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Abstract 

The resistance of cancer cells to treatment significantly impedes the success of therapy, leading to the recurrence 
of various types of cancers. Understanding the specific mechanisms of therapy resistance may offer novel approaches 
for alleviating drug resistance in cancer. Recent research has shown a reciprocal relationship between circular RNAs 
(circRNAs) and N6-methyladenosine (m6A) modification, and their interaction can affect the resistance and sensitiv-
ity of cancer therapy. This review aims to summarize the latest developments in the m6A modification of circRNAs 
and their importance in regulating therapy resistance in cancer. Furthermore, we explore their mutual interaction 
and exact mechanisms and provide insights into potential future approaches for reversing cancer resistance.
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Introduction
Up to now, more than 160 varieties of chemical altera-
tions have been identified in RNA molecules, with meth-
ylation being the most prevalent form [1]. These RNA 
methylation modifications include N6-methyladeno-
sine (m6A), 5-methylcytosine (m5C), 7-methylguanine 
(m7G), 2’-O-dimethyladenosine (m6Am), N1-methyl-
adenosine (m1A), and 5-hydroxymethylcytosine (5hmC) 
[2]. Among these modifications, m6A is the most prev-
alent modification in eukaryotic cells [3]. Also known 
as N6-methyladenosine modification, m6A is a type of 

post-transcriptional RNA modification that plays a cru-
cial role in regulating gene expression [4, 5]. The discov-
ery of m6A modification in RNA was first reported in the 
1970s [6], and it has essential functions in various pro-
cesses, such as RNA stability, splicing, translation, and 
RNA–protein interactions [7].

Circular RNAs (circRNAs) are a type of RNA molecule 
that forms a single-stranded closed loop structure, lack-
ing the typical 5’ to 3’ ends [8]. Researchers now widely 
accept that circRNAs can be translated into functional 
peptides through internal ribosome entry site (IRES)-
mediated translation. The absence of a 5’ cap in circR-
NAs suggests that they must rely on cap-independent 
mechanisms, such as m6A modification, for translation 
initiation. Unlike linear RNA molecules, circRNAs resist 
degradation by exonucleases and exhibit more excellent 
stability [9]. The topic of m6A modification in circRNAs 
is an area of ongoing research and still needs to be fully 
understood. Initially, it was believed that circRNAs, due 
to their circular structure, were not susceptible to m6A 
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modification [10]. However, recent studies have chal-
lenged this notion by providing evidence of m6A modifi-
cations in circRNAs.

A growing body of experimental data has elucidated 
that m6A modification can also occur in circRNAs [11]. 
This modification can potentially influence the stabil-
ity, localization, and function of circRNAs [12]. It has 
been suggested that m6A modification in circRNAs 
can regulate their interactions with RNA-binding pro-
teins (RBPs), miRNAs, and specific molecules, thereby 
impacting their overall cellular functions [13]. How-
ever, our understanding of m6A modification in circR-
NAs is still relatively limited, and further studies are 
urgently needed to investigate the underlying mecha-
nisms and functional significance [14]. Nevertheless, 
the study of m6A modification in circRNAs has great 
potential for uncovering novel regulatory mechanisms 

in RNA biology [15]. Under treatment pressure, cancer 
cells can develop resistance to therapy, allowing them 
to evade death. On one hand, changes in drug trans-
port and metabolism can impair the efficacy of various 
anticancer drugs. On the other hand, cancer cells can 
acquire survival advantages through mechanisms like 
apoptosis resistance, DNA damage repair, and induc-
tion of epithelial-to-mesenchymal transition (EMT) 
(Fig. 1).

Herein, this review comprehensively analyzes the 
latest developments and mechanisms of m6A modi-
fication of circRNA in tumor treatment, the crosstalk 
between m6A modifications and circRNAs, and their 
interactions in modulating treatment resistance. This 
highlights the potential of targeting these modifications 
and RNAs to overcome resistance to cancer treatment.

Fig. 1 Mechanisms of therapeutic resistance in cancer. Enhanced drug efflux and diminished drug influx result in a reduced accumulation 
of drugs within cancer cells. In addition, inhibiting programmed cell death, facilitating DNA damage repair, and augmenting cellular self-digestion 
processes also contribute to the survival of tumor cells under treatment-induced stress. Furthermore, cancer cells prefer glucose metabolism, which 
produces lactic acid through glycolysis, promoting rapid cell proliferation in response to therapeutic interventions. Lastly, an imbalanced tumor 
microenvironment (TME), promotion of the transition from epithelial to EMT, and heightened properties of cancer stem cells (CSCs) also impede 
the effectiveness of cancer treatment
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m6A modification and circRNAs
m6A modification regulators
Readers are crucial in various aspects of RNA pro-
cessing, including RNA splicing, transport, degrada-
tion, and translation [16]. Some well-known reader 
proteins include the YTH domain-containing family 
(YTHDF) proteins and YTH domain-containing family 
(YTHDC) proteins [17]. The interaction among writ-
ers, erasers, and readers of m6A modification regulates 
RNA processing and function [18]. The addition and 
removal of the methyl group can affect RNA stability, 
splicing, translation efficiency, and RNA–protein inter-
actions [10]. The reader proteins determine the fate 
of the modified RNA, directing it toward degradation 

or translation [19]. A concise overview is depicted in 
Fig. 2.

The YTH domain functions as a reader molecule, 
specifically recognizing m6A modifications on RNA in 
a methylation-dependent manner. Humans have five 
known YTH domain-containing proteins: YTHDC1, 
YTHDC2, YTHDF1, YTHDF2, and YTHDF3. These pro-
teins play a critical role in post-transcriptional regula-
tion, influencing splicing, translation, RNA localization, 
and overall RNA lifespan [20]. A comparison of the crys-
tal structures of YTHDC2 and YTHDC1 domains reveals 
that both a conserved hydrophobic pocket and a posi-
tively charged surface are crucial for recognizing m6A-
modified RNA [21]. Similarly, YTHDF1, YTHDF2, and 

Fig. 2 Overview of m6A modification. A complex of multicomponent m6A methyltransferases installs the writers of the m6A modification, 
while the erasers remove it through demethylases. In the nucleus, nuclear readers recognize m6A and regulate RNA transcription, splicing, 
and structure. In the cytoplasm, cytoplasmic readers detect m6A and regulate RNA stability, translation, and binding capacity
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YTHDF3 also possess aromatic cages, specific residues 
for m6A recognition, and a basic patch that facilitates 
RNA backbone binding [22]. Scutenaire et al. conducted 
a comprehensive evolutionary analysis of YTH domains 
in Viridiplantae [23]. Their study revealed that vascular 
plants possess YTHDF- and YTHDC-type motifs, which 
contain the essential amino acids for RNA binding and 
m6A accommodation. These motifs are predicted to 
adopt a similar structural fold as YTH domains found in 
animals and yeast.

Within the cell nucleus, the dynamic regulation of RNA 
methylation is carried out by m6A writers and erasers. 
For instance, YTHDC1 plays a crucial role in splicing and 
controlling the export of m6A-modified mRNAs. This 
is achieved by recruiting SRSF3 while simultaneously 
blocking the binding of SRSF10 to the mRNA. YTHDF1 
recognizes m6A-containing mRNAs and promotes both 
initiation and elongation of translation in the cytoplasm. 
Additionally, YTHDF2 recognizes the same mRNAs 
and targets them for degradation through deadenyla-
tion mediated by the CCR4-NOT complex and endori-
bonucleolytic cleavage mediated by HRSP12. Notably, 
YTHDF3 interacts with YTHDF1 and YTHDF2, acceler-
ating the overall metabolism of m6A-modified mRNAs. 
YTHDC2, on the other hand, plays a distinct role in 
regulating the switch from mitosis to meiosis through its 
interaction with MEIOC. Additionally, YTHDC2 desta-
bilizes target RNAs by interacting with proteins such as 
XRN1, UPF1, and MOV10. Interestingly, YTHDC2 also 
binds to the 18S ribosomal RNA and exhibits 3’-5’ RNA 
helicase activity, both of which contribute to the transla-
tion of its target RNAs.

Writers, erasers, and readers actively interact in the process 
of m6A modification
The m6A modification process is controlled by a trio of 
proteins known as writers, erasers, and readers. These 
proteins, including METTL3/14/16, VIRMA, and WTAP, 
add a methyl group to the RNA, effectively turning the 
switch on. Conversely, erasers, such as FTO and ALKBH 
proteins, remove the methyl group, acting as molecu-
lar "off switches". Additionally, reader proteins like 
YTHDC1/2 and IGF2BP1/2/3 act as cellular sensors, 
detecting the presence or absence of the m6A mark and 
triggering downstream events accordingly. This dynamic 
interplay allows for precise control over the fate and 
function of RNA.

The intricate process of RNA m6A modification is 
dependent on the dynamic interaction between writers, 
readers, and erasers within eukaryotic cells [24]. These 
specialized proteins, including methyltransferases 
(writers) such as METTL3, METTL14, and WTAP, 
work together to form the m6A methyltransferase 

complex (MTC) responsible for adding m6A to target 
mRNA [25, 26]. Reader proteins in both the nucleus and 
cytoplasm act as chemical regulators. They can directly 
influence RNA processing by recruiting specific part-
ners such as YTHDC1, YTHDF2, and YTHDF3, which 
can alter RNA base-pairing, secondary structures, and 
protein-RNA interactions, ultimately determining the 
fate of the RNA [27].

Erasers, also known as enzymes, play a crucial role in 
this dynamic dance by removing the m6A modification 
and creating a reversible system alongside writers and 
readers [28, 29]. This dynamic regulation of m6A has 
become a critical area of cancer research, as it is closely 
linked to how environmental pollutants can trigger 
carcinogenesis.

Mutual regulation between circRNAs and m6A 
modification
CircRNAs can be classified into four categories: circular 
intronic RNAs (ciRNAs), exonic circRNAs (ecRNAs), 
tRNA intronic circRNAs (tricRNAs), and exon–intron 
circRNAs (EIciRNAs), each with distinct formation 
mechanisms. Researchers have elucidated several bio-
genesis mechanisms, including lariat-driven circulari-
zation and circularization associated with RBPs.

Surprisingly, emerging research has revealed that 
m6A fulfills an essential role in various aspects of cir-
cRNAs. These aspects are illustrated in Fig.  3 and 
include: (1) Biosynthesis of circRNAs. Previous stud-
ies have shown that m6A modulates the biosynthesis of 
circZNF609 in a YTHDC1/METTL3-dependent man-
ner. Similarly, m6A modification is strongly related to 
the biogenesis of circ1662, circARL3, and circMETTL3 
in various tumors. (2) Export of circRNAs from the 
nucleus to the cytoplasm. Exporting circRNAs from the 
nucleus to the cytoplasm is essential for their function. 
m6A-modified circNSUN2 can interact with YTHDC1 
in the nucleus, thereby facilitating its export from the 
nucleus to the cytoplasm. (3) Degradation of circRNAs. 
There is limited research on the degradation of circR-
NAs, and the potential mechanisms are still unclear. 
However, m6A modification has been found to sup-
press the degradation of circRNAs, thereby increasing 
their stability. For example, a study showed that the  t1/2 
of m6A-modified circCUX1 was extended when treated 
with Actinomycin D, indicating that m6A modification 
enhances the stability of circCUX1 [30]. (4) Transla-
tion of circRNAs. CircRNAs can be translated through 
two cap-independent pathways: m6A-dependent trans-
lation and the IRES. The translation of m6A-modified 
circRNAs is dependent on eIF4G2 and the involvement 
of METTL3/14.
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m6A modulates circRNA subcellular localization
The m6A modification plays a crucial role in regulating 
the subcellular localization of RNA. This modification 
affects the binding of RBPs to RNA molecules, which 
influences their localization within the cell [31]. RBPs 
recognize the m6A modification on RNA and bind to the 
modified RNA molecules. These RBPs then have the abil-
ity to identify and transport the RNA to specific subcel-
lular compartments, such as the nucleus or cytoplasm 
[32]. For example, the YTH domain-containing proteins, 
which are RBPs that specifically recognize m6A, can 
shuttle between the nucleus and cytoplasm, facilitating 
the transport of m6A-modified RNA [33].

CircRNAs localize to various cellular compartments, 
such as the nucleus or cytoplasm, interacting with other 
molecules to influence gene expression. However, disrup-
tions in circRNA localization can hinder these interac-
tions, potentially affecting protein partners and leading 
to cellular dysfunction or disease. Therefore, understand-
ing the location of a circRNA is crucial in compre-
hending its regulatory mechanisms, particularly in the 
cytoplasmic competitive endogenous RNA (ceRNA) 
model. For example, in colorectal cancer (CRC), the m6A 
reader YTHDC1 promotes the export of circNSUN2 to 
the cytoplasm, where it forms a circNSUN2/IGF2BP2/
HMGA2 RNA–protein complex that stabilizes HMGA2 
mRNA. This complex has been shown to drive cancer 

metastasis by promoting the epithelial-to-mesenchymal 
transition (EMT) process [34].

A previous study found a weak correlation between the 
cytoplasmic localization and stability of circRNAs [35]. 
This suggests that long-lived circRNAs accumulate in the 
cytoplasm, likely during mitosis when the nucleus disas-
sembles. The subcellular localization of circRNAs can 
also be affected by m6A modification, which can target 
them to specific cellular compartments [10]. Similarly, 
another study showed that m6A modification of the cir-
cRNA circDENND4C suppressed its export from the 
nucleus to the cytoplasm. In addition to regulating the 
export of circRNAs to the cytoplasm, m6A modification 
may also impact the localization of circRNAs within the 
cytoplasm [36]. For example, m6A modification of the 
circSRY promotes its localization to stress granules [37].

m6A modulates the expression of circRNAs
Previous studies have demonstrated that METTL3 is 
responsible for installing m6A modification on the 
reverse complementary sequences of circ1662, which is 
essential for the production of circ1662 through a pro-
cess called intron pairing-driven circularization [38]. 
Additionally, circRNAs modified with m6A can be rec-
ognized by specific reader proteins, potentially leading 
to changes in their stability and subsequent alterations 
in their expression levels [30, 39]. Some circRNAs with 

Fig. 3 Impact of m6A modification on biosynthesis, export, translation, and degradation of circRNAs. A CircRNA biosynthesis: METTL3, 
an m6A writer, adds m6A sites to pre-mRNAs. These m6A sites can then be detected by YTHDC1, an m6A reader, which facilitates the process 
of back-splicing. B CircRNA export: YTHDC1 also promotes the export of circRNAs to the cytoplasm by binding to m6A residues. C CircRNA 
degradation: YTHDF2, another m6A reader, recognizes m6A-modified circRNAs and forms a complex with RNase P/MRP and HRSP12, leading 
to the degradation of circRNAs. D CircRNA translation: YTHDF3 and eIF4G2 play vital roles in initiating the translation of m6A-modified circRNAs
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m6A modification may undergo endoribonucleolytic 
degradation mediated by the RNase P/MRP complex 
and requires the cooperative binding of HRSP12 and 
YTHDF2 proteins [40].

m6A regulates the function of circRNAs
Due to their unique structure, the translation process 
of m6A-modified circRNAs differs from that of their 
parental genes. This mechanism involves the reader 
protein YTHDF3, which identifies m6A-circRNAs 
and recruits translation initiation factors, eIF3A and 
eIF4G2, ultimately triggering cap-independent transla-
tion [41].

The m6A modification also affects the role of circR-
NAs in regulating immunity. CircRNAs without m6A 
modification can directly activate the Retinoic acid-
inducible gene I (RIG-I) signaling pathway to facilitate 
immune response [42]. In bladder cancer, YTHDF2, an 
m6A reader, targets DDX58 mRNA, which encodes the 
RNA helicase RIG-I. The interaction between YTHDF2 
and DDX58 mRNA promotes the degradation of RIG-I, 
a tumor suppressor protein. Elevated levels of YTHDF2 
promote bladder cancer progression by inhibiting RIG-I-
mediated innate immune signaling. This discovery sheds 
light on the role of m6A modifications in bladder cancer 
and highlights the potential impact of targeting YTHDF2 
as a therapeutic strategy for improving patient outcomes 
[43].

CircRNAs regulate m6A modification
CircRNAs have the ability to bind to m6A writers and 
erasers, preventing them from modifying other RNAs. 
This can lead to changes in the m6A modification status 
of different RNAs, ultimately affecting their expression 
and function. For example, circ-METTL3 functions as 
a sponge for the m6A eraser FTO, leading to increased 
m6A modification and expression of target mRNAs [44]. 
Besides, circRNAs can interact with proteins that bind 
to m6A-modified RNAs, influencing the fate of these 
RNAs in terms of stability, translation, and localization. 
One notable example is circ-YTHDF1, which interacts 
with the m6A reader YTHDF1, preventing it from bind-
ing to and degrading m6A-modified mRNAs [45]. Fur-
thermore, circRNAs can regulate the expression of genes 
that encode m6A writers, erasers, and readers, ultimately 
impacting the overall level of m6A modification in cells. 
For example, circ-IGF2BP2 controls the expression of the 
m6A writer METTL3, which eventually affects the over-
all level of m6A modification in cells [46]. This ability to 
regulate m6A modification adds another layer of com-
plexity to the regulatory network.

m6A modification of circRNAs and its role 
in regulating cancer therapy resistance
In the context of cancer therapeutic resistance, the m6A 
modification of circRNAs influences the expression and 
function of genes involved in drug response [47]. Fur-
thermore, m6A modification can affect the interaction 
between circRNAs and RBPs, leading to changes in their 
stability and function [48, 49]. The m6A modification 
of circRNAs has been found to significantly impact the 
signaling pathways involved in cancer therapy resistance 
[50], providing new insights into the mechanisms under-
lying cancer therapeutic resistance [51]. Further investi-
gation is necessary to completely comprehend the precise 
mechanisms by which m6A modification of circRNAs 
contributes to this resistance and to examine its poten-
tial as a therapeutic target [52]. The increasing knowl-
edge about circRNAs has revealed their crucial functions 
in the growth, movement, and infiltration of different 
types of tumor cells. Emerging evidence suggests that 
circRNAs can impact the sensitivity of cancer treat-
ment through various mechanisms, including regulating 
drug transportation, DNA repair, cell death, the tumor 
microenvironment, cellular self-degradation, EMT, can-
cer stem cells, and glucose metabolism (Table  1). This 
subsection primarily provides an overview of how m6A 
modification influences the tumor response to treatment 
through these various mechanisms (Fig. 4).

Effects of m6A modification on glycolysis, DNA damage 
repair, CSC properties, autophagy, and drug efflux 
during chemotherapy
m6A‑induced alterations in glycolysis
Researchers have now identified disrupted energy metab-
olism as a defining characteristic of cancer. In 1924, Otto 
Warburg discovered that tumor cells primarily rely on 
glycolysis for energy production, even in the presence 
of oxygen [81]. This phenomenon, known as "aerobic 
glycolysis" or the "Warburg effect", involves rapid glu-
cose consumption by tumor cells to generate lactic acid 
and ATP. While glycolysis yields less ATP than oxidative 
phosphorylation, it is crucial for the rapid proliferation 
of cancer cells due to its faster energy production rate 
[82]. Additionally, the abundant lactic acid produced by 
tumor cells contributes to an acidic TME. Furthermore, 
glycolytic intermediates can act as building blocks for 
synthesizing essential biomolecules, which play a criti-
cal role in driving tumor growth, metastasis, and treat-
ment resistance [83]. Recent research conducted by Yu’s 
group has revealed that the depletion of ALKBH5 results 
in an increase in the expression of casein kinase 2α 
(CK2α). This finding suggests that the m6A modification 
promotes cisplatin resistance in bladder cancer (BC) by 
upregulating the CK2α-mediated glycolysis pathway [84].
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m6A‑induced alterations in DNA damage repair
The field of m6A modification of circRNAs in DNA dam-
age repair is rapidly expanding. The m6A modification 
regulates the expression and functions of circRNAs in 
DNA damage repair processes [85]. This modification 
regulates glycolysis efficiency and promotes oncogen-
esis [86]. Furthermore, m6A modification in circRNAs is 
linked to various physiological processes, such as DNA 
damage repair [87]. However, more research is needed to 
fully elucidate the role of m6A modification of circRNAs 
in DNA damage repair [88].

Several proteins involved in repairing DNA damage, 
such as ERCC1, have been identified as crucial factors 
in the resistance to chemoradiotherapy. These proteins 

are closely linked to m6A modification. ERCC1, located 
on chromosome 19, plays a vital role in the nucleo-
tide excision repair (NER) pathway [89]. Higher lev-
els of ERCC1 correlate with cisplatin resistance in 
various cancers, including gastric (GC) and cervical 
cancers [90]. To better understand the role of FTO in 
chemoradiotherapy resistance, Zhou et al. investigated 
its expression and discovered its regulatory function 
in both cisplatin and radiotherapy resistance. Their 
research showed that FTO increases the expression 
of β-catenin, which in turn upregulates ERCC1. This 
upregulation of ERCC1, through NER activation, leads 
to treatment failure in cervical squamous cell carci-
noma (CSCC) [91]. Double-strand breaks (DSBs) are 

Table 1 CircRNAs involved in cancer therapy resistance

Therapeutic resistance Mechanisms Cancer types CircRNAs Roles Functions Ref

Chemoresistance Drug transport LUAD circPVT1↑ miR-145-5p↓ → ABCC1↑ Cisplatin/pemetrexed
resistance

[53]

CRC circ_0007031↑ miR-133b↓ → ABCC5↑ 5-FU resistance [54]

GC circMTHFD2↑ miR-124↓ → ABCB1↑ Pemetrexed resistance [55]

DNA damage repair GC circAKT3↑ PI3K/AKT path-
way↑ → BRCA1↑

Cisplatin resistance [56]

breast cancer circSMARCA5↓ SMARCA5↑ Cisplatin resistance [57]

Apoptosis GC circCCDC66↑ miR-618↓ → BCL-2↑ Cisplatin resistance [58]

EC cDOPEY2↓ CPEB4↑ → MLC-1↑ Cisplatin resistance [59]

NSCLC circ_0002874↑ miR-
1273f↓ → MDM2↑ → P53↓

Paclitaxel resistance [60]

Radioresistance TME GC circNRIP1↑ miR-138-5p↓ → HIF-1α↑ 5-FU resistance [61]

NSCLC circASXL1↑ miR-206↓ → HIF-1α↑ Cisplatin resistance [62]

Autophagy laryngocarcinoma circPGAM1↑ miR-376a↓ → ATG2A↑ Cisplatin resistance [63]

GC circCUL2↓ miR-138-5p↑ → ROCK2↓ Cisplatin resistance [64]

breast cancer circ_0092276↑ miR-384↓ → ATG7↑ Doxorubicin resistance [65]

EMT and CSCs prostate cancer circ_0092367↓ miR-1206↑ → ESRP1↓ Gemcitabine resistance [66]

NSCLC circ_0000079↓ FXR1/PRCKI complex↑ Cisplatin resistance [67]

NSCLC circRNA CDR1as↑ HOXA9↓ → miR-641↑ Cisplatin resistance [68]

CRC circ_001680↑ miR-340↓ → BMI1↑ Irinotecan resistance [69]

Glycolysis ESCC circGOT1↑ miR-606↓ → GOT1↑ Cisplatin resistance [70]

prostate cancer circARHGAP29↑ c-Myc↑ → LDHA↑ Docetaxel resistance [71]

neuroblastoma circDLGAP4↑ miR-143↓ → HK2↑ Doxorubicin resistance [72]

NSCLC circ_0008928↑ miR-488↓ → HK2↑ Cisplatin resistance [73]

Radioresistance TME HCC cZNF292↑ SOX9 nuclear transloca-
tion↑ → Wnt/β-catenin
pathway↑

Radioresistance [74]

Glycolysis breast cancer circABCB10↑ miR-223-3p↓ → PFN↑ Radioresistance [75]

Targeted therapy resist-
ance

Drug transport NSCLC circSETD3↑ miR-520 h↓ → ABCG2↑ Gefitinib resistance [76]

Autophagy CML circ_0009910↑ miR-34a-5p↓ → ULK1↑ Imatinib resistance [77]

EMT and CSCs PC circ_0013587↓ miR-1227↑ → E-cadherin↓ Erlotinib resistance [78]

Immunotherapy resist-
ance

TME ICC circHMGCS1–016↑ miR-1236–3↓ → CD73/
GAL-8↑

Anti-PD-1 therapy resist-
ance

[79]

HNSCC circFAT1↑ STAT3↑ → CD8 + T cells
infiltration↓

Anti-PD-1 therapy resist-
ance

[80]
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the most lethal form of DNA damage, but fortunately, 
cells have the ability to repair them through homolo-
gous recombination (HRR) [92]. However, abnormal 
expression of essential genes involved in HRR can alter 
the sensitivity of tumor cells to cancer therapy. This 
concept has been illustrated in several studies. For 

example, reduced expression of epithelial membrane 
protein 3 (EMP3) leads to increased levels of YTHDC1, 
which promotes DNA repair in breast cancer cells by 
upregulating BRCA1 and RAD51, ultimately result-
ing in chemoresistance [93]. Interestingly, IGF2BP1-
mediated stabilization of TFAP2C in cisplatin-resistant 

Fig. 4 The role of m6A regulators in mediating therapy resistance in cancer. A During chemotherapy: m6A modification can hinder 
the effectiveness of treatment by promoting processes such as glycolysis, DNA damage repair, CSC properties, autophagy, and drug efflux. B 
In radiotherapy: m6A modification can enhance radioresistance by improving DNA damage repair mechanisms and promoting characteristics 
associated with CSCs. C In targeted therapy: m6A modification can increase drug efflux, inhibit cell apoptosis, and impede drug influx, ultimately 
reducing the efficacy of targeted therapy. D In immunotherapy: m6A modification can remodel the tumor microenvironment (TME), thereby 
contributing to resistance against immunotherapy
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seminoma cells contributes to the activation of WEE1 
and BRCA1, further promoting DNA repair [94].

A previous study has shown that the m6A modifica-
tion of circRNA circNSUN2 increases its stability and 
enhances the recruitment of DNA damage repair pro-
teins to sites of DNA damage. This circRNA acts as a scaf-
fold to promote the assembly of DNA repair complexes, 
ultimately enhancing efficient DNA damage repair [95]. 
Another study has revealed that the m6A modification of 
circRNA circAmotl1a regulates the expression of DNA 
damage response genes by interacting with specific RBPs 
[96]. Additionally, the m6A modification of circHIPK3 
promotes its interaction with the DNA damage repair 
protein PARP1, which is involved in single-strand break 
and base excision repair [97]. Furthermore, the m6A 
modification of circDENND4C suppresses its interaction 
with the DNA damage repair protein ATM [98], thereby 
affecting the recruitment of DNA repair factors to DNA 
damage sites and altering the efficiency of DNA damage 
repair [99].

These findings indicate that m6A modification of cir-
cRNAs plays a crucial role in regulating DNA damage 
repair processes [93]. By modulating the expressions 
and functions of circRNAs, m6A modification can influ-
ence the efficiency and accuracy of DNA damage repair, 
thereby maintaining genomic stability [100]. Addition-
ally, more research is necessary to identify the precise 
mechanisms by which m6A modification influences cir-
cRNA-mediated DNA damage repair. Furthermore, it is 
important to explore the potential implications of DNA 
damage in diseases such as cancer and neurodegenerative 
disorders [101, 102].

The impact of circRNA m6A on EMT and CSCs
Recent studies have revealed that the modification of cir-
cRNAs through m6A can play a crucial role in regulating 
EMT and CSCs [103], ultimately influencing cancer pro-
gression [104]. EMT is a process closely associated with 
increased invasiveness and metastasis in cancer [105]. 
The impact of m6A modification on EMT-related circR-
NAs and their effect on cancer progression is currently a 
topic of active research.

Firstly, m6A modification can increase the stability of 
circRNAs, resulting in higher levels of expression [106]. 
These increased expressions of certain circRNAs are 
associated with EMT and CSC properties [107]. Fur-
thermore, circRNAs are identified as promoting EMT 
by serving as miRNA sponges or binding to specific pro-
teins, thereby regulating the expression of genes related 
to EMT [108].

Secondly, m6A modification can potentially regu-
late the function of circRNAs in EMT and CSCs. Stud-
ies have shown that m6A modification can influence the 

binding ability of circRNAs to specific proteins or miR-
NAs, thereby affecting their regulatory roles in EMT and 
CSCs [109]. For example, m6A modification of circRNA 
can alter its interaction with RBPs, resulting in changes 
to downstream signaling pathways involved in EMT and 
CSC maintenance [110]. Furthermore, circRNAs play 
a significant role in EMT-related processes such as cell 
invasion, metastasis, and the regulation of EMT-related 
transcription factors and signaling pathways [111]. Addi-
tionally, m6A modification of the circRNA circZEB1 
promotes EMT in GC cells by increasing the expression 
of the EMT transcription factor ZEB1 [112]. Moreover, 
m6A modification encourages the acquisition of CSC 
properties by activating the Wnt/β-catenin signaling 
pathway, leading to chemoresistance in colorectal cancer 
(CRC) [113].

In the context of CSCs, circRNAs have been implicated 
in their functions and potential applications. Exosome-
associated circRNAs have also been identified as critical 
regulators of EMT in cancer [114]. Additionally, m6A 
modification affects the expression of genes involved in 
EMT and CSCs [115]. m6A modification on mRNA tran-
scripts can affect their stability, translation, and splic-
ing, ultimately regulating the genes related to EMT and 
CSCs [116]. m6A modification of circSOX2 promotes 
CSC self-renewal and tumorigenicity in colorectal cancer 
by increasing SOX2 expression [117]. Consistently, m6A 
modification of the circCD44 promotes CSC self-renewal 
and tumorigenicity in glioblastoma by upregulating the 
expression of the stem cell marker CD44 [118]. This 
modulation of gene expression has also been linked to 
regulating the EMT process and maintaining CSC prop-
erties [119].

In summary, the m6A modification of circRNAs is 
identified as a crucial regulatory mechanism in the pro-
cesses of EMT and CSCs [120]. Understanding the 
impact of circRNA m6A modification on EMT and CSCs 
can offer valuable insights for developing new therapeu-
tic approaches in tumor treatment [121]. As research 
in this area progresses, we can expect to gain a deeper 
understanding of the specific mechanisms by which m6A 
modification regulates EMT and CSCs, and how this reg-
ulation can be utilized for therapeutic purposes [122].

m6A modification of circRNAs regulates autophagy
Recent research has shown that m6A modification is cru-
cial in activating autophagy and forming autophagosomes. 
A study conducted by Li et al. demonstrated that overex-
pression of YTHDF1 under hypoxia facilitated the transla-
tion of ATG2A and ATG14, resulting in the activation of 
autophagy [123]. Moreover, the activation of autophagy 
during hypoxia can lead to drug resistance in various types 
of tumor cells. This is attributed to the function of FTO in 
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decreasing levels of pro-survival autophagy, rendering gas-
tric cancer cells more susceptible to chemotherapy through 
the mTORC1 pathway [124]. METTL3 also plays a role in 
promoting autophagy, resulting in decreased sensitivity of 
seminoma cells to cisplatin [125].

Furthermore, m6A modification of circRNAs impacts 
the interaction between circRNAs and miRNAs. miRNAs 
are small RNA molecules responsible for regulating gene 
expression at the post-transcriptional level. CircRNAs 
can bind to miRNAs and inhibit their activity, acting as 
sponges for miRNAs. The m6A modification of circRNAs 
can be altered in their binding affinity to miRNAs, thereby 
modulating the regulation of miRNA targets and ultimately 
impacting autophagy-related pathways [126]. In summary, 
the m6A modification of circRNAs represents a novel 
mechanism by which circRNAs can regulate autophagy 
[127]. Additional experimental studies are needed to iden-
tify the specific circRNAs, uncover the mechanisms of 
m6A modification in regulating autophagy, and determine 
the implications for various cellular processes and diseases 
[11, 128].

m6A‑induced alterations in drug transport
The m6A modification significantly affects the resistance 
of cancer therapy through various mechanisms, such as the 
regulation of gene expression and the alteration of protein 
function [129]. One of these mechanisms is the alteration 
of drug transport [130]. Additionally, the m6A modifica-
tion plays an essential role in the expression of the ABC 
transporter family, which strongly contributes to multidrug 
resistance [131].

Resistance to cancer drugs is often caused by enhanced 
drug efflux and reduced drug influx. A recent study has 
identified a new m6A binder, insulin-like growth factor 2 
mRNA-binding protein 3 (IGF2BP3), which regulates gene 
expression by improving the stability and nuclear export of 
specific mRNA targets [132]. Overexpression of IGF2BP3 
interacts with the m6A site of P-gp, leading to increased 
expression of P-gp and reduced sensitivity of colorectal 
cancer cells to therapy [133]. Moreover, m6A modification-
induced upregulation of ERRγ promotes chemoresistance 
by increasing P-gp levels. Interestingly, Liu et al. found that 
YTHDF2 regulates the expression of ATF3, a transcription 
factor that interacts with the enhancer region of ABCB1 
and promotes its expression, resulting in tamoxifen resist-
ance [134].

The impact of m6A modification on DNA damage repair 
and CSC characteristics in radiotherapy
m6A modification improves DNA damage repair 
in radiotherapy
Cells have the ability to repair DNA damage caused by 
radiotherapy. A study on lung adenocarcinoma (LUAD) 

found that increased levels of m6A and decreased levels 
of miR-29b-3p resulted in an upregulation of VANGL1. 
This activation of VANGL1 triggers the BRAF/TP53BP1/
RAD51 pathway, promoting DNA repair and protecting 
cells from radiation damage [135].

m6A modification augments CSC characteristics 
in radiotherapy
Recent studies have shown that the modification of cir-
cRNAs through m6A has an impact on radiotherapy, 
thereby influencing cancer progression. For example, a 
study conducted by Liu et  al. identified the METTL14/
miR-99a-5p/TRIB2 axis as a significant contributor to the 
characteristics of CSCs and their resistance to radiother-
apy in esophageal squamous cell carcinoma (ESCC). The 
positive correlation between this axis and these aggres-
sive features suggests potential therapeutic targets for 
ESCC treatment [136].

The potential of m6A modification to affect drug efflux, cell 
apoptosis, and drug influx in targeted therapy
m6A modification increases drug efflux in targeted therapy
Apart from chemotherapy, m6A modification also occurs 
in targeted therapy. For example, Gefitinib, a drug com-
monly used to treat non-small cell lung cancer (NSCLC), 
can be effluxed by the transporter protein ABCC10, 
thereby impacting its intracellular concentration inside 
the cell [137]. Interestingly, research has shown that FTO, 
an enzyme enriched in serum exosomes from patients 
resistant to gefitinib, can increase the expression of 
ABCC10 through m6A modification. This suggests that 
overexpression of FTO may contribute to the develop-
ment of gefitinib resistance in NSCLC [138].

m6A modification induces cell apoptosis alterations 
in targeted therapy
Apoptosis, a programmed cell death process, is crucial 
in normal development and disease progression [139]. 
Evading apoptosis is a hallmark of cancer and a major 
cause of treatment failure. Key regulators of apoptosis 
include the BCL-2 family proteins. The BCL-2 family 
consists of both pro-apoptotic members, such as BAX 
and BAK, which trigger cell death, and anti-apoptotic 
members, such as BCL-2 and MCL-1 [140]. m6A modi-
fications can influence the expression of these BCL-2 
family proteins. For example, METTL3, an m6A writer 
enzyme, increases BCL-2 expression in breast cancer, 
thereby suppressing apoptosis [141]. This finding is par-
ticularly relevant because high levels of BCL-2 are linked 
to resistance to multiple drugs, including paclitaxel, 
tamoxifen, and trastuzumab [142, 143].
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m6A modification impedes drug influx in targeted therapy
In addition to the ABC efflux transporter family, the m6A 
modification also affects the expression of specific trans-
porters, such as organic anion-transporting polypeptides 
(OATP) [144]. The OATP transporter family consists 
of 11 members. Notably, OATP1B1 and OATP1B3 are 
located on the basement membrane of human liver cells 
(hepatocytes) and responsible for transporting drugs 
within the liver. Sorafenib, a targeted therapy for inop-
erable or advanced hepatocellular carcinoma (HCC) 
and clear cell renal cell carcinoma (ccRCC), is known 
to be a substrate for both OATP1B1 and OATP1B3. A 
recent study revealed that HCC tissues have lower levels 
of hepatocyte nuclear factor 3γ (HNF3γ) compared to 
healthy neighboring tissues. This decrease was linked to 
reduced METTL14 expression, contributing to sorafenib 
resistance by suppressing OATP1B1 and OATP1B3 
expression [145].

The impact of circRNA m6A regulators on the tumor 
microenvironment in immunotherapy
The TME comprises various cell types, including 
immune cells, tumor cells, and stromal cells [146]. These 
cells interact with each other, creating a microenviron-
ment that promotes tumor growth and survival [31]. The 
m6A modification of circRNAs is crucial in remodeling 
the TME by regulating gene expression involved in tumor 
progression and metastasis [147, 148]. By targeting spe-
cific circRNAs, m6A regulators can influence the expres-
sion of genes involved in the TME, such as immune 
checkpoint molecules, cytokines, and chemokines [32, 
149]. This can result in either an enhanced immune 
response against tumors or immune evasion by tumor 
cells [150]. Consistently, circRNA m6A regulators can 
also influence the interaction between cancer cells 
and stromal cells in the TME [151]. Furthermore, m6A 
modification can regulate the expression of extracellular 
matrix components and signaling molecules involved in 
cell–cell communication, ultimately impacting tumor 

cell invasion, angiogenesis, and metastasis [152]. Apart 
from regulating gene expression, m6A modification of 
circRNAs can also influence the interaction between cir-
cRNAs and proteins that regulate the TME [153]. The 
potential for using circRNA m6A regulators to remodel 
the TME as a target for cancer treatment has been identi-
fied [154]. However, research on the role of m6A modifi-
cation of circRNAs in remodeling the TME is still in its 
early stages [155], but it has shown potential for regulat-
ing immune responses in cancer.

The relationship between m6A modification 
and circRNAs in cancer therapy resistance
In this review, we provide a concise overview of the 
recent studies that have examined the regulatory role of 
m6A-modified circRNAs in the development of treat-
ment resistance in various types of cancers, including 
hepatocellular carcinoma (HCC), hypopharyngeal squa-
mous cell carcinoma (HSCC), and non-small cell lung 
carcinoma (NSCLC) (Table 2, Fig. 5).

Hypopharyngeal squamous cell carcinoma (HSCC)
Improving the diagnosis of HSCC requires identify-
ing the molecular mechanisms that promote therapy 
resistance. A previous study found that the expression 
of circ_0058106 is upregulated in HSCC tissues. 
Circ_0058106 is reported to regulate the Wnt2b/β-
catenin/c-Myc pathway, thereby promoting tumorigen-
esis and EMT in HSCC [160]. Similarly, another study 
showed that upregulated circMATR3 enhances prolifera-
tion and invasion, while inhibiting apoptosis [161]. It is 
plausible that m6A modification plays a regulatory role 
in the expression levels of circRNAs. This hypothesis is 
supported by a recent study by Wu et  al., which found 
that METTL3-mediated m6A methylation stabilizes the 
expression of circCUX1. CircCUX1, in turn, interacts 
with caspase 1, leading to a decrease in its expression 
and a subsequent reduction in IL-1β levels in the tumor 

Table 2 m6A-modified circRNAs in cancer therapy resistance

Cancer types M6A regulators Roles of m6A in circRNAs Functions Mechanisms Ref

HSCC METTL3 Promotes m6A modification of circ-
CUX1 to stabilizes its expression

Radiotherapy resistance Decreases the release of inflamma-
tory factors in TME

 [30]

HCC m6A Elevates circRNA-SORE expression via
increasing RNA stability

Sorafenib resistance Activates the Wnt/β-catenin pathway  [156]

IGF2BP1 Promotes m6A-modified circMAP3K4
translation

Cisplatin resistance Inhibits apoptosis  [157]

NSCLC YTHDC1 Facilitates the biogenesis of m6A-
modified circIGF2BP3

Anti-PD-L1 therapy resistance Promotes tumor immune evasion  [158]

YTHDF2 Increases m6A-modified circASK1
degradation

Gefitinib resistance Represses apoptosis  [159]
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microenvironment. This may potentially contribute to 
the development of tolerance in HSCC [30].

Hepatocellular carcinoma (HCC)
Recently, several studies have highlighted the crucial role 
of the interaction between circRNAs and m6A modifi-
cation in various aspects of HCC [162, 163]. For exam-
ple, it is found that METTL3 promotes the production 
of circHPS5 in HCC. The m6A-regulated circHPS5 
functions as a sponge for miR-370, increasing HMGA2 
expression and promoting EMT, ultimately facilitating 
the progression of HCC [164]. Sorafenib, a commonly 
prescribed targeted drug for HCC, is hindered in its 
therapeutic effectiveness by the development of acquired 
resistance. In sorafenib-resistant HCC, the elevated lev-
els of circRNA-SORE, transported through exosomes, 
impede the degradation of YBX1 by interacting with it, 
thereby reducing the drug’s therapeutic effectiveness 
[165].

Non‑small‑cell lung cancer (NSCLC)
Lung cancer is a significant threat to human well-being 
and is one of the leading causes of cancer-related deaths 

worldwide [157]. In recent years, targeted therapy and 
immunotherapy have made promising advancements, 
providing hope for patients with lung cancer. However, a 
major challenge remains in the development of acquired 
resistance to these treatments. Mettl3 plays a crucial role 
in promoting the circularization of circIGF2BP3 through 
its m6A modification. This circular RNA acts as a com-
petitive endogenous RNA (ceRNA), sequestering miR-
328-3p and miR-3173-5p to increase the expression of 
PKP3. PKP3 interacts with the RNA-binding protein 
FXR1, stabilizing OTUB1 mRNA and promoting the 
abundance of PD-L1 through deubiquitination. Impor-
tantly, deletion of tumor PD-L1 abolishes the effect of 
the circIGF2BP3/PKP3 axis on  CD8+ T cell response. In 
a Lewis lung carcinoma mouse model, inhibition of the 
circIGF2BP3/PKP3 pathway enhanced the efficacy of 
anti-PD-1 therapy. Furthermore, the PKP3/PD-L1 sig-
nature and the level of infiltrating  CD8+ T cells can be 
used to classify NSCLC patients into distinct risk groups 
[166]. It has been confirmed that IGF1R promotes pro-
liferation by activating the PI3K/AKT pathway, leading 
to osimertinib resistance [158]. Overall, understanding 
the mechanisms behind acquired resistance in NSCLC 

Fig. 5 The role of m6A-modified circRNAs in cancer therapy resistance. m6A modification significantly impacts the biogenesis, translation, 
and degradation of circRNAs, ultimately affecting their role in therapeutic resistance in various types of cancer. A In non-small cell lung 
cancer (NSCLC), YTHDC1 and YTHDF2 play a crucial role in facilitating anti-PD-L1 therapy and gefitinib resistance by increasing the biogenesis 
of circIGF2BP3 and degrading circASK1, respectively. B In head and neck squamous cell carcinoma (HSCC), METTL3 increases the stability 
of circCUX1, leading to radioresistance. C In hepatocellular carcinoma (HCC), m6A regulators promotes the stability of circRNA-SORE 
and the translation of circMAP3K4, resulting in resistance to sorafenib and cisplatin, respectively
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and exploring the role of circRNAs, such as circIGF2BP3 
and hsa_circ_0005576 [167, 168], can provide valuable 
insights for developing more targeted and effective treat-
ment strategies [169].

Furthermore, studies have demonstrated that increased 
levels of circNDUFB2 can effectively impede the pro-
liferation and dissemination of NSCLC cells. This is 
achieved through circNDUFB2 as a scaffold, facilitating 
the interaction between TRIM25 and IGF2BPs, a protein 
known to drive tumor progression and metastasis. The 
formation of the TRIM25/circNDUFB2/IGF2BPs com-
plex results in the tagging and degradation of IGF2BPs, 
a process further enhanced by the m6A modification of 
circNDUFB2. Additionally, circNDUFB2 can activate 
the RIG-I-MAVS signaling pathway by binding to RIG-I, 
attracting immune cells to the TME [170].

CircRNA influences m6A modification in cancer therapy 
resistance
Notably, abnormal circRNA expression affects m6A 
modification in cancer. We have compiled a summary of 
studies on m6A regulation by circRNAs, including CRC, 
BC, HCC and glioma, as shown in Table 3 and Fig. 6.

Potential challenges associated with targeting m6A 
writers, readers, and erasers for therapeutic benefit
Small molecules are crucial tools for understanding the 
roles of specific RNA modifications in certain types 
of cancer. Table  4 summarizes small molecule inhibi-
tors that target writers, readers, and erasers of m6A 
modifications.

Despite promising preclinical data, targeting dysreg-
ulated m6A modifiers with small-molecule inhibitors 
remains challenging. A deeper understanding of the 
role and underlying mechanisms of m6A machinery in 
cancer is crucial for selecting effective therapeutic tar-
gets. In addition to small molecules, protein degraders 

offer an alternative strategy for targeting m6A readers. 
Combinatorial targeting of multiple oncogenic m6A 
modifiers shows promise for achieving optimal thera-
peutic outcomes. For example, simultaneously target-
ing writers and erasers could have a synergistic effect, 
considering their distinct tumorigenic mechanisms. 
Functional studies using genetic depletion models and 
combinatorial genetic deletions can validate synergy 
and guide researchers in developing novel combina-
tion therapies. Due to the context-dependent nature 
of m6A modifiers, different cancer types or subtypes 
may require unique combination therapies. Future pos-
sibilities may include CRISPR-based manipulation of 
specific m6A modifications critical for cancer develop-
ment. The complex and interactive nature of cancer and 
the TME suggests that targeting oncogenic m6A modi-
fiers will likely require a combination with other thera-
pies to achieve curative effects.

Developing effective RNA-based therapies and tar-
geting RNA-modifying proteins requires optimiz-
ing drug discovery pipelines. Current drugs targeting 
these enzymes often cause off-target effects, hindering 
their clinical potential. Overcoming the challenge of 
off-target effects and ushering in a new era of targeted 
RNA-based interventions can be achieved through 
advancements in computational models, high-through-
put enzymatic assays, and exploration of intercon-
nected pathways.

Naturally, RNA modifications can enhance the stabil-
ity, efficacy, and specificity of therapeutic RNAs. We 
can optimize these benefits, such as increased stability, 
improved efficacy, and enhanced specificity, through 
strategic natural and synthetic modifications targeting 
specific sequence contexts and locations. Integrating 
comparative single-cell analyses with advanced molec-
ular, biochemical, and cellular studies in healthy and 
diseased human cells can fully harness the potential of 
RNA modifications for clinical applications.

Table 3 CircRNAs related to m6A modification in different types of cancer

Cancer circRNAs Roles of circRNAs in m6A Functions Mechanisms Ref

Glioma circ_0072083 Promotes ALKBH5 expression via sponging miR-
1252-5p

Temozolomide resistance Maintains glioma stem cells  [171]

CRC circPTK2 Elevates YTHDF1 level by targeting miR-136-5p 5-FU/oxaliplatin resistance –  [172]

HCC circRHBDD1 Recruits YTHDF1 Anti-PD-1 therapy resistance Elevates glycolysis  [173]

Bladder cancer circ0008399 Facilitates the formation of MTC through combin-
ing with WTAP

Cisplatin resistance Boosts anti-apoptosis  [174]

circMORC3 Interacts with VIRMA and elevates global m6A
level

Cisplatin resistance Promotes DNA repair and
suppresses DNA damage

 [175]

Prostate cancer circARHGAP29 Interacts with IGF2BP2 Docetaxel resistanc Promotes glycolysis  [71]
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Exosomal circRNA functions as clinical biomarker
A compilation of the most recent discoveries exploring 
circRNAs and exosomal circRNAs as potential diagnostic 
or prognostic indicators for different cancer types can be 
found in Table 5. As more experimental data is gathered, 
we are optimistic that exosomal circRNAs will prove to 
be highly promising cancer biomarkers and eventually 
have practical applications in clinical settings.

CircRNAs boast exceptional stability due to their 
unique covalent closed-loop structure, which protects 
them from exonuclease degradation. This results in a 
significantly longer lifespan compared to their parent 
mRNAs, while mRNAs typically degrade within 10 h, cir-
cRNAs can persist for up to 48 h [176]. These advantages 
make circRNAs a promising tool for cancer diagnosis 

and prognosis prediction. However, the low abundance 
of exosomal circRNAs poses a challenge in accurately 
detecting and identifying them in body fluids using cur-
rent methods [177]. Furthermore, the cost of detecting 
circRNAs in tissue or exosomes is higher than that of 
existing tests. Therefore, advanced techniques are needed 
to improve the accuracy and affordability of detecting 
exosomal circRNAs before they can be effectively used 
in lipid biopsies for clinical applications. Combining exo-
somal circRNAs with other exosomal cargoes or current 
biomarkers may provide a more precise and comprehen-
sive assessment for early cancer diagnosis and predicting 
clinical outcomes.

Although ultrasensitive flow cytometry has been widely 
used to identify the origin of external vesicles by staining 

Fig. 6 CircRNAs influence m6A modification in cancer therapy resistance. CircRNAs can either modulate the expression of m6A regulators 
or interact with them, significantly impacting m6A functions in various types of cancer. A In prostate cancer, circARHGAP29 interacts with IGF2BP2, 
leading to an increase in docetaxel resistance. B In colorectal cancer (CRC), circPTK2 increases the level of YTHDF1, resulting in resistance to 5-FU 
and oxaliplatin. C In hepatocellular carcinoma (HCC), circRHBDD1 recruits YTHDF1, leading to resistance to anti-PD-1 therapy. D In glioma, 
circ_0072083 promotes the expression of ALKBH5, resulting in resistance to temozolomide. E In breast cancer (BC), circ0008399 facilitates 
the formation of MTC by interacting with WTAP, leading to an increase in cisplatin resistance. Additionally, circMORC3 promotes cisplatin resistance 
by interacting with VIRMA
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Table 4 Small-molecule inhibitors targeting RNA modifications

Abbreviations: ALKBH5 AlkB homolog 5, AML Acute myeloid leukemia, FTO Fat mass and obesity-associated protein, GSCs Glioma stem-like cells, IDH Isocitrate 
dehydrogenases, MA Meclofenamic acid, METTL3  Methyltransferase-like 3, METTL14 Methyltransferase-like 14, N/A Not available, PUS Pseudouridine synthase, 
YTHDF YTH domain-containing family protein

Target gene Inhibitor name Cancer Anticancer potency

METTL3/METTL14 STM2457 AML 0.6–10.3 μM

STC-15 Advanced tumors

Multiple small molecules AML, ovarian
adenocarcinoma

80 nM–1.39 μM

Multiple small molecules AML  < 1 μM, < 10 μM

UZH2 AML 12 μM, 70 μM

UZH1a prostate cancer Not tested

CDIBA AML 13–22 μM

Eltrombopag osteosarcoma 8.28 μM

Elvitegravir AML Reduced metastasis

YTHDF Ebselen Prostate cancer 26.83 μM

YTHDF1 Salvianolic acid (SAC) Neuronal tissue N/A

YTHDF2 CpG-siRNAYTHDF2 Mouse melanoma Reduced tumor growth

FTO CS1 AML 22–753 nM

FB23-2 AML 1.9–5.2 μM

MO-I-500 Triple-negative
Breast cancer

Inhibited survival and colony formation

MA Hela N/A

MA2 GSCs Inhibited growth and self-renewal of GSCs

FTO-04 GSCs, glioblastoma Impaired self-renewal properties

Dac51 Melanoma Inhibited tumor growth

R-2HG Glioma Decreased cell proliferation

ALKBH5 2-[(1-hydroxy-2-oxo-2-phenylethyl)
sulfanyl]acetic
acid, 4-{[(furan-2-yl)methyl]
amino}-1,2-diazinane-3,6-dione

AML 1.38–47.8 μM

PUS7 C17 Glioblastoma 56.77–177.4 nM

Table 5 The clinical applications of circRNAs and exosomal circRNAs as biomarkers for cancer diagnosis or prognosis

Registration 
number/NCT
number

Study type Study phase Recruiting status Tumor type Sample name Sample size

ChiCTR2300069863 Observational study 0 Recruiting Cholangiocarcinoma Bile, serum 320

ChiCTR1900027419 Basic science 0 Not yet recruiting Lung cancer Blood 58

ChiCTR1900024188 Diagnostic test 0 Recruiting Prostate cancer Urine 300

ChiCTR1800019529 Diagnostic test Diagnostic
new technique clinical
study

Recruiting Prostate cancer Plasma 200

ChiCTR1800018038 Diagnostic test Diagnostic
new technique clinical
study

Not yet recruiting Pancreatic cancer Blood 20

NCT05771337 Observational study Not available Not yet recruiting Breast cancer Blood 80

NCT04584996 Observational study Not available Recruiting Pancreatic cancer, biliary tract 
cancer

Blood, bile 186

NCT04464122 Observational study Not available Recruiting Neuroendocrine neoplasm Not available 60

NCT03334708 Observational study Not available Recruiting Pancreatic cancer Blood 700
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cell-specific markers, the classification of exosomes 
needs to be clarified and consistent across different stud-
ies [178]. Furthermore, the accuracy of using exosomal 
circRNAs as diagnostic and prognostic biomarkers for 
human malignancies may be affected by the choice of cir-
cRNA profiling method. Techniques such as RNA-seq, 
microarray, and qRT-PCR can each impact the results 
[179]. Therefore, standardized protocols for exosome iso-
lation, purification, characterization, and profiling meth-
ods are urgently needed in exosomal circRNA research.

Conclusions and future prospects
The development of resistance to cancer treatment pre-
sents significant challenges, such as higher mortality 
rates and unfavorable prognoses for cancer patients. 
Therefore, it is imperative to thoroughly investigate the 
potential molecular mechanisms that contribute to ther-
apeutic resistance in cancer. While many studies have 
proposed various factors that can impact the responsive-
ness of tumor cells to treatment, the exact mechanisms 
responsible for therapeutic resistance still need to be 
fully understood. In this comprehensive review, we have 
synthesized the latest findings on the interplay between 
m6A modification and circRNAs, and their implications 
for therapeutic resistance. This review offers valuable 
insights for future research on overcoming therapeutic 
resistance in cancer.

Epigenetic regulation, specifically modifications in 
RNA, can significantly impact post-transcriptional gene 
expression. This dysregulation includes alterations in 
ABC transporters, OATP transporters, genes involved in 
autophagy, DNA damage and repair genes, all of which 
contribute to cancer relapse. However, the extent to 
which these epigenetic mechanisms contribute to the 
dysregulation of circRNAs. Our research has revealed 
that m6A modifications significantly influence the bio-
synthesis, localization, translation, and degradation, 
potentially leading to abnormal circRNA expression. 
However, only a few m6A-modified circRNAs have been 
identified as being associated with the response to tumor 
therapy.

Improving the detection of m6A modification pre-
sents a significant technical challenge. While several 
techniques have been developed in recent years, such 
as methylated RNA immunoprecipitation sequencing 
(MeRIP-seq), m6A labeling-based sequencing (m6A-
label-seq), and methylation-iCLIP (miCLIP), they all 
have limitations and require further refinement. For 
instance, MeRIP-seq relies on antibodies, which can lead 
to false-positive results due to their lack of specificity. 
Similarly, although m6A-label-seq can recognize m6A 
sites with single-base resolution, it is limited in its abil-
ity to detect a large number of m6A residues [180–183]. 

Furthermore, there is growing evidence to suggest that 
other RNA modifications, such as pseudouridine (Ψ) and 
5-methylcytosine (m5C), are prevalent in non-coding 
RNAs, including ribosomal RNAs, miRNAs, and lncR-
NAs [184]. Therefore, it is hypothesized that circRNA 
levels may be regulated not only by m6A modifications 
but also by other types of RNA modifications.

Currently, scientists have discovered various natural 
compounds that target m6A readers, writers, and erasers. 
For example, Saikosaponin D (SsD) increases the overall 
m6A modification level by inhibiting the m6A demethy-
lase FTO. This, in turn, can alleviate leukemia resistance 
to TKIs therapy by reducing the stability of BCL-2 [174]. 
In addition to SsD, other substances such as fusaric acid, 
curcumin, STM2457, and chidamide can modulate m6A 
regulatory proteins [185]. The discovery of these modula-
tors that target m6A offers new possibilities for overcom-
ing therapeutic resistance.

Recently, numerous studies have revealed that circR-
NAs are highly abundant in exosomes. These exosomes 
facilitate the progression of cancer by acting as vehicles 
for transporting molecules, particularly circRNAs. These 
exosomes are present in various bodily fluids, includ-
ing urine, blood, and saliva. Consequently, the potential 
of exosomal circRNAs as valuable markers for cancer 
prognosis in liquid biopsies should not be disregarded 
[186]. To fully realize this potential, the development of 
highly accurate detection techniques is crucial [42]. Cer-
tain circRNAs can be to be translated through IRES and 
m6A-dependent pathways [187]. Additionally, certain 
circRNAs possess the capacity to regulate the expres-
sion of m6A regulators through their ability to sponge 
miRNAs and interact with m6A writers/readers/erasers. 
However, it is still unclear whether circRNAs can impact 
m6A modification through other biological functions, 
such as gene transcription regulation or translation, 
remains unclear.

In summary, m6A modification, circRNAs, and their 
interactions are crucial in regulating resistance to can-
cer treatment. In the future, targeting m6A modification 
and circRNAs in drug development may help researchers 
conquer treatment resistance.
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