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Abstract 

Background Factors to accurately stratify patients with early‑stage non‑small cell lung cancer (NSCLC) in different 
prognostic groups are still needed. This study aims to investigate 1) the prognostic potential of circulating cell‑free 
(CF) and extracellular vesicles (EVs)‑derived microRNA (miRNAs), and 2) their added value with respect to known 
prognostic factors (PFs).

Methods The RESTING study is a multicentre prospective observational cohort study on resected stage IA‑IIIA 
patients with NSCLC. The primary end‑point was disease‑free survival (DFS), and the main analyses were carried 
out separately for CF‑ and EV‑miRNAs. CF‑ and EV‑miRNAs were isolated from plasma, and miRNA‑specific libraries 
were prepared and sequenced. To reach the study aims, three statistical models were specified: one using the miRNA 
data only (Model 1); one using both miRNAs and known PFs (age, gender, and pathological stage) (Model 2), and one 
using the PFs alone (Model 3). Five‑fold cross‑validation (CV) was used to assess the predictive performance of each. 
Standard Cox regression and elastic net regularized Cox regression were used.

Results A total of 222 patients were enrolled. The median follow‑up time was 26.3 (95% CI 25.4–27.6) months. 
From Model 1, three CF‑miRNAs and 21 EV‑miRNAs were associated with DFS. In Model 2, two CF‑miRNAs (miR‑
29c‑3p and miR‑877‑3p) and five EV‑miRNAs (miR‑181a‑2‑3p, miR‑182‑5p, miR‑192‑5p, miR‑532‑3p and miR‑589‑5p) 
remained associated with DFS. From pathway enrichment analysis, TGF‑beta and NOTCH were the most involved 
pathways.

Conclusion This study identified promising prognostic CF‑ and EV‑miRNAs that could be used as a non‑invasive, 
cost‑effective tool to aid clinical decision‑making. However, further evaluation of the obtained miRNAs in an external 
cohort of patients is warranted.
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Introduction
Lung cancer is one of the most common cancers and 
exhibits the highest mortality worldwide [1]. Significant 
progress has been made concerning metastatic non-
small cell lung cancer (NSCLC) thanks to the introduc-
tion of targeted therapy and immunotherapy in clinical 
practice. Of note, these therapies have been incorpo-
rated in earlier stages.

Early-stage non-small cell lung cancer (ES-NSCLC) 
represents only 20–30% of all NSCLC and is charac-
terized by a high survival probability after surgery. 
However, considering stage IA-IIIA NSCLC, an overall 
relapse rate of about 50% is observed with wide vari-
ations within the same tumor node metastasis (TNM) 
stage. Most recurrences happen within the first two 
years after the primary tumor resection, usually at 
distant sites, and are associated with a dismal 5-year 
survival of 30% [2]. Efforts are being made to identify 
molecular tumor characteristics and tumor microen-
vironment (TME) features that discriminate patients 
at higher risk of relapse [3–5]. Recurrent stage I lung 
adenocarcinomas exhibited a higher mutation load and 
a lower methylation profile with respect to non-recur-
rent tumors, as well as widespread activation of known 
cancer and cell cycle pathways. Moreover, recurrent 
tumors displayed downregulation of immune response 
pathways, including antigen presentation and Th1/Th2 
activation [6]. With regard to circulating biomarkers, 
circulating tumor DNA levels evaluated post-surgery or 
longitudinally during patient follow-up have been asso-
ciated with the risk of relapse and prognosis [7], rep-
resenting a promising biomarker for the evaluation of 
minimal residual disease. Circulating microRNA (miR-
NAs) have also been studied as potential biomarkers, as 
they are very stable in the bloodstream. Several studies 
have demonstrated that different miRNA profiles are 
associated with prognosis [5, 8]. Nonetheless, very het-
erogeneous results emerged from the different studies, 
which could be mainly due to several factors: the use of 
serum or plasma, the evaluation of the free counterpart 
of miRNAs or that encapsulated in extracellular vesi-
cles (EVs), the methodologies used for miRNA normali-
zation, the applied statistical approach. Moreover, the 
improvement of the different biomarkers with respect 
to the already recognized clinical parameters (such 
as pathological stage performance status) was rarely 
evaluated.

The main objectives of this study were: i) to investi-
gate the prognostic potential of circulating cell-free 
(CF) and extracellular-vesicle (EV)-derived miRNAs in 
a cohort of surgically treated ES-NSCLC patients, ii) 
to preliminary assess their predictive accuracy, and iii) 

to investigate their added value as compared to basic 
prognostic factors.

Materials and methods
Study design
An international, multicenter, prospective, observa-
tional study was conducted to reach the study’s aims. 
In particular, four centers from three European coun-
tries were involved (Italy: IRST-IRCCS, Meldola, and S. 
Orsola-Malpighi Hospital, Bologna; Spain: Vall d’Hebron 
hospital/VHIO, Barcelona; France: CHU de Strasburg, 
Strasburg), and the study protocol was approved by their 
respective independent ethics committees (IRST-IRCCS: 
CEROM N.0003097/2018 of 24/04/2018; S.Orsola-
Malpighi Hospital: AVEC N.704/2018/OSS/AUSLBO; 
Hospital Vall d’Hebron/VHIO: PR(AG)188/2018; CPP 
Ile-de-France, Protocole 22–2019; CHU De Strasburg). 
The study was conducted following the Declaration of 
Helsinki, the International Council for Harmonization, 
good clinical practices, and the applicable legislation on 
non-interventional observational studies.

Adult patients (> = 18  years of age) diagnosed with a 
histologically confirmed stage IA-IIIA NSCLC based on 
the 8th edition TNM classification for lung and pleural 
tumors [9] surgically resected between November 2018 
and December 2020 were included in the study. Patients 
with concomitant cancer at the time of the ES-NSCLC 
diagnosis or in the previous 5 years were excluded. A pre-
surgery peripheral blood sample was collected (within 
3 weeks by the date of surgery). In particular, n. 2 × 10 ml 
Cell-Free DNA BCT® Streck tubes were collected and 
centrifuged for plasma obtaining by using specific Stand-
ard Operative Procedures (SOPs) shared by the different 
centers. Specifically, tubes were centrifuged at 1600 × g 
for 10  min at room temperature, with low acceleration 
and deceleration, and the upper plasma layer was trans-
ferred into a clean conical 15  ml Falcon tube and then 
centrifuged at 2000 × g for 10 min, at room temperature, 
with low acceleration and deceleration Plasma was stored 
at -80  °C until the start of molecular analyses. Demo-
graphic, clinical, and treatment information were col-
lected from patient’s medical records and transcribed on 
the electronic case report forms (eCRFs) created by using 
the OpenClinica system.

Isolation of extracellular vesicles and miRNA extraction
Isolation of EVs and associated RNA content was per-
formed as previously described [10]. EVs were also 
characterized according to MISEV guidelines [10, 11]. 
Briefly, for each patient, 2  ml of plasma samples were 
sequentially separated in two distinct fractions of all-
sizes vesicular RNAs and circulating cell-free RNAs, 
including miRNAs, by an all-in-one purification kit 
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based on spin column chromatography with silicon-
carbide resin separation matrix (Cat. 56,900, Norgen 
Biotek Corp, Ontario, Canada). The extracted RNA was 
eluted in 50 µL and checked on RNA6000 pico chips 
using the bioanalyzer 2100 instrument (Agilent Tech-
nologies, Milan, Italy). Patient EVs were then character-
ized for size, plasma concentration, and polydispersity 
data, by using the NanoSight NS300 tracking system 
(Malvern Instruments Limited, Cambridge, UK). Sam-
ples were diluted in PBS to a final volume of 1  mL 
and concentration, according to the manufacturer’s 
software manual, within the particles/frame range of 
20–120 and the total track to valid track ratio of less 
than 5 (NanoSight NS300 User Manual, MAN0541-
01-EN-00, 2017). Flow cytometry characterization 
of 37 EV-specific surface markers was done by the 
MACSPlex Exosome Kit, human (Miltenyi Biotec B.V. 
& CO. KG, Bergisch Gladbach, Germany), as previ-
ously detailed [10]. Samples were diluted with MACS-
Plex buffer (MPB) to a final volume of 120 μL, 15 μL of 
MACSPlex Exosome Capture Beads, and 5 uL of each 
of MACSPlex Exosome Detection Reagent antibodies 
for ubiquitous EV marker controls (CD9, CD63, CD81) 
were added to each well. Following buffer incubation 
and washing steps, flow cytometric analysis was per-
formed with a BD FACSVantage ™ cytofluorimetric (BD 
Biosciences, Franklin Lakes, NJ, USA). Approximately 
10,000 events were recorded per sample. Median fluo-
rescence intensity (MFI) for all 39 capture bead subsets 
(37 markers plus two background controls) was back-
ground corrected (Supplementary Fig. 1). Samples were 
finally stored at -80  °C until miRNA library prepara-
tion. An independent 1 ml plasma aliquot was used to 
purify intact EVs for nanoparticle characterization.

miRNA profiling
Separate miRNA libraries were prepared for either CF-
miRNAs or EV-RNAs using the Qiaseq miRNA library 
kit (Qiagen, Milan, Italy). Libraries were prepared fol-
lowing the manufacturer’s instructions with some adap-
tations for low RNA inputs, as previously described. 
Specifically, higher dilution of ligation adapters and RT 
primers were adopted to reduce adapter dimers forma-
tion; PCR cycles were increased (22 cycles), and an addi-
tional bead-based purification step was added to remove 
unwanted small fragments (< 100 bp). Qubit dsDNA HS 
assay kit (ThermoFisher, Waltham, MA, USA) and DNA 
high-sensitivity chips on the Bioanalyzer 2100 instru-
ment (Agilent Technologies, Milan, Italy) were used for 
library quantification and quality checks. Libraries were 
then normalized and sequenced on the Nextseq550 
instrument (Illumina, San Diego, CA, USA).

Bioinformatic analysis
The bioinformatics analysis was developed both in the 
pre-alignment and alignment steps, followed by the 
identification of microRNAs. The bioinformatic analysis 
was developed in two steps. All individual steps and the 
related tools are shown in Supplementary Fig.  2. In the 
first phase, the bcl files generated by the sequencer were 
demultiplexed to generate fastq files. Subsequently, a 
quality assessment of the reads was performed to ensure 
the goodness of the subsequent analysis. The next step 
was identifying the UMIs (Unique Molecular Identifiers) 
within the reads entered during library synthesis. These 
molecular tags allow counting the initial small RNA 
molecules in the starting material and reducing possi-
ble biases introduced in the PCR amplification step. As 
the length of mature miRNAs is known to be around 
22–25 bp, reads were subsequently cut to remove reads 
that were too short (< 18 bp) and too long (> 30 bp). These 
two steps are essential for the next stage of microRNA 
identification and counting. We then aligned the reads 
against the mature miRNA sequence database, miRBase 
version 22, and generated the count table for subsequent 
analyses.

Statistical analysis
Data were summarized as mean ± standard deviation 
(SD), median, and first (IQ) and third (IIIQ) quartiles, as 
appropriate, for continuous variables and as counts and 
percentages for categorical variables. The endpoint was 
disease-free survival (DFS), defined as the time from the 
date of surgery until the date of disease relapse or death 
from any cause, whichever occurred first. Patients not 
experiencing any event were censored at the date of the 
most recent contact (the last follow-up update was per-
formed on March 31st, 2022).

The Kaplan–Meier (KM) method and log-rank test 
were used to compare DFS curves between patient 
groups defined by covariates’ levels. Univariable Cox 
regression models were used to evaluate the direction 
and magnitude of the association between covariates and 
the DFS. Results were reported as hazard ratios (HRs) 
and median DFS, with corresponding 95% confidence 
intervals (CIs). Median follow-up time was computed by 
means of the reverse K-M method. For some analyses, 
the categories of covariates were grouped due to their 
low frequency.

Before the mainstream statistical analysis, miRNAs 
were filtered starting from the raw counts matrix; miR-
NAs with a third quartile value of fewer than five counts 
were excluded. Furthermore, samples with a median or 
first quartile value computed across the miRNAs equal to 
zero were excluded. Once the miRNAs and samples were 
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filtered out, data were normalized and transformed using 
the Trimmed Means or M-values   (TMM) method and 
the Blom transformation, respectively. These steps were 
carried out separately for cell-free and extracellular vesi-
cle miRNAs.

The primary study objectives were to investigate: i) the 
prognostic potential of the miRNAs alone or in combi-
nation with standard prognostic factors such as age at 
surgery, sex, and pathological stage; ii) their predictive 
capacity, and iii) their added value in terms of predic-
tive accuracy as compared to standard prognostic factors 
alone.

To reach these aims, three distinct models were speci-
fied: one using the miRNA data only (Model 1), one using 
both miRNAs and standard prognostic factors (Model 
2), and one using the prognostic factors alone (Model 3). 
Regarding the first two models, given the large number 
of biomarkers, elastic net regularized Cox regression was 
used (fixing the mixing parameter to 0.9 and using 5-fold 
cross-validation—CV—for the identification of the opti-
mal regularization tuning parameter, lambda) and the 
results reported in terms of beta regression coefficients, 
as the computation of coefficients’ standard errors as well 
as other quantities (e.g., confidence intervals) within the 
context of Cox elastic net models is still a problematic 
issue. For the third model, the standard Cox model was 
applied. Given the relatively limited number of observa-
tions and events, the predictive accuracy of the survival 
models was evaluated through a 5-fold CV and based on 
two metrics: the cross-validated Kaplan–Meier curves 
and the cross-validated time-dependent Receiver Operat-
ing Characteristics (ROC) curves. The CV Kaplan–Meier 
curves should reflect the ability of the survival model 
to classify patients characterized by a different risk of 
relapse or death. The number of groups and how to assign 
patients to each group should be defined in advance. In 
our study, we decided to consider only two groups and 
to assign patients to a group or another based on the 
median value of the prognostic index (given by the lin-
ear predictor) computed using the regression coefficients 
obtained from a model developed on the training portion 
of the CV process [12]. The aforementioned prognostic 
index was used to calculate the CV ROC curves and the 
corresponding area under the curve (AUC), defining a 
landmark timepoint of 24 months. Although the log-rank 
test is usually used to compare KM curves, in the case of 
CV curves, it is necessary to resort to permutations to 
obtain the distribution of the test statistic under the null 
hypothesis and, therefore, evaluate the statistical signifi-
cance of the log-rank.

Similarly, a permutation-based test must be per-
formed to test the null hypothesis of an AUC of 0.5. 
To this end, we proceeded by randomly permuting 

the correspondence between the disease-free survival 
times, the censoring indicator, and the clinical covari-
ates and miRNAs and repeating the CV procedure for 
each permutation. The number of permutations was 
set equal to 500. To evaluate the added value, in terms 
of predictive accuracy, of the considered biomarkers 
with respect to basic clinical factors, we proceeded by 
testing the difference in the log-rank and AUC values 
between the combined model (miRNA + known prog-
nostic factors) and the model with known prognostic 
factors only. Also, in this case, the level of significance 
was determined by resorting to permutations even 
if, in this case, only the miRNA vector was permuted. 
The above-mentioned analysis plan was first carried 
out taking the two sets of miRNAs separately and then 
together.

The association between demographic and clinical 
covariates and miRNAs was tested by means of the Stu-
dent t-test, and p-values were adjusted using the Benja-
mini–Hochberg method.

The statistical analyses were performed using STATA 
15.0 (College Station, Texas, USA) and R version 4.2.0, 
(R Core Team, Vienna, Austria) using mainly the fol-
lowing packages: edgeR, survival, glmnet. The R pack-
age gplots were used for the graphical representation 
of selected miRNAs through a heatmap (a hierarchical 
clustering considering the Euclidean distance measure 
and the complete agglomeration method was used); the 
plot was annotated and ordered using the DFS status at 
24 months.

Enrichment analysis
Pathway enrichment analysis of genes targeted by 
relevant microRNAs was performed using mirNET 
(https:// www. mirnet. ca) [13]. Briefly, miRTarBase v8.0 
and TarBase v8.0 were adopted by the software to select 
microRNA-gene interactions validated experimentally. 
Then, a network was created, and the minimum net-
work filtering approach was used to reduce network 
size and keep the main connection patterns. Reactome 
was then interrogated for pathway enrichment of the 
network.

Pathway enrichment was performed starting from a 
single list of CF- and EV- miRNAs associated with DFS 
from the mainstream statistical analyses (Model 1) and 
considering separate lists for each type of miRNA. Addi-
tional analyses were carried out according to the sign of 
the miRNA’s relationship with the DFS and the sign of 
the models’ regression coefficients. Moreover, all analy-
ses were repeated, adding miRNAs correlated (with a 
Pearson’s correlation coefficient of at least 0.6 in absolute 
value) with those selected by the mainstream analyses.

https://www.mirnet.ca
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Results
Demographic and clinical characteristics
A total of 222 patients were enrolled in the study. One 
hundred and thirty-three patients were males (59.9%), 
the median age at surgery was 70  years (IQ-IIIQ: 
63–75), and the majority (86.1%) had a history of smok-
ing, Table 1. In addition, most patients (95.8%) had an 
ECOG performance status (PS) of less than or equal 
to 1. One hundred and thirty-seven patients (64.3%) 
had a pathologic stage I tumor, 36 (16.9%) a stage II 
tumor, and 40 (18.8%) a stage IIIA cancer. Adenocar-
cinoma was the most common histologic type (81.0%). 
Twenty-one (9.5%) patients received a pre-surgery neo-
adjuvant therapy, whereas 31 (14.7%) and 14 (6.6%) 
patients received adjuvant chemo- and/or radiotherapy, 
respectively.

MiRNAs and demographic and clinical covariates
Supplementary Fig.  3 shows the patients’ disposal for 
the main statistical analyses of the study. The prog-
nostic role of the biomarkers was first investigated for 
the CF-miRNAs and EV-miRNAs separately and then 
together. The unsupervised filtering of patients and 
miRNAs was done separately once and for the two 
types of miRNAs. Thus, the patients’ biological sam-
ples that passed the quality check were 176 and 171, 
whereas the retained miRNAs were 438 and 232 for 
CF- and EV-miRNAs.

The association analysis between the normalized CF-
miRNAs and clinical information showed that the expres-
sion of miR-224-5p and miR-651-5p was significantly 
lower in males than in females (adjusted p-values < 0.001 
and 0.002, respectively), as well as that of miR-877-3p 
and miR-3617-5p with regard to higher ECOG PS values 
(adjusted p-values < 0.041 and 0.044, respectively). MiR-
185-3p was highly expressed in squamous-cell histotype 
compared to adenocarcinomas (adjusted p-value = 0.017) 
(Supplementary Fig.  4 Panel A). No other significant 
associations were observed. Concerning EV-miR, two 
of them – miR-224-5p and miR-143-3p – showed sig-
nificantly lower expression values among males than 
females (adjusted p-values < 0.001 and 0.016, respec-
tively) (Supplementary Fig.  4 Panel B). Seven EV-miR 
were associated with the pathological stage (miR-431-5p, 
miR-487b-3p, miR-9.5p, miR-654-3p, miR-369-3p, miR-
323a-3p, miR-376c-3p). In particular, all except one 
(miR-9-5p) showed decreasing expression values with 
increasing stage (Supplementary Fig. 4 Panel B).

Prognostic potential of CF‑ and EV‑miRNAs
The information on DFS was available for 195 (88%) 
patients. The median follow-up time was 26.3  months 

Table 1 Baseline patient characteristics

Percentages may not equal 100 due to rounding

SD standard deviation, IQ first quartile, IIIQ third quartile, ECOG Eastern 
Cooperative Oncology Group, PS performance status

n %

Gender

 F 89 40.1

 M 133 59.9

Age at surgery (yrs)

 Mean ± SD 69 ± 8

 Median [IQ—IIIQ] 70 [63−75]

 Min—max 44 – 85

 missing 1

Smoking habit

 Never smoker 29 13.9

 Ex‑smoker 128 61.2

 Current smoker 52 24.9

 missing 13

ECOG PS

 0 149 69.3

 1 57 26.5

 2 9 4.2

 missing 7

Neo‑adjuvant therapy

 No 200 90.5

 Yes 21 9.5

 missing 1

Type of resection

 Atypical resection 10 9.1

 Pneumectomy 8 3.6

 Lobectomy 193 87.3

 missing 1

Radicality

 R0 212 96.8

 R1 6 2.7

 R2 1 0.5

 missing 3

Histological diagnosis

 Adenocarcinoma 179 81.0

 Squamous cell carcinoma 42 19.0

 missing 1

Pathological stage

 IA 99 46.5

 IB 38 17.8

 IIA 9 4.2

 IIB 27 12.7

 IIIA 40 18.8

 missing 9

Grading

 G1 23 13.1

 G2 112 64.0

 G3 40 22.9

 missing 47
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(95% CI: 25.4—27.6), and the median DFS was not 
reached (NR). A total of 52 events were observed. Table 2 
shows the results obtained by fitting three distinct mod-
els, as described in the Statistical Analysis section. Mod-
els 1 and 2 were obtained using elastic-net penalized Cox 

regression, whereas Model 3 by means of standard Cox 
regression.

Model 1 aimed at evaluating the prognostic poten-
tial of the miRNAs alone. From this analysis, three CF-
miRNAs and 21 EV-miRNAs were associated with DFS 
(had beta coefficients different from zero). Most of them 
reported a negative regression coefficient indicating that 
as the expression of the miRNA increases, the hazard 
of relapse or death decreases. The performance of this 
model is reported in Fig. 1, panels A and D, for the analy-
ses on cell-free miRNAs, and in Fig. 2, panels A and D, 
for those on extracellular derived miRNAs. The model 
derived from the CF-miRNA data showed, as compared 
to the models derived from the EV-miRNAs, better per-
formance in terms of both CV Kaplan–Meier curves 
separation and discriminatory accuracy (AUCs were 0.67 
and 0.59, respectively).

The second and third models were fitted especially to 
investigate whether the miRNA data added predictive 
accuracy to a model, including readily available informa-
tion such as age, sex, and stage of disease. The second 
model was derived from the miRNA, demographic, and 
clinical data. In this model, two CF-miRNAs (miR-29c-3p 
and miR-877-3p) and five EV-miRNAs (miR-181a-2-3p, 
miR-182-5p, miR-192-5p, miR-532-3p and miR-589-5p) 
remained associated with the DFS. In particular, higher 
expression of the cell-free miR-29c-3p and the two extra-
cellular vesicle miRNAs, miR-182-5p and miR-192-5p, 
was associated with a worse prognosis. Conversely, a 
higher expression of the cell-free miR-877-3p and of 
the extracellular vesicle miRNAs, miR-181a-2-3p, miR-
532-3p, and miR-589-5p, was associated with a better 
prognosis. The performance of these combined mod-
els was almost comparable in terms of curve separation 
but slightly better for the model including extracellu-
lar derived miRNAs in terms of AUC, equals to 0.68 as 
compared to a value of 0.62 obtained from the combined 
model including cell-free miRNAs, Figs. 1 and 2, panels 
B and E.

The third model included age at surgery, sex, and the 
pathologic stage of disease alone and was fitted to inves-
tigate if the molecular information can significantly 
improve the predictive accuracy of known prognostic fac-
tors routinely available in clinical practice. Age at surgery 
was included as a 1-unit increment continuous covariate, 
and the stage was grouped into three main categories. 
Table 2 reports two hazard ratios for each of these factors 
as they were estimated in the two separate datasets, one 
with CF-miRNA data and one with EV-miRNA data that 
included a slightly different number of patients due to the 
filtering procedures described in the Statistical Analysis 
section and cited above.

Table 2 Multivariable Cox proportional hazards regression 
models on disease‑free survival (separate analyses for CF‑ and 
EV‑miRNA)

Model 1 refers to the results obtained fitting an elastic net penalized Cox model 
on the microRNA data only; Model 2 refers to the results obtained fitting an 
elastic net penalized Cox model on the microRNA and basic prognostic factors 
data; Model 3 refers to the results obtained fitting a standard Cox model only on 
the data of basic prognostic factors

CF cell-free, EV extracellular vesicle, HR hazard ratio, CI confidence intervals, 
pSTAGE pathologic disease stage, Coef beta regression coefficient

Model 1 Model 2 Model 3

Coef Coef Coef HR (95% CI) p‑value

CF‑miRNA
 miR‑135a‑5p ‑0.005

 miR‑29c‑3p 0.083 0.056

 miR‑877‑3p ‑0.243 ‑0.180

 Sex (M vs F) 0.265 0.295 1.34 (0.69–2.60) 0.381

 Age at surgery 0.025 0.027 1.03 (0.98–1.07) 0.216

 pSTAGE (II vs I) 1.032 1.013 2.75 (1.28–5.91) 0.009

 pSTAGE (IIIA vs I) 1.389 1.013 4.23 (2.09–8.53)  < 0.001

EV‑miRNA
 miR‑127‑3p ‑0.089

 miR‑1277‑3p ‑0.223

 miR‑136‑3p ‑0.182

 miR‑181a‑2‑3p ‑0.148 ‑0.053

 miR‑182‑5p 0.089 0.032

 miR‑18a‑5p ‑0.018

 miR‑192‑5p 0.208 0.185

 miR‑32‑5p 0.067

 miR‑323b‑3p ‑0.030

 miR‑328‑3p ‑0.039

 miR‑339‑3p 0.139

 miR‑361‑3p 0.034

 miR‑3615 ‑0.208

 miR‑370‑3p ‑0.122

 miR‑5187‑5p 0.211

 miR‑532‑3p ‑0.200 ‑0.113

 miR‑589‑5p ‑0.054 ‑0.008

 miR‑628‑5p ‑0.039

 miR‑6852‑5p ‑0.018

 miR9‑5p 0.039

 miR‑99b‑5p ‑0.109

 Sex (M vs F) 0.115 0.178 1.20 (0.61–2.32) 0.599

 Age at surgery 0.008 0.011 1.01 (0.97–1.06) 0.611

 pSTAGE (II vs I) 0.988 0.933 2.54 (1.16–5.54) 0.019

 pSTAGE (IIIA vs I) 1.566 1.494 4.46 (2.18–9.10)  < 0.001
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Supplementary Table 1 shows the results of univariate 
Cox models fitted on the 195 patients with available DFS 
data, whereas Supplementary Fig.  5 the DFS curves for 
each stage category. Given the small number of patients 
within each subtype of stages I, II, and III, in Model 3 
reported in Table 2, only the three main categories for the 
stage were considered.

Thus, the model including only the clinical factors, 
Model 3, showed per se good predictive performance, as 
shown in Figs. 1 and 2, panels C and F.

The combined models (one for CF- and one for EV-
miRNAs), containing both miRNAs and clinical factors 
(age, sex, stage), did not show significantly higher per-
formance compared to the model including the non-
biological factors alone (Models 2 vs. Models 3). From 
the comparison of the CV Kaplan–Meier curves derived 
from these models (Fig.  1, panels B and C for CF and 
Fig.  2, panels B and C for EV), and of the AUCs of the 
CV ROC curves it emerges that miRNAs do not provide 

additional survival risk discrimination to that already 
provided by basic covariates (the permuted log-rank 
p-value for the comparison of the two models was equal 
to 0.640 and 0.248 for CF- and EV-miRNA, respectively, 
whereas the p-value comparing the AUCs was equal to 
0.076 and 0.652 for CF- and EV-miRNA, respectively,).

Repeating the analysis, considering the two types of 
miRNAs together (CF- and EV-derived), we obtained 
the results shown in Supplementary Table 2. These mod-
els were fitted on 156 patients (41 events), as reported in 
Figure S6. Model 1 included 14 miRNAs, most of them, 
9, already found associated with DFS in the separate 
analyses described above. Based on this model, modestly 
separated survival risk groups were obtained (permuted 
log-rank p-value = 0.061) and an AUC of 0.62 (permuted 
p-value = 0.021), Supplementary Fig.  6 panel A. Model 
2 included three CF- (miR-135a-5p, miR-29c-3p, miR-
877-3p) and one EV-miRNA (miR-192-5p), other than 
standard prognostic factors. Its performance was better 

Fig. 1 Performance of the models using cell‑free miRNA data. From (A) to (C) 5‑fold cross‑validated Kaplan–Meier curves for the models derived 
using the miRNA data alone, miRNA and and basic prognostic factors (age, sex, and pathologic stage) data, and the prognostic factors data alone. 
From (D) to (F) Five‑fold cross‑validated time‑dependent ROC curves (at 24 months) for the three models. DFS disease‑free survival, TP true positive, 
FP false positive
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than the previous model, Supplementary Fig.  6 panel 
B. Indeed, it showed a better separation of the survival 
curves (permuted log-rank p-value < 0.001) as well as 
AUC (0.64, permuted p-value < 0.001). Compared to the 
model including the standard prognostic factors alone, 
Model 3 and Model 2 showed better survival curve sepa-
ration (permuted log-rank p-value = 0.016) and a com-
parable discriminatory capacity (permuted p-value per 
AUCs comparison = 0.960).

From analogous subgroup analyses on stage I patients, 
10 CF-miR were associated with DFS. For most of them 
(miR-135a-5p, miR-877-5p, miR-107, miR-1226-3p, miR-
362-5p, miR-3913-5p, miR-548ax), increasing expres-
sion values associated with a reduced hazard of relapse 
or death whereas for miR-345-5p, miR-9-3p, the opposite 
was observed. When considering also the standard prog-
nostic factors, four CF-miR were retained in the model 
(miR-135a-5p, miR-107, miR-548ax, and miR-9-3p); the 
direction of the association was the same as before. The 
models’ performance was not satisfactory and there was 

no evidence of an incremental predictive capacity com-
pared to age and sex alone, results not shown. This is 
perhaps due to the small size and the immature follow-
up length for this subgroup of patients. No EV-miR was 
found to predict DFS in this population.

Pathway enrichment
Pathway enrichment was first conducted by analyz-
ing the 3 CF-miRNAs and the 21 EV-miRNAs associ-
ated with DFS from the mainstream statistical analyses 
(Model 1). Interestingly, TGF-beta and NOTCH were 
the most enriched among the significant pathways found 
(FDR < 0.05). In addition, at a lower rich factor, involve-
ment in the cell cycle and immune regulation could be 
identified (Fig. 3A). To further dissect the role of miRNA 
specifically involved in these pathways, we deepened 
the enrichment analysis using an expanded list of miR-
NAs, considering also those moderately to highly cor-
related with the one listed above (the list of correlated 
miRNAs is reported in Supplementary Table 3). Pathway 

Fig. 2 Performance of the models using extracellular vesicle miRNA data. From (A) to (C) 5‑fold cross‑validated Kaplan–Meier curves for the models 
derived using the miRNA data alone, miRNA and basic prognostic factors (age, sex, and pathologic stage) data, and prognostic factors data alone. 
From (D) to (F) Five‑fold cross‑validated time‑dependent ROC curves (at 24 months) for the three models. DFS disease‑free survival, TP true positive, 
FP false positive
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Fig. 3 Pathway enrichment. A Bubble plot showing the most enriched pathways of 24 miRNAs (3 CF‑miRNAs and the 21 EV‑miRNAs) associated 
with disease‑free survival. B Most significant enriched pathways targeted by EV‑miRNAs under expressed in patients with worse outcome 
C Heatmap showing normalized expression levels of the 8 enriched miRNAs targeting TGF‑beta pathways. Patients alive and not relapsed 
within 24 months are shown in green (on the right) whereas patients encountering disease relapse or death within 24 months are indicated in red 
(on the left). D) Kaplan Meier curves for disease‑free survival for each miRNA
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enrichment, with or without including correlated miR-
NAs, demonstrated only minor changes (data not 
shown). However, it significantly improved the enrich-
ment in the subsequent analysis, wherein the original list 
of miRNAs was further divided into additional subtypes.

Then, we evaluated separately the pathways that 
resulted in being enriched by miRNAs derived from CF 
and those derived from EV. In particular, considering 
both miRNAs deriving from the mainstream analysis 
and their correlation, we found that miRNAs involved in 
regulating genes participating in TGF-beta and NOTCH 
pathways were enriched in the EV fraction. In addition, 
miRNAs targeting components of tyrosine kinases and 
of PI3K signalling pathway can be found enriched in 
EV. Conversely, the miRNAs identified in the CF frac-
tion were predominantly involved in more comprehen-
sive pathways, such as the cell cycle and immune system 
(Supplementary Tables 4–5).

Thus, an additional analysis focusing on the EV frac-
tion was performed. That is, considering the EV-miRNAs 
with positive (higher expression values associated with 
a shorter DFS or higher instantaneous hazard of relapse 
or death) and negative regression coefficients (higher 
expression values associated with a longer DFS or lower 
instantaneous hazard of relapse or death) separately. 
For this step, positively correlated miRNAs were added 
to each miRNA list before enrichment analysis. MiR-
NAs with positive regression coefficients were shown 
to target genes involved in vesicle transport, mitotic 
activities, and the immune system. On the other hand, 
miRNAs with negative regression coefficients were 
found to have a stronger association with TGF-beta/
SMAD2/3 and NOTCH pathways (Fig.  3C, Supplemen-
tary Tables 6–7). In particular, 8 miRNAs were involved 
in the enrichment of these pathways (miR-18a-5p, miR-
370-3p, miR-628-5p, miR-125a-5p, mir376c-3p, miR-
381-3p, miR323a-3p, miR-409-3p) through the targeting 
of TGFBR2 and SMAD2. Accordingly, the expression 
level of these 8 miRNAs was globally lower in patients 
with worse outcomes (Fig.  3C); in particular, 5 of these 
(miR-125a-5p, miR-370-3p, miR-628-5p, miR-381-3p, 
miR323a-3p) were associated with DFS (Fig. 3D).

Discussion
Circulating miRNAs have attracted much interest in can-
cer diagnosis and prognosis as they are small and very 
stable in circulation and might have essential functions. 
For these reasons, they are good candidates as molecular 
biomarkers capable of selecting patients at higher risk of 
recurrence. However, very conflicting results regarding 
their role have been reported, leaving doubts about their 
real value as prognostic markers. The heterogeneous 

results are mainly due to different aspects: the panel of 
miRNAs analyzed (small panel of miRNAs or miRNome 
analysis), the methodology used for miRNA evalua-
tion and normalization, the statistical approach applied, 
the study endpoint, the specimen used for the analysis 
(plasma or serum) and methods of collection. Moreo-
ver, “circulating miRNAs” can be different whether we 
consider EV-derived miRNAs or the overall circulating 
miRNAs content, as it is well established that EV-derived 
miRNAs could exert more specific functions in the con-
text of lung cancer, with respect to those released in the 
circulating compartment [14, 15]. Furthermore, despite 
numerous studies that have analyzed miRNAs as poten-
tial prognostic factors, it is not clear the added value of 
miRNAs with respect to the established prognostic fac-
tors used in the clinic, mainly the stage of the disease.

To address some of these aspects, we performed a pro-
spective multicentre study to clarify the role of circulat-
ing miRNAs as prognostic biomarkers in ES-NSCLC, 
focusing on the added value of the miRNAs with respect 
to the known clinicopathological prognostic parameters.

From the model built on the miRNA data, we found 
that 3 CF-miRNAs and 21 EV-miRNAs were associated 
with DFS without considering the integration of known 
clinical prognostic factors. Most of them exhibited a 
negative regression coefficient, meaning that their higher 
expression values are associated with a better prognosis, 
pointing out a tumor-suppressor function of the specific 
miRNAs.

Concerning the CF-miRNAs, miR-135a-5p, and miR-
877-3p were overexpressed in patients with a lower risk 
of relapse or death, which aligns with their reported 
biological function. It was shown that miR-877 over-
expression repressed NSCLC cell growth by targeting 
tartrate-resistant acid phosphatase (TRAP), also known 
as acid phosphatase 5 (ACP5), and inhibiting the PI3K/
AKT pathway [16]. Concerning miR-135a-5p, it has been 
shown in several studies that its expression decreased in 
different solid tumors such as glioma [17], gallbladder 
[18], colorectal cancer [19], and also lung cancer [20]. 
Conversely, we observed that CF miR-29c-3p upregula-
tion was associated with worse DFS. This observation 
goes along with its potential role as a tumor promoter, 
recently shown in ovarian cancer models [21].

On the other hand, we found 21 EV-derived miRNAs 
significantly associated with patient prognosis. Of these, 
12 (miR-127-3p, miR-1277-3p, miR-136-3p, miR-181a-
2-3p, miR-18a-5p, miR-323b-3p, miR-3615, miR-532-3p, 
miR-589-5p, miR-628-5p, miR-6852-5p and miR-99b-5p) 
might act as tumor suppressors, with an association 
between high levels and a better prognosis. The demon-
strated biological role of most of these miRNAs aligns 
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with our results. In particular, it has been shown that 
miR-181a-2-3p is downregulated in NSCLC tissue com-
pared with control samples and that its low expression 
in tumor tissue and plasma is associated with longer 
progression-free survival [22]. Interestingly, plasma EV-
derived miR-3615, combined in a model with other 3 
miRNAs, was demonstrated to be able to distinguish 
early-stage lung adenocarcinoma patients with respect to 
healthy donors, suggesting a potential role as a noninva-
sive biomarker for the early detection [23]. A tumor sup-
pressor activity was also demonstrated for miR-532-3p 
that, by targeting FOXP3, can inhibit the growth of 
NSCLC cell models [24] and for miR-589-5p, which, since 
it usually inhibits Histone deacetylases 5 (HDAC5), when 
downregulated leads to an overexpression of HDAC5 
and therefore to an increase in cancer cell proliferation 
[25]. Concerning miR-18a-5p, its complex role in cancer 
has been demonstrated, as it can act both as an oncogene 
and a suppressor [26]. Among the 9 EV-derived miRNAs 
whose overexpression resulted associated with shorter 
DFS (miR-182-5p, miR-192-5p, miR-32-5p, miR-328-3p, 
miR-339-3p, miR-361-3p, miR-370-3p, miR-5187-5p, and 
miR-9-5p), suggesting their role as oncomiR, their dem-
onstrated biological role in the literature is in part in line 
and in part in contrast with our results. In particular, a 
role as oncomiR has been confirmed for miR-182-5p 
[27], miR-328-3p [28], miR-339-3p [29], miR-361-3p [30], 
and miR-9-5p [31]. Conversely, contrasting results are 
reported regarding miR-192-5p [32], miR-370-3p [33], 
and miR-32-5p [34], as from literature results, they seem 
to have a role as tumor suppressor miRNAs.

Cell-free miRNAs can be released and uptaken by cells 
through vesicle trafficking and protein carrier mecha-
nisms, and they are able to function as gene expression 
regulators in cell to-cell communication mechanisms 
under normal and pathological conditions, such as can-
cer [35]. However, we have to consider that miRNAs are 
released into the bloodstream from different cell types, 
not only from tumor cells [36], and this still unclear 
aspect leaves some open questions regarding the real 
role that these miRNAs found in the blood circulation 
may have. Moreover, miRNAs can target several different 
genes and as a consequence can affect different pathways. 
Taking this into consideration, a pathway enrichment 
analysis was performed to reach a global overview of the 
different pathways on which the significant miRNAs are 
involved.

Interestingly, enrichment of TGF-beta/SMAD and 
NOTCH pathways was observed, which was even more 
evident when considering only EV-derived miRNAs. In 
particular, 5 miRNAs (miR-125a-5p, miR-370-3p, miR-
628-5p, miR-381-3p, miR323a-3p), which evidence of 
interaction with the TGF-beta pathway is present in the 

literature [37–41], were found to have higher expression 
levels in patients with a longer DFS in our cohort.

TGF-beta/SMAD and NOTCH are well-known prog-
nostic pathways in NSCLC [42–45]. In particular, a spe-
cific association between TGF-beta expression and risk of 
relapse in ES-NSCLC has been shown [46]. With regard 
to NOTCH, a previous study showed that specific poly-
morphisms of the gene are associated with survival rates 
in ES-NSCLC [47]. Moreover, an in vitro study demon-
strated that the NOTCH signaling significantly affects the 
growth and the malignant phenotype of both colorectal 
and lung models [48]. Interestingly, an enrichment of the 
PI3K pathway was also observed in EV-derived miRNAs. 
The PI3K pathway involvement in the prognostic risk 
determination of ES-NSCLC was already shown in previ-
ous studies [49, 50], in accordance with our results. Over-
all, we found an evident enrichment of TGF-beta/SMAD, 
NOTCH, and PI3K pathways in EV-derived miRNAs.

This reinforce the already demonstrated role of EVs 
as components with specific functional activities in the 
regulation of cell growth, which consequently can have 
important prognostic and predictive roles in response 
to therapies [51]. It has been shown that both tumor and 
immune cells can release specific EVs containing com-
ponents, mainly miRNAs, with specific functions able to 
regulate cancer-specific processes such as epithelial-mes-
enchymal transition [52, 53], neovascularization [54, 55], 
anti-tumor immune cell function [56, 57]. Hence, we can 
conclude that EV-derived miRNAs seem to have more 
specific functions with respect to CF-miRNAs, which 
could be derived by EV itself but also from other, more 
non-specific sources, such as necrotic or apoptotic cells.

To evaluate the added predictive value of the miRNAs 
to basic prognostic factors, statistical models combining 
these and disease stage, age, and sex were specified and 
then compared with a model including only the demo-
graphic and clinical factors. In the combined models (one 
for CF- and one for EV-miRNAs), two CF-miRNAs (miR-
29c-3p and miR-877-3p) and five EV-miRNAs (miR-
181a-2-3p, miR-182-5p, miR-192-5p, miR-532-3p and 
miR-589-5p) remained associated with DFS and we did 
not observe significantly higher predictive performance 
compared to the models including the clinical factors 
alone. However, when we derived the combined model 
considering the data from both types of miRNAs, a sig-
nificant increase in the prognostic accuracy was found. 
In particular, 3 CF-miRNAs (miR-135a-5p, miR-29c-3p, 
miR-877-3p) and one EV-miRNA (miR-192-5p) gave a 
substantial contribution in addition to the clinical factors.

Our study has several strengths and limitations. 
Among the primary strengths are i) the prospective 
collection of biological specimens and clinical data, ii) 
the analysis of the miRNome and differentiation of miR 
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origins, iii) Moreover, despite the relatively small sam-
ple size and the lack of an external validation cohort, 
we were still able to preliminarily evaluate the per-
formance of the fitted models, as well as, through the 
approach proposed by Simon et  al. [12], to investigate 
the added predictive value of the miRNAs as compared 
to basic non-biological prognostic factors, in particu-
lar the stage of disease, something that is not often 
reported in the published studies.

As mentioned above, one limitation of this study is the 
modest sample size and the limited follow-up time (the 
median was about 26 months), especially given the high 
proportion of stage I cancers in our cohort (64.3%). Both 
these factors limited the possibility of stratified analy-
ses and their statistical power, leaving several questions 
unanswered, for example, whether different miRNAs 
are involved in the prognosis prediction by disease char-
acteristics (e.g., stage and histotype) or if their prognos-
tic effect may vary within strata. However, enrollment is 
ongoing in another funded study on ES-NSCLC carried 
out by some of the RESTING centers, which will permit 
us to validate our data. Another limitation is relating to 
the uncertain source of release of the miRNAs found in 
circulation, which leaves some open questions regarding 
their functional role in cancer development. Moreover, 
we are conscious that the different methodologies avail-
able for EV isolation could maintain a portion of small 
lipoproteins, that could interfere with the subsequent 
analyses. However, we used an EV purification method 
that relies on the specific binding of EV surface proteins 
to negatively charged silicon membranes, exploiting dif-
ferences in pH and isoelectric points compared to other 
proteins like histones and lipoproteins in biological flu-
ids. This approach allows for the selective adsorption 
and subsequent elution of EV while effectively exclud-
ing most lipoprotein contaminants, as demonstrated 
in existing literature [58]. Given that there are no gold 
standard procedures for EV isolation, some open ques-
tions remain about the optimal methodology to be used. 
However, our approach seems to be reproducible and 
robust with some potentiality to be included in the clin-
ical practice in the future.

In summary, our study highlights potential miR-
NAs able to predict the risk of relapse after surgery in 
patients with ES-NSCLC. When considered separately, 
CF- and EV-miRNAs could not significantly improve 
the prognostic performance of the model with known 
clinical prognostic factors. However, when considering 
them together, a significant improvement was observed. 
Thus, the identified circulating miRNAs could repre-
sent a non-invasive approach that could permit clini-
cians to have further information to decide the most 
appropriate patient’s management.
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