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Abstract 

Background Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma, with embryonal (ERMS) 
and alveolar (ARMS) representing the two most common histological subtypes. ARMS shows poor prognosis, being 
often metastatic at diagnosis. Thus, the discovery of novel biomarkers predictive of tumor aggressiveness represents 
one of the most important challenges to overcome and may help the development of tailored therapies. In the last 
years, miRNAs carried in extracellular vesicles (EVs), small vesicles of endocytic origin, have emerged as ideal candidate 
biomarkers due to their stability in plasma and their tissue specificity.

Methods EVs miRNAs were isolated from plasma of 21 patients affected by RMS and 13 healthy childrens (HC). We 
performed a miRNA profile using the Serum/Plasma Focus microRNA PCR panels (Qiagen), and RT-qPCR for validation 
analysis. Statistically significant (p < 0.05) miRNAs were obtained by ANOVA test.

Results We identified nine EVs miRNAs (miR-483-5p, miR-132-3p, miR-766-3p, miR-454-3p miR-197-3p, miR-335-3p, miR-
17-5p, miR-486-5p and miR-484) highly upregulated in RMS patients compared to HCs. Interestingly, 4 miRNAs (miR-335-5p, 
miR-17-5p, miR-486-5p and miR-484) were significantly upregulated in ARMS samples compared to ERMS. In the validation 
analysis performed in a larger group of patients only three miRNAs (miR-483-5p, miR-335-5p and miR-484) were differen-
tially significantly expressed in RMS patients compared to HC. Among these, mir-335-5p was significant also when com-
pared ARMS to ERMS patients. MiR-335-5p was upregulated in RMS tumor tissues respect to normal tissues (p = 0.00202) 
and upregulated significantly between ARMS and ERMS (p = 0.04). Furthermore, the miRNA expression correlated 
with the Intergroup Rhabdomyosarcoma Study (IRS) grouping system, (p = 0.0234), and survival (OS, p = 0.044; PFS, p = 0.025). 
By performing in situ hybridization, we observed that miR-335-5p signal was exclusively in the cytoplasm of cancer cells.

Conclusion We identified miR-335-5p as significantly upregulated in plasma derived EVs and tumor tissue of patients 
affected by ARMS. Its expression correlates to stage and survival in patients. Future studies are needed to validate miR-
335-5p as prognostic biomarker and to deeply elucidate its biological role.
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Background
Rhabdomyosarcoma (RMS) is the most common type 
of soft tissue sarcoma in children and young adults, 
accounting for up to 3–4% of childhood cancer and 
approximately 50% of all sarcomas [1, 2]. Embryonal 
(ERMS) and alveolar (ARMS) RMS represent the two 
most common histological subtypes. ARMS is associated 
with two chromosomal translocations, t(2;13) (q35;q14) 
and t(1;13) (p36;q14) resulting respectively in the PAX3–
FOXO1 and PAX7–FOXO1 fusion proteins [3]. Various 
studies have demonstrated that PAX3-7-FOXO1 fusion 
oncoprotein enhances RMS growth and metastasis by 
targeting genes involved in proliferation, migration and 
invasion [4]. Patients affected by ARMS shows a poor 
prognosis, being often metastatic at diagnosis.

Although, during the last three decades, the use of 
combination therapies has substantially improved the 
prognosis of localized RMS, the clinical outcomes for 
children with metastatic RMS remains very poor even 
with a multimodal approach, with a 5-year event free 
survival (EFS) and overall survival (OS) of 17.3% and 
21.3% respectively [5, 6]. Thus, the discovery of novel bio-
markers predictive of tumor aggressiveness may help the 
development of tailored therapies and represents one of 
the most important objectives to achieve in this disease.

Liquid biopsy allows to identify tumor secreted factor 
circulating in the body fluids, such as plasma or serum, 
with the advantage of being minimally invasive and 
reflecting tumor burden in patients [7]. This approach 
enables the detection of circulating tumor cells, cell-free 
DNA (cfDNA), circulating microRNAs (miRNAs), pro-
teins and tumor cell-derived extracellular vesicles (EVs) 
[8]. EVs are cell membrane-derived nanovesicles (30 nm 
-10  μm) released by eukaryotic cells and abundantly 
by aggressive tumor cells, carrying lipids, soluble and 
transmembrane proteins, mRNAs, miRNAs and double-
stranded DNA. EVs play a role in intercellular communi-
cation by transferring molecules to the surrounding cells 
and may have significant contribution to tumor progres-
sion [9, 10]. Consequently theyare promising candidates 
as specific cancer biomarkers. MiRNAs within extracel-
lular vesicles (EVs-miRNAs) are particularly stable as 
they are protected from RNAses, providing an enriched 
and ideal source for tumor biomarkers detection [11, 12]. 
Tumor-secreted EVs-miRNAs can be transferred to tar-
get cells, influencing their gene expression and impact-
ing tumor biology [13–15]. In RMS, several functional 
studies have demonstrated that different miRNAs could 
act both as tumor suppressor and oncomiRs regulating 
cancer cell proliferation, invasion, and apoptosis [16–23]. 
The study of miRNAs, particularly those encapsulated 
in EVs, provides unique insights due to their stability, 
resistance to degradation. Compared to studying mRNA 

derived from cfRNA, miRNAs offer complementary 
information as they regulate gene expression and could 
help to identify the mechanism involved in RMS aggres-
siveness. Notably, it has been observed that EVs derived 
from RMS cell lines are enriched in miRNAs, which are 
implicated in inducing angiogenesis, tumor growth and 
metastasis [24].

Herein, we report an exploratory study on EVs-miR-
NAs derived from the plasma of RMS patients, with the 
purpose of identifying predictive diagnostic and prog-
nostic biomarkers. We found that among the signifi-
cantly dysregulated miRNAs, miR-335-5p correlates with 
ARMS subtype and with prognosis in RMS patients. To 
our knowledge, this is the first study reporting a poten-
tial interest of miR-335-5p as novel biomarker in RMS 
patients.

Materials and methods
Patients and sample collection
Plasma was collected from 21 RMS patients at diagnosis 
and 13 healthy children (HC) at Pediatric Haematology/
Oncology and Cell and Gene Therapy Department, Bam-
bino Gesù Children’s Hospital. Among the RMS patients 
9 were diagnosed with fusion positive ARMS and 12 
with ERMS, 8 were females and 13 males; their median 
age was 49  months (range: 5–188  months). Among 
HC, 8 were males and 5 females, their median age was 
74,9  months (range: 6–207  months). Patients’ clinical 
information is shown in Supplementary Table  1. Writ-
ten informed consent was signed by all parents and the 
study was approved by our Institutional Ethics Commit-
tee (protocol number 1189_OPBG_2016).

Whole blood was collected in EDTA tubes (BD Vacu-
tainer, Reading, UK) and processed within 2  h. The 
samples were first centrifugated at 500 × g for 10  min, 
and then supernatants were collected and centrifuged 
at 3000 × g and then at 12,000 × g for 20  min each. All 
the centrifugation steps were performed at 4 degrees. 
The plasma was collected and stored at -80◦C until EVs 
isolation.

Isolation of extracellular vesicles from plasma
EVs isolation from plasma was performed using the com-
mercial kit miRCURY™ Exosome isolation kit-serum 
and plasma (Qiagen) according to the manufacturer’s 
protocol. Briefly, 3 UI of Thrombin was added to 0.6 ml 
of plasma and incubated for 5 min at room temperature 
(RT) and centrifuged for 5 min at 10,000 × g. An amount 
of 0.5 ml of supernatant was collected, 200 μl of precipi-
tation buffer A was added, resuspended by vortexing for 
5 s to mix and incubated for 60 min at 4 °C. After incu-
bation, samples were centrifuged for 5  min at 500  g at 
RT and the supernatants were removed and discarded. 
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Pellets were re-suspended by vortex in 270 μl resuspen-
sion buffer. The isolated EVs were characterized following 
the recommendations of “Minimal Information for Stud-
ies of Extracellular Vesicles” (MISEV) 2023, (Supplemen-
tary Methods) [25]. Transmission Electron Microscopy 
(TEM) confirmed the presence of EVs with homogeneous 
morphology, occasionally clustered, with a size ranging 
from 30 to 200 nm (Supplementary Fig. 1A). NanoSight 
analysis showed a mean vesicle diameter ranging from 
105 to 146  nm (Supplementary Fig.  1B). Western Blot 
revealed an enrichment of the EVs-specific protein 
Tumor Susceptibility Gene 101 (TSG101), CD9, and 
CD63 in nanovesicles samples compared to Hela cells 
lysate; furthermore, the absence of endoplasmic reticu-
lum protein Calnexin demonstrate that no cell debris 
were present in our preparation’s lysate (Supplementary 
Fig. 1C). The purified EVs samples were then processed 
for RNA extraction.

RNA isolation from plasma extracellular vesicles
RNA from plasma EVs was isolated using miRCURY 
RNA isolation kit-biofluids (Qiagen) according to the 
manufacturer’s protocol. Briefly, 300  μl of resuspended 
EVs were mixed with 90 μl Lysis solution biofluids (BF), 
vortexed for 5 s and incubated for 10 min at RT. 1 μl of 
RNA spike-in template mixture (miRCURY LNA™ Uni-
versal RT microRNA PCR, RNA spike-in kit) was added 
to each sample for downstream PCR analysis. Then, 30 μl 
Protein precipitation solution BF was added to samples 
and vortexed, incubated for 1 min at RT and centrifuged 
for 3 min at 11,000 g. The supernatants, after addition of 
400 μl isopropanol, were vortexed for 5 s and then loaded 
in miRNA mini spin column BF. Columns were incubated 
for 2 min at RT, centrifuged for 30 s at 10,000 g, washed 
with Wash solution 1 BF and twice with Wash solution 
BF 2. Columns were centrifuged for 2 min at 11,000 g to 
dry membranes and RNA was eluted adding 30 μl RNase 
free  H2O directly onto the membrane of the spin col-
umns BF. Columns were incubated for 1 min at RT and 
then centrifuged for 1 min at 11,000 g. The purified RNA 
samples were stored at -80 °C.

qPCR assessment of extracellular vesicles miRNAs
Total RNA extracted from plasma exosomes was mixed 
with two artificial RNAs (RNA spike-ins as RT controls) 
and the final mixture (10  μl) was reverse transcribed at 
42 °C for 60 min using the miRCURY LNA™ Universal RT 
cDNA Synthesis Kit (Qiagen) following the manufactur-
er’s instruction. The expression level of plasma EVs-miR-
NAs was evaluated by Serum/Plasma Focus microRNA 
PCR panels (Qiagen). The amplification curves were fil-
tered (Ct < 36), imported into the GenEx software (ver.5, 
Qiagen) and normalized by global mean. The expression 

level (fold change [FC]) was calculated by taking the 
mean of individual Cq values for each group (HC, ERMS 
and ARMS patients). To validate the significant EVs-miR-
NAs in the plasma of an independent cohort of patients, 
we individually assayed mature miR-486-5p (cat.no. 
339306-YP00204001), miR-17-5p (cat.no. 339306-
YP02119304), miR-197-3p (cat.no. 339306-YP00204380), 
miR-483-5p (cat.no. 339306-YP00205693), miR-766-3p 
(cat.no. 339306-YP00204499), hsa-miR-132-3p (cat.no. 
339306-YP00206035), hsa-miR-454-3p (cat.no. 339306-
YP00205663), hsa-miR-484 (cat.no. 339306-YP00205636) 
and hsa-miR-335-5p (cat.no. 339306-YP02119293), 
by employing two endogenous miRNAs, namely miR-
23a-3p (cat.no. 339306-YP00204772) and miR-320a (cat.
no. 339306-YP00206042) that were selected by running 
Genorm and NormFinder analysis tools. QuantStudio 
12 K Flex Real-Time PCR System (Thermo Fisher Scien-
tific, Waltham, MA, USA) was employed for all the qPCR 
quantifications and the fold change was calculated by 
the  2−ΔΔCt method [26]. At least two independent ampli-
fications were performed for each probe on triplicate 
samples. The raw Cq values from amplification curves 
(Serum/Plasma plates) were normalized by global mean 
using the GenEx qPCR analysis software (Exiqon ver 5), 
individual assays were normalized by taking miR-23a-3p 
and miR-320a as endogenous controls. Statistically sig-
nificant (p < 0.05) miRNAs were obtained by ANOVA 
test (ERMS patients and ARMS patients versus controls). 
MiRNAs with a FC lower than -2 (FC < -2) and greater 
than 2 (FC > 2) in RMS patients and with a p-value lower 
than 0.05 compared to controls were considered highly 
dysregulated and retained for further bioinformatics 
analysis.

Bioinformatics analysis of Gene Expression Omnibus (GEO) 
dataset
A survey on the Gene Expression Omnibus 
(GEO, https:// www. ncbi. nlm. nih. gov/ gds) repository was 
made to identify the publicly available miRNA expres-
sion datasets associated with RMS patients. The miRNA 
microarray-based expression data matrix from a cohort 
of 49 RMS Formalin-fixed paraffin-embedded tissues 
(primary not pre-treated tumors) collected at Fondazi-
one IRCCS Istituto Nazionale dei Tumori (Milan, Italy) 
was retrieved for further analysis (ID: GSE135518). 
In this dataset, miRNA profile was performed using a 
SurePrint G3 Human miRNA r21 microarrays (Agi-
lent) designed on miRBase 21.0 (miRNA). GSE135518 
includes 27 pediatric RMS (0–14 years) and 22 AYA RMS 
(15- + 30 years)] as well as 13 normal tissue counterparts 
(CTRL) [27]. Primary data were collected using Agilent’s 
Feature Extraction software v10.7 (Agilent Technologies), 
background corrected, and quantile normalized using 

https://www.ncbi.nlm.nih.gov/gds
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Bioconductor limma implementation in R. Differentially 
expressed miRNAs in the tissue sample between ARMS, 
ERMS and CTRL were identified imposing log2|FC|> 2 
and adjusted p < 0.05 by using the GEO2R bioinformatics 
tool. Expression of miR-335-5p was retrieved from the 
data matrix and median expression was used to stratify 
patients for Kaplan–Meier analysis having overall sur-
vival as clinical endpoint. Patients’ clinical information’s 
are shown in Supplementary Table 2.

Bioinformatics target prediction of miR‑335‑5p and gene 
ontology
Target prediction of the miR-335-5p, was carried out by 
already reported procedure [28] that integrates the pre-
dictions of three different algorithms (i.e., TargetScan, 
MiRanda, and PITA). The list of target genes predicted in 
all databases were used for bioinformatics analysis. Gene 
Ontology (GO), KEGG pathway enrichment analysis, 
and annotation by DAVID bioinformatics tool [29] were 
performed, to determine the biological processes and 
signaling pathways in which the predicted targets of miR-
335-5p were involved.

In situ hybridization (ISH)
Tumor sample paraffin embedded from 16 patients (10 
ERMS and 6 ARMS) were obtained from the archives 
of Operative Unit of Pathology at Bambino Gesù Chil-
dren’s Hospital. Formalin-fixed paraffin-embedded 
tumor samples were cut in RNAse-free environment at 
5 µm thick, mounted on positive-charged slides. MiRNA 
in  situ hybridization was performed as previously 
described [15]. Slides were analyzed by light microscopy 
with (Eclipse E600, Nikon). Each slide was scored by 2 
independent, qualified observers, blinded on patient’s 
clinical information’s. miR-335-5p expression was semi-
quantitatively evaluated based on staining intensity 
and distribution using a total score as follows: intensity 
score × proportional score. The intensity score (IS) was 
predefined as follows: 0, negative; 1, weak; 2, moderate 
and 3, strong. The proportional score (PS) was defined as 
follows: 0, negative; 1, < 10%; 2, 10%–50%; 3, > 50% posi-
tive cells [30].

Results
Profiling of extracellular vesicles miRNAs in plasma of RMS 
patients
We first analyzed EVs-miRNAs differentially expressed 
in the comparison between 10 RMS patients’ group (5 
ARMS and 5 ERMS) and 4 HCs. A total of (171) miR-
NAs were expressed in RMS patients and (180) in HC. 
Among commonly expressed miRNAs, we focused on 
the EVs-miRNAs expressed in the 80% of RMS samples 
and HCs (116). A total of 41 miRNAs were significantly 

(p < 0.05) up or down regulated in one of the two groups 
(i.e., ERMS and ARMS), (Fig. 1, Supplementary Table 3).

Nine miRNAs (miR-483-5p, miR-132-3p, miR-766-3p, 
miR-454-3p miR-197-3p, miR-335-3p, miR-17-5p, miR-
486-5p and miR-484) were highly upregulated in RMS 
patients compared to HCs, whereas no significant down-
regulated miRNAs were observed (Table 1).

Performing the analysis by histology, 5 miRNAs (miR-
483-5p, miR-132-3p, miR-766-3p, miR-454-3p and miR-
197-3p) were significantly upregulated in both ERMS and 
ARMS patients compared to HCs. Interestingly, 4 miR-
NAs (miR-335-5p, miR-17-5p, miR-486-5p and miR-484) 
were significantly upregulated in ARMS samples com-
pared to ERMS patients (Table 1).

Validation of selected extracellular vesicles miRNAs 
from plasma by RT‑qPCR
In order to validate the results obtained in our previ-
ous discovery analysis (Table  1), the expression level 
of the nine EVs-miRNAs (miR-483-5p, miR-132-3p, 
miR-766-3p, miR-454-3p and miR-197-3p, miR-335-5p, 
miR-17-5p, miR-486-5p and miR-484), found to be signif-
icantly upregulated in RMS were validated in additional 
samples by using real-time qPCR. In total, 12 ERMS, 
9 ARMS and 13 HC were used in the validation analy-
sis (Supplementary Table  1). The results, obtained by 
ANOVA test, showed that only miR-483-5p (p = 0.029), 
miR-484 (p = 0.007) and miR-335-5p (p = 0.003) resulted 
statistically significant between groups (Fig. 2). Interest-
ingly, the three miRNAs were significantly upregulated 
in ARMS patients compared to HC and only mir-335-5p 
was significantly upregulated also compared to ERMS 
(Fig.  2). This suggest that miR-335-5p could be specifi-
cally related to ARMS histotype.

Time‑course analysis of miR‑335‑5p in two patients 
during treatment
We also analyzed EVs miR-335-5p expression during dif-
ferent treatment timepoints in two patients (ARMS 1 and 
ERMS 2), (Supplementary Fig. 2).

ARMS 1 was a 9 months old boy diagnosed with a para-
meningeal ARMS with bone and lymph nodes metastasis 
[2]. At the end of maintenance treatment with vinorel-
bine and cyclophosphamide, he presented a local relapse 
of disease. He received second line of treatment with 
vincristine, irinotecan and temodal [31]. The patients 
died after 2 cycles of VIT for further progression disease 
(PD). The expression of EVs miR-335-5p reduced during 
maintenance treatment but increased close to the end of 
maintenance and at the relapse.

ERMS 2 was a 8 years old girl diagnosed with a local-
ized parameningeal ERMS (size more than 5  cm diam-
eter, IRS III, N1, M0). She received chemotherapy 
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according to EpSSG RMS 05 protocol, HR group. After 
the first 3 cycles of chemotherapy, she showed a par-
tial response. She continued scheduled chemotherapy, 
and she received radiotherapy on the tumor and lymph 
nodes. For local PD, she was treated with a second line 
chemotherapy with vincristine, irinotecan and pazopanib 
[32]. The expression of EVs miR-335-5p reduced after the 
third cycle of chemotherapy, but increased again after the 

4th cycle and at the diagnosis of local PD. She is still alive 
after 6 years of treatment stop.

Prediction of target genes and hub genes of Kegg pathway 
network of miR‑335‑5p
By following our bioinformatics approach, we obtained 
a list of 1292 target genes predicted for miR-335-5p. 
By GO enrichment analysis (http:// amigo. geneo ntolo 

Fig. 1 Heatmap of the 41 statistically dysregulated EVs-miRNAs in ERMS and ARMS patients compared to HC. Upregulated and downregulated 
miRNAs are represented in red and green, respectively, P-value < 0.05

Table 1 Highly dysregulated and statistically significant miRNAs (-2 > FC > 2; p-value < 0.05) detected in RMS patients compared to 
HCs, in ERMS and ARMS patients compared to HCs and in ARMS patients compared to ERMS patients

ID Relative quantity (FC ± St. Dev) P-Value

ERMS ARMS RMS ANOVA p-value RMS vs HC ERMS vs HC ARMS vs HC ARMS vs ERMS

hsa-miR-483-5p 7.72 ± 3.62 18.34 ± 4.59 11.9 ± 4.09 0.007 0,002 0.016 0.002 0.284

hsa-miR-132-3p 2.83 ± 1.61 3.45 ± 1.57 3.12 ± 1.57  < 0.001 0,000 0.000  < 0.001 0.495

hsa-miR-766-3p 2.9 ± 3.28 2.75 ± 2.72 2.83 ± 2.82 0.046 0,011 0.026 0.030 0.938

hsa-miR-454-3p 2.3 ± 1.99 2.6 ± 2.34 2.45 ± 2.08 0.030 0,007 0.023 0.015 0.808

hsa-miR-197-3p 2.4 ± 2.03 2.13 ± 1.79 2.26 ± 1.85 0.006 0,001 0.003 0.005 0.752

hsa-miR-335-3p 3.01 ± 1.812 12.87 ± 2.62 6.23 ± 2.93 0.001 0,009 0.053  < 0.001 0.007
hsa-miR-17-5p 1.17 ± 4.39 5.51 ± 1.38 2.54 ± 3.66 0.006 0,026 0.161 0.002 0.022
hsa-miR-486-5p -1.54 ± 2.07 3.2 ± 1.33 1.44 ± 2.69  < 0.001 0,062 0.447  < 0.001  < 0.001
hsa-miR-484 -1.01 ± 1.75 2.98 ± 1.31 1.72 ± 2.04 0.001 0,031 0.205  < 0.001 0.002

http://amigo.geneontology.org
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gy. org) we found that the most enriched items with a 
p-value < 0.001 are: positive regulation of transcrip-
tion from RNA polymerase II promoter (GO:0045944); 
cell division (GO:0051301); cellular response to insulin 
stimulus (GO:0032869); regulation of alternative mRNA 
splicing, via spliceosome (GO:0000381); corticospinal 
tract morphogenesis (GO:0021957), (Fig. 3A). The KEGG 
pathways analysis showed an enrichment in target genes 
with a p-value < 0.01 implicated in: Ras signaling pathway 
(hsa04014) [33]; Cell cycle (hsa04110); Endocrine and 
other factor-regulated calcium reabsorption (hsa04961), 
(Fig. 3B).

Finally, we carried out a bioinformatic analysis to iden-
tify the target genes of miR-335-5p involved in biological 
processes that contribute to metastatic behavior such as 
cell migration (GO:0016477), cell motility (GO:0048870), 
and cytoskeleton organization (GO0007010). In GO bio-
logical processes, 257 genes belong to cell migration, 
31 to cell motility, 134 to cytoskeleton organization and 
35 genes were in common in all of the three pathways. 
We extracted the intersection of these lists and the con-
nections between miR-335-5p, and its target genes 
were visualized in Fig. 3C as an interaction network (by 
Cytoscape).

MiR‑335‑5p is upregulated in RMS tissues
In order to investigate if miR-335-5p was expressed also 
in RMS tissues, we used the dataset GSE135518 obtained 
from the GEO database (https:// www. ncbi. nlm. nih. gov/ 

gds/). We observed that miR-335-5p was upregulated in 
RMS tumor tissues (49 patients) with respect to normal 
tissues (13 subjects), (p = 0.00202), and upregulated sig-
nificantly between ARMS and ERMS (p = 0.04), (Fig. 4A). 
Furthermore, the miRNA expression correlated with 
the Intergroup Rhabdomyosarcoma Study (IRS) group-
ing system, (p = 0.0234), (Fig.  4B) and patients with 
high miR-335-5p expression had a lower Overall- (OS, 
p = 0.044) and Progression Free-survival (PFS, p = 0.025), 
(Fig. 4C, D).

To explore miR-335-5p expression in tumor cells and 
microenvironment, ISH was performed on paraffin-
embedded RMS tumor samples of 6 ARMS and 10 ERMS 
patients. MiR-335-5p signal was observed exclusively in 
the cytoplasm of cancer cells. With the limitation of low 
numbers of samples, we observed a median total score of 
3.3 in ARMS and 2.3 in ERMS patients (see Materials and 
Methods section for the score calculation). Representa-
tive pictures are shown in Fig. 5.

Discussion
The use of liquid biopsy to track tumor-related biomark-
ers at diagnosis, during treatment or follow-up, rep-
resents a very promising tool, especially in the field of 
pediatric tumors, due to the non-invasive characteristics 
of this approach.

In this study, we performed a miRNA profile of plasma 
EVs isolated from patients affected by RMS, to identify 
specific tumor related biomarkers. MiRNAs have been 

Fig. 2 Significant EVs-miRNAs expression in the validation analysis evaluated by RT-qPCR. ** p < 0,01 (miRNA-484, miRNA-483-5p, miRNA-335-5p)

http://amigo.geneontology.org
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
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largely studied in RMS tumors; in particular, they can 
directly modulate myogenic-regulatory factors thereby 
regulating RMS development and progression. Muscle-
specific miRNAs, termed myomiRs, are indeed important 
for regulation of cell proliferation and myoblasts differen-
tiation, which are key processes for muscle development. 
The deregulation of myomiRs expression may inhibit the 
correct skeletal muscle growth causing the occurrence of 
muscle-related disorders [34–36]. Several myomiRs have 
been involved in the development of RMS, especially 
those with tumor suppressive activity.

For example, it has been described that PAX7, which 
is a gene essential for ARMS cell differentiation and 
tumor progression, was downregulated by miR-206 
[37]. Low miR-206 expression in RMS tissues corre-
lated with poor survival in ERMS and ARMS patients 
[38]. Among circulating biomarkers, exosomal miRNAs 
are potentially highly useful since they are stable and 
have been described to be tumor type-specific [39–41]. 

Concerning RMS, Ghayad and collaborators reported 31 
miRNAs commonly deregulated in exosomes released 
by ARMS and ERMS cell lines [24]. Interestingly, RMS-
derived exosomes increased the migration and invasion 
of normal recipient fibroblasts and endothelial cells in a 
dose-dependent manner, underlining their putative con-
tribution to the metastatic process [24]. In a separate 
work, Hanna and colleagues identified miR-486-5p, a 
downstream target of the PAX3-FOXO1 chimeric pro-
tein, as highly expressed in ARMS cell lines-derived 
exosomes [18]. In a small cohort of RMS patients (6 
ERMS and 1 ARMS), miR-486-5p was enriched in serum 
exosomes and its value was reduced after chemotherapy 
[42].

In our first analysis, miR-486-5p was significantly 
upregulated in ARMS patients in comparison to ERMS 
and HCs (Table  1), however the validation analysis did 
not confirm this observation.

Fig. 3 Bioinformatic analysis of predicted targets of miR-335-5p. A GO enrichment analysis; B KEGG Pathways; C Cytoscape interaction network
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We identified miR-335-5p, as significantly upregu-
lated in plasma EVs of patients affected by ARMS com-
pared to HCs and ERMS. The analysis of different time 
points for two RMS patients demonstrated a reduc-
tion of EVs-miR-335-5p expression during treatment, 
but an increase before diagnosis of disease recurrence. 
MiR-335-5p expression was increased in ARMS tumor 
compared to ERMS and surrounding healthy muscle as 

showed in the GEO dataset. The ISH revealed the local-
ization in the tumor cells. Furthermore miR-335-5p 
expression correlated with IRS, as well as with OS and 
PFS.

MiR-335-3p is induced during myoblast differentiation 
and highly expressed during muscle regeneration [43]. 
Indeed, deregulation of miR-335 is implicated in several 
muscle-related diseases [44] being involved in multiple 

Fig. 4 Bioinformatics analysis of expression of miR-335-5p, from GSE135518 database in RMS tissues compared to normal tissue. A Comparison 
between miR-335-5p expression and histology B Comparison between miR-335-5p and IRS; C Correlation between miR-335-5p and OS and (D) 
PFS**** p < 0,0001; ** p < 0,01; * p < 0,05
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cellular processes including proliferation and apopto-
sis. In cancer miR‐335 presents a dual role, having both 
oncosuppressor and oncogenic function depending on 
tumor type and can affect treatment resistance of cancer 
[45–48]. Interestingly, exosomes from metastatic colorec-
tal cancer cell lines, carrying miR‐335, promote migra-
tion, invasion, and epithelial to mesenchymal transition 
(EMT) [49]. High levels of miR-335 have been identified 
in tumors and plasma derived from patients affected by 
gastric cancer and uterine sarcoma patients with poor 
prognosis [50, 51]. In this perspective, miR-335 could be 
considered as a potential prognostic biomarker [52].

Concerning RMS, two teams documented the over-
expression of miR-335-5p in RMS tumor samples and 
in particular in ARMS [53, 54]. Hanna and colleagues 
observed that silencing of PAX3-FOXO1 in ARMS cell 
lines induced downregulation of miR-335-3p, while 
PAX3-FOXO1 overexpression in ERMS cell line deter-
mine an upregulation of this miRNA [18].

Conclusion
In our study we observed that miR-335-5p expression is up-
regulated in EVs isolated from plasma and in tumor sam-
ples of patients affected by ARMS in comparison to ERMS 
and HCs and miR335-5p expression appears to be associ-
ated with stage and survival in RMS patients. Considering 

the limited number of samples, it was not possible to define 
in this study if miR-335-5p could be an independent prog-
nostic biomarker  or if the worse prognosis is due to the 
presence of alveolar histology. Therefore, further studies 
with larger sample sizes are needed to confirm these find-
ings and to deeply elucidate its biological role.
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