absorbance A value)/target cells control group 
absorbance A value] × 100%.

CCK8 cell viability assay
Cancer cells were seeded in clear, flat-bottom 96-well 
plates (Corning) at a density of 1000 cells per well. The 
following day, cancer cells were treated with dilution 
range of Cyclophosphamide (1.6µM), Adriamycin (1µM), 
Gemcitabine (5µM), Cisplatin (1.6µM), Oxaliplatin 
(1µM), Capecitabine (1.6µM), 5-Fluorouracil (0.8µM), 
TG-101,209 (5µM) or their corresponding combination 
(5 duplications for groups) for 5 days. The culture media 
were replaced with fresh RPMI-1640 containing 10% 
CCK8 and plates were incubated for 3 hours in an incu-
bator. The absorbance was read at 595 nm once a day.

Drug synergy analysis
We analyzed the synergistic effects of the combination 
therapy using cell apoptosis assay. Synergy scores were 
calculated by SynergyFinder ver2 (https://synergyfinder.
fimm.fi/). The final synergy scores were interpreted as 

https://synergyfinder.fimm.fi/
https://synergyfinder.fimm.fi/
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follows: less than − 10, the interaction between two drugs 
was likely to be antagonistic; between − 10 and 10, the 
interaction between two drugs was likely to be additive; 
and greater than 10, the interaction between the two 
drugs was likely to be synergistic.

Statistical analysis
Statistical analysis was generated by R software (v3.6.3) 
and GraphPad Prism Statistics software version 6.0. For 
nonnormally distributed variables, we performed the 
Wilcoxon rank-sum test. For comparisons of more than 
two groups, Kruskal‒Wallis tests were used as non-
parametric methods. The comparison of percentages 
was by the chi-square test. Student’s t-test was used to 
compare the mean values. One-way ANOVA was car-
ried out for mouse tumor growth. Each experiment was 
conducted in triplicate. The data values were presented 
as the means ± SDs unless otherwise stated. The median 
survival time was analyzed using Kaplan–Meier curves 
and the log-rank test was used to analyze differences 
in the survival time among the different groups. In 
vivo experimental survival curve, the survival record 
time of the pancreatic cancer orthotopic transplanta-
tion mouse model was 50 days, and the survival record 
time of other liver transplantation models was 35 days. 
The end point of the survival record was the death of 
the animal, and the time of sacrifice of the mouse was 
the time when the survival curve is finally recorded. 
The level of statistical significance was defined as * 
P < 0.05, **P < 0.01, *** P < 0.001, ****P < 0.0001 and ns, 
non-significant.

Results
Exploring the relationship between RMRs and treatment 
response in Pan-cancer: insights from single-cell RNA 
datasets
The present study outlines our investigation into the 
relationship between RMRs and cancer treatment 
response. We conducted an extensive analysis, as illus-
trated in Fig.  1, which delves into the main findings of 
our research. To gather data, we curated seven single-cell 
RNA datasets that encompassed neoadjuvant therapy 
information. Details of these datasets can be found in 
Table S1.

Utilizing established markers (Fig.  2A and Fig. S1), 
we classified tumor parenchymal and microenviron-
mental cells into distinct categories, including epithelial 
cells, T cells, B cells, myeloid cells, mast cells, fibro-
blasts, endothelial cells, pericytes, a few endocrine cells, 
and Schwann cells. Notably, except for breast cancer, 
wherein the analysis focused solely on tumor cells, we 
observed varying proportions of these cell types between 
responders and non-responders (Fig.  2B). To further 

investigate the molecular mechanisms underlying treat-
ment response, we conducted differential expression 
analysis between the two groups and performed path-
way enrichment analysis on the differentially expressed 
genes. Interestingly, we discovered that these genes 
consistently participated in RNA methylation modifica-
tion (Fig. 2C-D). Through an extensive literature search, 
we identified a total of 46 RMRs, comprising 23 m6A 
regulators, 6 m1A regulators, 13 m5C regulators, and 4 
m7G regulators. Among these, the m6A regulators, par-
ticularly FTO and FMR1, have been extensively studied 
(Fig. 2E, Table S2).

Moreover, we evaluated the expression patterns of 
these 46 RMRs across approximately 1000 cell lines and 
found a significant association between their expression 
levels and drug sensitivity. This crucial finding further 
highlights the indispensable role played by RMRs in drug 
therapy (Fig. 2F).

Comprehensive analysis reveals landscape of genetic and 
transcriptional aberrations in RMRs across diverse cancer 
types
Subsequently, an in-depth analysis of 38 frequently 
occurring RMRs that showed copy number variations 
(CNVs) in at least one cancer type was conducted. Nota-
bly, we observed that the m6A writer WTAP was located 
within deletion peaks in 12 cancer types, whereas the 
m5C reader ALYREF was amplified in 7 cancer types 
(Fig. 3A). Among a comprehensive dataset of 9991 TCGA 
samples, we found that m6A writers and readers exhib-
ited the highest frequencies of CNVs (Fig. S2).

Furthermore, the non-silent somatic mutations in 
RMRs were investigated. These mutations were particu-
larly prevalent in specific cancer types, including skin 
cutaneous melanoma (SKCM), bladder urothelial car-
cinoma (BLCA), and uterine corpus endometrial carci-
noma (UCEC) (Fig. 3B). Out of the total 9834 pan-cancer 
samples examined, 2876 (29.24%) samples harbored at 
least one mutation in an RMR. Interestingly, among these 
regulators, the m5C erasers displayed the highest muta-
tion frequency across the 2876 samples (Fig. 3C).

To explore the transcriptional levels of RMRs, we 
compared tumor tissues with adjacent normal tissues 
obtained from the TCGA and GTEX databases. Despite 
being frequently affected by CNVs leading to dele-
tions, most RMRs exhibited significant upregulation in 
tumor tissues. This finding suggests that there is a tran-
scriptional upregulation mechanism governing RMRs 
in cancers (Fig.  3D). We further validated these find-
ings using RT-PCR, which confirmed the upregulation 
of most RMRs in tumor tissues across various cancer 
types (Fig.  3E, Table S3). Additionally, immunohisto-
chemical data from the HPA supported our observations, 
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indicating higher protein levels of RMRs in tumor tissues 
compared to normal tissues (Fig. 3F).

Moreover, we investigated the prognostic relevance of 
RMRs by conducting survival analysis across diverse can-
cer types. Our results revealed that RMRs had a broad 
impact on cancer survival, with kidney cancers exhibiting 
a particularly significant association (Fig.  3G). Overall, 
our comprehensive analysis highlights the crucial role of 
RMRs in regulating tumor progression.

Machine learning constructed distinct regulatory RMR 
clusters in Pan-cancer and their association with genomic 
alterations
Subsequently, a total of over ten thousand samples 
were classified into three distinct RMR clusters 
through unsupervised clustering after normalization: 
Cluster1 (3388 samples), Cluster2 (2346 samples), and 
Cluster3 (4593 samples) (Fig. 4A, Table S4). The three 
RMRs clusters were clearly distinguished based on the 

Fig. 1 The whole flow chart and the analysis content schematic
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principal component analysis (PCA) results and the 
distribution of the clusters varied across specific can-
cer types, with Cluster3 being the predominant group 
in most cases (Fig.  4B-C). We utilized the normalized 
expression matrix of 46 RMRs from TCGA samples to 
train a random forest model. The predictive accuracy 
of the model was determined to be 0.91, and the area 

under the receiver operating characteristic curve in 
the tenfold cross-validation exceeded 0.9 for the clas-
sification of the three pairs of clusters. These results 
signified that the model demonstrated both accuracy 
and robustness (Fig. 4D-E). To assess the value of each 
regulator’s contribution to the model, we calculated 
its importance score. Notably, the m5C writer NOP2 

Fig. 2 Differences between treatment responders and non-responders are associated with RMRs. (A) UMAP plot displaying diverse cell types that have 
been identified. (B) Bar plot showing the percentage of different cell subpopulations in treatment responders and non-responders. (C) Volcano illustrating 
different expression genes between responders and non-responders. (D) Demonstrating pathways for differential gene enrichment with P < 0.05. (E) 46 
RNA methylation regulators classified as writers, readers, and erasers from m6A, m5C, m1A, and m7G. (F) Heatmap displaying the correlation between 
RMRs expression and drug IC50 values of the GDSC database
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ranked first among these regulators and was reported 
to methylate the C(5) position of cytosine 4447 in 
28  S rRNA [42] (Fig.  4F). The expression levels of the 
regulatory RMRs exhibited differential patterns across 

the different clusters. Specifically, nine regulators dis-
played a decreasing trend in expression from Cluster1 
to Cluster3, indicating a gradient of high to low expres-
sion among these clusters (Fig. 4G). Furthermore, their 

Fig. 3 Genomic aberrations, transcriptional alterations, proteomic discrepancy, and survival relevance of RMRs across cancer types. (A) Bubble plot show-
ing the Gscore and CNV status of RMRs across cancers. The sizes and colors of the bubbles represent Gscore and CNV status, respectively. (B) Heatmap 
depicting the somatic mutation frequencies of each RMR in each cancer type. (C) Waterfall plot showing somatic mutations of RMRS in 2876 tumor 
samples. The mutation frequencies were shown on the right barplot, and the cancer types of samples were shown at the bottom. (D) Dot plot indicating 
the differentially expressed RMRs between tumor and adjacent normal tissues in each cancer type, with up or down-regulating and the P-value being 
annotated. (E) The bar plots of RT-PCR showing mRNA expression levels of RMRs in tumor and normal tissues (n = 6). * P < 0.05, **P < 0.01 or *** P < 0.001. 
(F) The protein expression of RMRs according to HPA. (G) Hazard ratios of overall survival between high and low expression groups regarding each RMRs 
in each cancer type, with the size and color of the bubble denoting the P-value and Hazard Ratio (HR) of overall survival, respectively

 



Page 10 of 23Zhou et al. Journal of Experimental & Clinical Cancer Research          (2024) 43:232 

expression profile in the three clusters of individual 
cancer types resembled the profile of the pan-cancer 
clusters (Fig. S3). Subsequently, the analysis of three 
clusters revealed distinct characteristics. Cluster1 dis-
played a higher frequency of oncogene mutations, par-
ticularly TP53, and showed genomic instability with 
copy number variations. This cluster was also associ-
ated with increased genetic alterations and enriched 
pathways related to cell proliferation and carcinogenic 
activation, suggesting a more aggressive tumor pheno-
type (Fig. 4H-J).

Clinical characteristics and prognosis associated with RMRs 
clusters across Cancer types
In addition, the TCGA epithelial tumors were catego-
rized into basal-like, luminal A, and luminal B subtypes 
using the PAM50 clustering algorithm. In our analysis, 
we compared the distribution of these subtypes within 
the three RMR clusters. It was observed that Cluster1 
was predominantly composed of the basal-like subtype, 
while Cluster3 mainly consisted of the luminal A subtype. 
Furthermore, a comparison of the molecular subtypes 
revealed that Cluster1 was primarily associated with the 
basal subtype of breast cancer and the chromosomal 

Fig. 4 RMRs clusters construction and different genomic characteristics. (A) Consensus matrix plot of 46 RNA methylation regulators in pan-cancer. (B) 
Scatter plot of PCA showing distinct three clusters. (C) Bar plot showing the percentage of samples of each cluster in each cancer type. (D) Confusion ma-
trix of predicted RMRs clusters and true RMRs clusters (E) ROC curves of ten-fold cross-validation tests performed on the model built with RMR expression 
data of the TCGA samples. (F) Lollipop plot showing the importance scores of 46 RMRs contributing to the trained random forest model. (G) Heatmap of 
expression levels of 46 RMRs in three clusters. (H) Waterfall plot depicting the top 15 genes with the highest mutation rates. (I) Heatmap of CNV across 
all cancer types in three clusters, blue means copy number loss while red means copy number gain. (J) Bubble plot visualizing the tumor progression-
related features and Hallmark pathways from MSigDB. The size of the bubble denoted the P-value. Prune and blue denoted higher and lower pathway 
enrichment scores in each comparison
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instability (CIN) subtype of gastrointestinal tumors 
(Fig. 5A-B, Table S5-S6).

The TME subtype, including immune-enriched, nonfi-
brotic (IE), immune-enriched, fibrotic (IE/F), fibrotic (F), 
and immune-depleted (D), was defined by 29 functional 
gene expression signatures [43]. Our analysis further 
demonstrated that Cluster1 showed a strong association 

with TME subtype D, while Cluster3 was predominantly 
associated with TME subtypes F and IE/F. This indicates 
that Cluster1 exhibits an immunosuppressed phenotype 
resembling the basal-like subtype, which is known to be 
associated with poor prognosis. Importantly, patients in 
Cluster1 exhibited significantly worse overall survival in 
10 cancer types, poorer disease-specific survival in 12 

Fig. 5 The clinical characteristics of RMRs clusters. (A) The proportion of PAM50 subtypes in the RMRs clusters. (B) The proportion of typical molecular 
subtypes in RMR clusters. (C) The proportion of immune subtypes in the three RMRs clusters. (D) Kaplan-Meier curves showing overall survival in different 
clusters across 10 cancer types respectively. P-value was calculated by the two-sided log-rank test and p < 0.05 was considered statistically significant. (E) 
The fraction of patients with different clinical stages in three RMRs clusters
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cancer types, and shorter progression-free survival in 
7 cancer types, highlighting the unfavorable prognosis 
associated with this cluster. Additionally, Cluster1 dis-
played a higher proportion of stage III-IV cases in 6 can-
cer types (Fig. 5C-E, Fig. S4A-B, Table S7-8).

Link of RMRs clusters and cellular components of the tumor 
microenvironment in pan-cancer
On the other hand, the xCell method to analyze TME-
infiltrating immune cells in three clusters was utilized. 
Cluster1 exhibited higher levels of Th2 cells, naive T 
cells, and pro-B cells, indicating a weaker tumor suppres-
sion ability. In contrast, Cluster3 displayed higher levels 
of CD4 + T cells, CD8 + T cells, NK cells, B cells, cancer-
associated fibroblasts, and endothelial cells, suggesting 
an abundance of tumor-killing effector cells (Fig.  6A, 
Table S9). ImmuneScore, StromalScore, and Microen-
vironmentScore were calculated to assess the immune 
and stromal components. Cluster3 demonstrated higher 
immune and stromal cell activity, while Cluster1 had the 
lowest MicroenvironmentScore (Fig.  6B). Moreover, we 
used the “ssGSEA” method to evaluate the infiltration of 
28 immune cell types in RMRs clusters. Cluster3 showed 
increased immune cell infiltration, whereas Cluster1 
exhibited lower abundance (Fig. S5A, Table S9).

Subsequently, we examined the expression levels of 
various immune-related genes among the three RMRs 
clusters. Most genes showed higher expression in Clus-
ter2 and Cluster3 (Fig. S5B-F). By dividing the five sin-
gle-cell datasets into high and low groups based on the 
average expression of RMRs, we observed distinct cell 
annotations through dimensionality reduction clustering, 
including epithelial cells, immune cells, and stromal cells 
in five cancer types (Fig. 6C, Fig. S6A). The high-expres-
sion group had a higher proportion of malignant tumor 
cells, while the low-expression group displayed greater T 
cell infiltration (Fig.  6D). Furthermore, the UMAP plot 
revealed elevated mean expression in epithelial cells, 
reinforcing the association between high expression of 
RMRs and tumor parenchymal cells (Fig. 6D).

Differential gene analysis and pathway enrichment 
demonstrated that these genes were involved not only in 
tumor proliferation pathways but also in immune cell dif-
ferentiation and immune cytokine activity (Fig.  6E, Fig. 
S6B, Table S10). Cell communication analysis indicated 
the high-expression group exhibited more frequent and 
stronger interactions (Fig.  6F). Notably, the reciprocal 
molecules of macrophage migration inhibitory factor 
(MIF) and Midkine (MDK) were more pronounced in the 
high-expression group than in the low-expression group 
(Fig. 6G).

Based on our analysis, we concluded that high expres-
sion of RMRs exhibited characteristics resembling 
the basal-like subtype, including high proliferation, 

immune depletion, high malignancy, and poor progno-
sis. Conversely, low expression of RMRs correlated with 
increased infiltration of immune cells and large stromal 
cells, a lower degree of malignancy, and favorable sur-
vival outcomes.

Decoding the impact of RMR expression on tumor response 
and unveiling novel therapeutic avenues
Unveiling the impact of RMRs expression on tumor 
response, we collected multiple datasets of patients who 
had received immunotherapy or chemotherapy. Upon 
dividing them into high- and low-expression groups, 
a significant finding emerged: the high-expression 
group exhibited a higher proportion of non-responders 
(Fig. 7A-B). In addition, analysis of IC50 values for vari-
ous drugs revealed that the high-expression group dis-
played insensitivity to conventional chemotherapeutic 
agents (Fig. 7C). We also used the Tumor Immune Dys-
function and Exclusion (TIDE) algorithm [44] to predict 
immunotherapy response and found the high-expression 
group showed more immune exclusion scores than the 
low-expression group (Fig.  7D). Furthermore, in order 
to evaluate RMRs’ capacity to forecast resistance to che-
motherapy and immunotherapy, we compared them with 
additional characteristics gathered from the published 
articles. Single-cell dataset of colorectal cancer includes 
cancer epithelial cells and various microenvironmental 
cells (Fig. S7A), from which we selected tumor cells to 
assess the predictive power of RMRs and other genes to 
predict drug response (Fig. S7B). RMRs were observed 
to score considerably higher in the non-respond group 
and to exhibit superior accuracy, AUC, precision, and F1 
values when evaluating treatment response. (Fig. S7C-D). 
Since the scores of RMRs were higher in tumor cell clus-
ters 2 and 4, we designated those clusters as RMRs + epi-
thelial cells and the remaining of epithelial cells as 
RMRs-epithelial cells, which was in line with the expec-
tation that RMRs + epithelial cells accounted for a higher 
percentage of non-response patients (Fig. S7E-G). To fur-
ther explore the relationship between RMRs and immune 
cells, we did cellular communication between RMRs+/- 
epithelial cells and other microenvironmental cells. 
RMRs + epithelial cells were found to have more active 
MIF, MK, and APP signaling pathways with microenvi-
ronment cells than RMRs-epithelial cells. These pathways 
have been reported to be associated with tumor progres-
sion and immunosuppression (Fig. S7H). Similarly, we 
performed a validation analysis in ovarian cancer and 
found that RMRs in ovarian tumor epithelial cells were 
also significantly more potent in predicting treatment 
response than the genes in other studies (Fig. S7I-K). 
The RMRs scores of tumor epithelial clusters 1,2,3 were 
significantly higher than those of cluster 0, so we named 
clusters 1,2,3 as RMRs + epithelial clusters and the rest as 
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Fig. 6 Tumor microenvironment components of RMRs clusters and groups. (A) Heatmap showing the abundance scores of immune cell types computed 
by the xCell algorithm. The color denoted the specific RMR cluster which had a higher abundance score than the other two clusters (B) Box plots showing 
the differences of the immune cell infiltration scores computed by xCell analysis among different clusters. * P < 0.05, **P < 0.01, *** P < 0.001, ****P < 0.0001 
(Kruskal-Wallis test). (C) UMAP plot showing annotated cell types that have been defined. (D) Bar plot showing the proportion of different cell subpopula-
tions in high-expression and low-expression groups and UMAP plot described the distribution of mean expression values across cell types. (E) Character-
ization of high-expression group and low-expression group differential genes in different cell populations. (F) The number of interactions and weight of 
interaction in high-expression group and low-expression group (G) Ligand-receptor interaction pairs genes in epithelial cells and other cell types. MIF and 
MK signaling pathway networks of high and low groups. The thickness of the interworking line segments represents the number of interworking pairs
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Fig. 7 The therapy response of RMRs to drugs. A. The fraction of patients with clinical response to immunotherapy. B. The fraction of patients with clinical 
response to chemotherapy. The difference was tested by the chi-square test. C. Volcano plot showing drugs that were differentially sensitive in the two 
groups. D. Boxplot revealing dysfunction and exclusion scores in different groups by TIDE methods, in which a higher score means ineffective immuno-
therapy. E. Correlation of RMRs expression with drugs. The table shows the top 10 positively and negatively correlated compounds from the connectivity 
map. The target score ranged from − 1 (negative connectivity) to + 1 (positive connectivity). F. GSEA of RMRs in various cancer types. The enrichment 
score > 0 demonstrated the positive correlation between RMRs expression and the activity of Hallmark pathways. G. Demonstration of JAK-STAT signaling 
pathways upstream and downstream genes. H. Chemical structural formula of JAK inhibitor TG-101,209
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RMRs-epithelial clusters (Fig. S7L-M). Consistent with 
colorectal cancer, the RMRs + epithelial cluster was con-
centrated in the non-response patient group (Fig. S7N). 
Cellular communication of RMRs+/- epithelial cells with 
other immune or stromal cells was performed, and it was 
evident that the MIF signaling pathway was more active 
in RMRs + epithelial cells (Fig. S7O-P). At the same time, 
we assessed the ability of RMRs and other genes to pre-
dict treatment effects at the level of pan-cancer cell lines 
and bulk samples. Notably, RMRs outperformed other 
genes in terms of AUC values for predicting the impact of 
response to immunotherapy and chemotherapy, indicat-
ing their superiority in determining therapeutic potential 
(Fig. S8A-N).

Then, we searched for potential compounds targeting 
RMRs expression in various cancer types by using con-
nectivity map analysis (CMap) [38], which was employed 
to reveal functional links between small molecule com-
pounds, genes, and disease states. Notably, the JAK 
inhibitors, TG-101,209 and TG-101,348 were effective 
compounds in negatively regulating RMRs expression, 
while the GSK inhibitor had the opposite effects (Fig. 7E, 
Table S11). Gene set enrichment analysis (GSEA) of 
RMRs also revealed positive enrichment in the JAK-
STAT pathway (Fig. 7F). Among RMRs, the m5C writer 
NOP2 contributed the most to distinguishing RMRs clus-
ters and was highly expressed in most cancer types and 
influenced their survival (Fig. 4F, Fig. S9A-B). We found 
high expression of NOP2 was related to tumor prolif-
eration and JAK-STAT pathways and also responded to 
JAK inhibitors in multiple cancer types (Fig. S9C-D). The 
JAK/STAT pathway is an important cellular cascade that 
controls a wide range of processes, including cell differ-
entiation, proliferation, and apoptosis [45] (Fig. 7G). The 
cytokine receptors activate Janus kinases, JAK inhibitors 
usually target these enzymes to intervene in tumor pro-
gression. We therefore hypothesized that TG-101,209, 
which is a selective JAK2 inhibitor could increase the 
therapeutic effect in the high expression group (Fig. 7H).

Enhancing chemo- and immuno-therapy efficacy in 
pancreatic cancer with TG-101,209
To gain deeper insights into the progression of pan-
creatic tumors, we conducted a comprehensive study 
involving 16 pancreatic cancer patients, we examined 
the impact of RMRs on tumor development (Fig.  8A, 
Table S12). Patients were divided into high and low 
RMR groups to investigate the DEG patterns related to 
cell cycle regulation, proliferation, and immune modula-
tion (Fig. 8B). Our analysis identified 816 DEGs between 
the two groups, shedding light on the molecular altera-
tions associated with RMR-mediated pancreatic tumor 
progression. Notably, the high-expression group showed 
a significant association with the JAK-STAT signaling 

pathway, suggesting the potential of using the JAK inhibi-
tor TG-101,209 as a targeted therapy for these patients 
(Fig. 8C).

Subsequently, our in vivo and in vitro experiments 
demonstrated a significant reduction in tumor volume 
when TG-101,209 was administered in combination 
with GEM (Gemcitabine), a conventional chemotherapy 
drug. Moreover, the combination therapy resulted in 
improved overall survival compared to the use of either 
drug alone (Fig.  8D-E). Complementing these findings, 
mIHC analysis revealed a notable decrease in Ki67 levels, 
a well-established marker of cellular proliferation, within 
the combination chemotherapy group (Fig.  8F). Addi-
tionally, CCK-8 assays demonstrated that co-medication 
effectively suppressed tumor cell vitality, particularly in 
pancreatic cancer cell lines (Fig. 8G). Notably, our analy-
sis revealed a strong synergistic effect with a ZIP Synergy 
score of 33.619 between GEM and TG-101,209, further 
supporting the potential clinical utility of this combina-
tion therapy (Fig. 8H).

We also investigated the sensitizing effect of 
TG-101,209 in combination with immunotherapy. 
Monotherapy using PD1 blockade alone displayed 
limited efficacy in tumor elimination; however, when 
combined with TG-101,209, it exhibited enhanced effec-
tiveness (Fig.  8I). Co-administration of TG-101,209 and 
PD1 blockade significantly extended the survival of mice 
bearing experimentally induced tumors (Fig. 8J). Further-
more, flow cytometric analysis revealed that combination 
immunotherapy augmented the number of CD8+T cells 
and effector CD8+T cells secreting cytotoxic proteins 
while reducing the population of exhausted CD8+PD1+T 
cells (Fig. 8K).

In conclusion, these findings provide valuable insights 
into the treatment strategies for pancreatic cancer, sug-
gesting the potential utility of targeting RMRs as a thera-
peutic approach to optimize patient outcomes.

TG-101,209 sensitized high-RMRs-expressing tumors to 
chemotherapy across cancer types
We further investigated the antitumor activities of 
TG-101,209 and other chemotherapeutic drugs in vari-
ous cancer cell lines with high-expression RMRs, includ-
ing colorectal, liver, breast, and lung cancers (Fig.  9A). 
Co-administration of TG-101,209 with L-OHP (Oxali-
platin) or CAPE (Caffeic acid phenethyl ester) showed 
the most effective tumor regression in colorectal cancer 
compared to mono- or dual-drug treatments (Fig.  9A). 
Similarly, in liver, breast, and lung cancers, combinations 
of TG-101,209 with 5-FU (5-Fluorouracil), L-OHP, ADM 
(Adriamycin), CTX (Cyclophosphamide), GEM, or DDP 
(Cisplatin) resulted in smaller tumor sizes compared to 
mono-chemotherapy groups (Fig. 9A).
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Fig. 8 TG-101,209 promoted pancreatic cancer patient response to chemotherapy and immunotherapy. (A) The heatmap depicting nine regulators ex-
pression of 16 PAAD patients (B) Volcano plot describing differential expression genes between high and low groups. Bar plots of KEGG and GO pathways 
of differential expression genes. (C) GSEA analysis of high-expression group and low-expression-group, the pathways were selected under P < 0.05. CMap 
results of predicted potential drugs of high expression of nine regulators. (D) Pancreatic tumor cells were subcutaneously transplanted into 4-6-week-old 
C57/BL mice. The mice were administered GEM, TG-101,209, or GEM combined TG-101,209. Box plot illustrating quantitative comparisons of tumor size 
across different treatment groups and control groups. (E) K-M survival curve of tumor-bearing mice during dosing. Death of mice as the endpoint of the 
survival record. The transplanted tumor cells were injected into the mouse pancreas in situ. (F) The tumors were stripped out from mice, and the frozen 
sections were stained with anti-Ki67. DAPI staining was included to visualize the nuclei. (G) Line graph telling proliferation ability in different treatment 
groups of KPC1 and KPC2 cell lines. (H) Heat map displaying the interaction of GEM and TG-101,209. (I) Mice were subcutaneously injected with pancreatic 
tumor cells. Tumor-bearing mice were injected with anti-PD1, TG-101,209, or a combination of anti-PD1 and TG-101,209. Tumor growth curve showing 
growth rate and volume size until mice sacrificed. (J) Survival curves of orthotopic pancreatic tumor-bearing mice in control, anti-PD1, TG-101,209, and 
combined therapy groups. The time at which the mice were sacrificed was the time at which the survival curve was finally recorded. K. Flow cytometry 
sorting CD8 + T cell types and the mathematical statistics were made in CD8 + T cells, effector CD8 + T cells, and exhausted CD8 + T cells of different im-
munotherapy groups
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Combination therapy significantly improved the sur-
vival of tumor-bearing mice and suppressed tumor 
growth during treatment (Fig.  9B-C). In vitro analysis 
using CCK-8 assay demonstrated that combined therapy 

effectively disrupted tumor cell viability (Fig. 9D). Addi-
tionally, DAPI and Ki67 immunofluorescence staining of 
tumors implanted in mice showed a significant reduction 
in cell proliferative activity with the combination therapy 

Fig. 9 TG-101,209 increased tumor response to chemotherapeutic agents. (A) Subcutaneous growth of mice in the control group, single-drug, two-drug 
combination, and TG-101,209 in combination with two traditional drugs groups (n = 6). (B) The volume change of nude mice implanted tumors was 
recorded every 3 days. Each bar represents the mean ± SD for six animal measurements. (C) The K-M survival analysis in different chemotherapy drug 
treatment groups was performed until the sacrifice of mice. Tumor cell lines were transplanted to the liver in situ of mice. (D) CCK-8 assay was performed 
to determine the cell viability after treatment in MCF-7, A-549, SW480, and Hep-G2 cell lines. (E) Representative ki67 and 4-6‐Diamidino‐2‐phenylindole 
(DAPI) immunofluorescence staining of tumor sections from the tumor tissues in different treatment groups. (F) Three-dimensional stereo thermograms 
showing synergistic promotion between two-by-two drugs. * P < 0.05, **P < 0.01 or *** P < 0.001
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(Fig.  9E). Evaluation of combinatory effects using Syn-
ergyFinder revealed strong synergistic effects between 
traditional chemotherapeutic agents and TG-101,209 
(Fig. 9F).

We examined the protein levels of JAK signaling path-
way genes in the TG-101,209-treated and control groups 
and the activated JAK1/JAK2/STAT1/STAT3 proteins 
levels were lower in the treated cell lines, suggesting 
that TG-101,209 specifically inhibits the proteins of the 
JAK-STAT signaling pathway (Fig. S10A). By compar-
ing the expression levels of RMRs genes in the blank 
control group and the TG-101,209 treatment group, we 
found that in the absence of other interfering agents, 
TG-101,209 significantly decreased the mRNA levels of 
RMRs genes. However, if the drug HJC0146, an inhibi-
tor of the total JAK-STAT pathway was added in advance, 
the effect of TG-101,209 in decreasing the expression 
of RMRs was not obvious. Therefore, TG-101,209 func-
tioned as a specific inhibitor of the JAK-STAT signal-
ing pathway thereby reducing the transcriptome level of 
RMRs (Fig. S10B-J).

TG-101,209 sensitized high-RMRs-expressing tumors to 
Immunotherapy across cancer types
Furthermore, we observed that the combination of anti-
PD1 and TG-101,209 had a greater impact on reducing 
tumor volume and prolonging the survival of mice with 
tumors compared to anti-PD1 or TG-101,209 alone 
(Fig.  10A-C). The combination therapy also resulted 
in greater inhibition of tumor cell viability (Fig.  10D). 
Flow cytometry analysis of harvested tumors indicated 
reduced infiltration of CD8+PD1+T cells but improved 
ratios of CD8+T cells and increased functional factors 
(IFNγ, TNFα, GZMB, and perforin) within CD8+T cells 
(Fig.  10E). We evaluated the magnitude of mutual rein-
forcement between anti-PD1 and TG-101,209, showing 
strong ZIP synergy scores (Fig. 10F).

By evaluating the contribution of immune cells, such as 
effector CD8 + T cells, B cells, NK cells, regulatory T cells 
(Tregs), and myelosuppressive cells, to immune activa-
tion and clinical prognosis in tumor patients in the TCGA 
pan-cancer dataset, we were able to derive coefficients 
for each immune cell. This allowed us to further evalu-
ate the relationship between TG-101,209 and immune 
microenvironment activation. (Fig. S11A). We further 
combined the weighted model coefficients of the number 
of infiltrations of each immune cell in the experimental 
mouse model to evaluate the TME-activated scores in 
the TG-101,209 group and the control group. In multiple 
cancers, the high immune score group had a higher pro-
portion of the group treated with TG-101,209, and the 
immune activation function of the treatment group was 
also higher than the control group. The TME-activated 
score can well predict the TG-101,209 treatment group 

and control group with high AUC of the area under the 
ROC curve (Fig. S11B-F).

Overall, the combination therapy with TG-101,209 
enhanced the killing function of CD8+T cells, reduced 
exhausted CD8+T cells, and decreased tumor burden in 
high-RMRs-expressing tumors. These findings highlight 
the potential of combined TG-101,209 therapy as an 
effective approach for improving treatment outcomes in 
various cancer types.

Discussion
Cancer has a high rate of lethality, recurrence, and metas-
tasis, becoming the greatest threat to human health. Sur-
gery, chemotherapy, radiotherapy, and immunotherapy 
have stepped up as the mainstay of treatment modalities. 
But the progression, recurrence, and metastasis of can-
cer still haven’t been curbed, the most important rea-
son is tumor drug resistance. The single-cell datasets of 
chemotherapy and immunotherapy suggested that RNA 
methylation was associated with neoadjuvant therapy 
resistance. We reviewed the publicly available literature 
and found 46 recognized regulators of RNA methyla-
tion, involving m6A, m5C, m1A, and m7G. Multi-omics 
and RT-PCR experiments demonstrated that RMRs were 
genomically engineered in tumors with increased tran-
script levels and protein levels and were associated with 
poor prognosis in pan-cancer. RNA methylation is one 
of the epigenetic modifications and is widely observed in 
prokaryotes and eukaryotes. It has been shown to take an 
important role in tumor progression, tumor angiogene-
sis, and tumor drug resistance [46]. Increasing evidence 
has suggested that RNA methylation pathways were mis-
regulated in human cancers and would be ideal targets 
for cancer therapy [47].

Through random forest machine learning, we identified 
three distinct RMRs clusters in pan-cancer and explored 
their difference in genomic variation, molecular mecha-
nism, TME characteristics, clinical subtypes, and survival 
performance. Cluster1 exhibited characteristics of more 
genomic variations, high proliferation, immune deple-
tion, and poor prognosis. Cluster3 was associated with a 
high degree of immune cell enrichment, a lower degree 
of malignancy, and a good prognosis. As an intermedi-
ary, Cluster2 had moderate immune cell infiltration, an 
intermediate degree of malignancy, and a relatively good 
survival performance. The Cluster1 with high-expression 
RMRs showed striking features of T cell absence or exclu-
sion, which are called “cold” tumors, while hot tumors 
are infiltrated by T cells and represented by molecular 
signatures of immune activation [48]. Nine regulators of 
46 RMRs in Cluster1, Cluster2, and Cluster3 showed a 
trend of high medium, and low expression and they were 
more important in the random forest model according 
to contribution score. Therefore, the expression of nine 
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RMRs was more representative of overall RMRs perfor-
mance in tumors.

We grouped single cells high and low based on nine 
RMRs expression to discover the impact of RMRs on the 

tumor microenvironment in various cancer types. Con-
sistent with the results of bulk data analysis, the high-
expression group had more tumor parenchymal cells 
while the low-expression group had more immune cells 

Fig. 10 TG-101,209 enhanced tumor response to immunotherapy. (A) The tumor size and volume were documented in anti-PD1, TG-101,209, two-drug 
combination groups, and control groups. (B) The tumor growth curve was recorded every three days during the period of treatment. Each bar represents 
the mean ± SD for six animal measurements. (C) The survival time curve of tumor-bearing mice in different treatment groups. Death of mice as the end-
point of the survival record. Tumor cell lines were injected into the orthotopic liver of mice. (D) Cell viability curve of different immunotherapy groups. (E) 
Flow cytometry analysis was performed in the harvested tumors; Representative dot plots and bar plots of the percentage of CD8 + T cells, CD8 + TNFα + T 
cells, CD8 + IFNγ + T cells, CD8 + PD1 + T cells, CD8 + perforin + T cells and CD8 + Grzmb + T cells. (F) The heat map shows the synergistic effect of the anti-
PD1 and TG-101,209. ZIP Synergy scores > 10 indicate synergism (red regions), scores < -10 indicate antagonism (green regions), and scores between − 10 
and 10 mean the interaction between two drugs was likely to be additive. * P < 0.05, **P < 0.01 or *** P < 0.001
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and stromal cells. Several articles more or less described 
RNA methylation factors remodeling the tumor micro-
environment in single-cell analysis. scRNA-seq identified 
decreased myeloid-derived suppressor cells, coexist-
ing with increased cytotoxic T cells in YTHDF1 knock-
out tumors [49]. The m6A methylation reader IGF2BP2 
activated endothelial cells to promote lung adenocarci-
noma angiogenesis and metastasis [50]. Cellular com-
munication indicated the high-RMRs- expressing tumor 
epithelial cells had more interactions with microenviron-
ment cells and the receptor-ligand pairs were more in the 
MDK and MIF signaling pathways. It has been verified 
that MDK reconstructed the immunosuppressive envi-
ronment in melanoma and gallbladder cancer [51, 52]. 
Inhibition of MIF-CD74 signaling promoted CD8 + T 
cell infiltration and drove macrophage conversion to pro-
inflammatory M1 macrophages in the TME [53].

The malignant behavior of high-RMRs-expressing 
tumors compels us to find effective drugs for their treat-
ment. We collected representative datasets with infor-
mation on drug treatment effects and evaluated the 
sensitivity of RMRs subtypes to chemotherapy and 
immunotherapy. The high-RMRs-expressing tumors 
were insensitive to conventional chemotherapeutic 
agents and immunotherapy inhibitors. Based on RMRs’ 
molecular characterization and in vitro/in vivo pan-
cancer experiments, we predicted potential therapeutic 
target drug JAK inhibitor TG-101,209. TG-101,209 was 
a small molecule JAK2-selective kinase inhibitor, which 
had been proven to induce cell cycle arrest and apoptosis 

in the human JAK2V617F-expressing acute myeloid leu-
kemia cell line [54]. It had been reported that both RMRs 
and JAK inhibitors were strongly associated with pro-
grammed tumor cell death. Methylation modification of 
m6A in hepatocellular carcinoma can regulate the iron 
death program to modulate tumor progression [55]. RNA 
modification of METTL17 in mitochondria of colorec-
tal carcinoma leads to decreased iron death activity in 
tumor cells and promotes tumor proliferation [56]. JAK 
inhibitor promotes the death of myeloma cell lines and 
inhibits the growth of myeloma cells [57]. JAK inhibitors 
combined with DNMT1 inhibitors can promote cervical 
cancer tumor cells to undergo apoptotic cell death [58]. 
Compared with the control group and the monotherapy 
group, the tumors in the combined TG-101,209 treat-
ment group were significantly smaller, the proliferation 
rate and activity of tumor cells were reduced, and there 
was a significant increase in functional CD8 + T cells and 
a substantial reduction in CD8 + PD1 + T cells (Fig.  11). 
A previously reported study also described JAK inhibi-
tors combined with other anti-inflammatory or immuno-
modulatory agents achieved maximum treatment effect 
with fewer adverse events [59]. Pancreatic cancer speci-
mens from our cohort, which is called the king of cancers 
with poorly treated, were collected to demonstrate that 
high-RMRs-expressing tumors were associated with JAK-
STAT pathway activity and can be TG-10,129 targeted. In 
vitro/in vivo experiments validated that pancreatic can-
cer was better treated with GEM or anti-PD1 in combi-
nation with TG-101,209. Now cytotoxic chemotherapy is 

Fig. 11 Proposed model for the role of TG-101,209 in increasing the sensitivity to chemotherapy and immunotherapy. (Left) Overexpressed RMRs in-
duced tumor proliferation, immune suppression, and treatment resistance. (Right) The addition of TG-10,129 decreased tumor growth, increased effector 
immune cells, and promoted therapy responsiveness
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still the mainstay of treatment for most pancreatic cancer 
patients, while immune checkpoint inhibitors and other 
therapies have no utility for most patients [60].

In summary, our study highlighted that RMRs were 
widely associated with chemoimmunotherapy resis-
tance in pan-cancer single-cell data. For the first time, 
we integrated all RNA methylation regulators and per-
formed multi-omics analysis and machine learning to 
construct precise stratified subtyping of RMRs for can-
cer therapeutic guidance. RMRs subtypes were related 
to tumor progression, immune cell infiltration, patients’ 
prognosis, and treatment responsiveness in pan-can-
cer. High-RMRs-expressing tumors were insensitive to 
tumor chemotherapy/immunotherapy. We predicted and 
experimentally demonstrated the co-administration of 
JAK inhibitor TG-101,209 could enhance high-RMRs-
expressing tumors’ sensitivity to conventional chemo-
therapy and immunosuppressants in multiple cancer 
types. However, our study has some defects, we don’t 
have enough research on drug mechanisms and we need 
more multi-center clinical drug trials for compensat-
ing the limitations of animal models. The connection 
between RMRs and the JAK-STAT signaling pathway was 
explored and verified, but the association of other signal-
ing pathways with RMRs was not investigated in depth. 
In the immunotherapy combined with the JAK inhibitor 
regimen, we only chose anti-PD1 and did not incorporate 
other immunotherapeutic agents for in vivo experimental 
validation.
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