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Abstract
Introduction: For a more individualized therapeutic approach we explored a protease-free
method to culture primary cells from breast cancer biopsies.

Methods and Results: Tumor tissue from breast cancer patients after surgery was cultured ex
vivo without enzymatic digestion for more than one year and revealed the continuous outgrowth
of adherent and proliferating primary cell populations. Immunofluorescence staining of these
human breast cancer-derived epithelial cells (HBCEC) and quantification by flow cytometry
revealed nearly exclusively cytokeratin-expressing cells. Analysis of surface markers during long
term tumor culture of primary HBCEC (more than 476d) demonstrated a prominent expression
of CD24, CD44 and MUC1 (CD227). According to aging markers, expression of senescence-
associated β-galactosidase revealed little if any positive staining in a primary tumor-derived HBCEC
population after 722d in culture, whereas the majority of normal human mammary epithelial cells
(HMEC) demonstrated senescent cells already after a culture period of 32d. In this context,
HBCEC populations derived from a tumor culture after 152d and 308d, respectively, exhibited a
significant telomerase activity, suggesting continuous proliferative capacity. Treatment with several
chemotherapeutic compounds and their combinations revealed distinct cytotoxic effects among
HBCEC from different breast cancer patients, indicating an individualized response of these tumor-
derived primary cells.

Conclusion: The protease-free outgrowth of primary HBCEC offers a patient-specific approach
to optimize an individually-designed cancer therapy. Moreover, HBCEC from long term breast
tumor tissue cultures resemble tumor cell-like properties by an intact ECM formation and a stable
cell surface protein expression providing a reproducible screening platform to identify new
biomarkers and to test new therapeutics in individual tumor samples.

Background
Individual primary cultures of tissue biopsies from breast
cancer patients represent an alternative model for in vitro
studies as compared to the use of immortalized breast
cancer cell lines. Thus, immortalization and genetic drifts
in cell lines have to be extrapolated for the appropriate

clinical application [1]. A variety of previous investiga-
tions, using enzymatic digestion of the appropriate breast
tissue, extracted normal as well as malignant breast epi-
thelial cells and reported distinct properties of these iso-
lated primary cells [1-6]. It has been indicated that the
culture of isolated cells from protease-digested solid
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tumors includes the risk of an overgrowth by fibroblasts
or stromal cells [1,7], demanding subsequent selective
culture conditions. Growth of primary breast epithelial
cells, also termed as human mammary epithelial cells
(HMEC) [3,4], and breast cancer-derived epithelial cells
(HBCEC) is preferentially stimulated in serum-free
medium conditions and thus allows selection among
fibroblasts [8,9]. The enzymatic and mechanical approach
to isolate mammary cells from tissues also revealed cer-
tain mammary stem/progenitor cells in suspension cul-
ture [10,11]. These mammary stem/progenitor cells can
appear in multicellular aggregates termed as mammos-
pheres with proliferative capacity for self-renewal and the
potential to generate differentiated progeny [12]. Thus,
distinct culture conditions of mammospheres provide the
ability to induce differentiation into ductal, myoepithe-
lial, and alveolar mammary cells, respectively [13]. A vari-
ety of markers, including morphology, growth properties
[3-5], specific antigen and cytokeratin expression [1,7] as
well as metabolic alterations during aging [2] have been
characterized in HMEC and in initially cultured breast
tumor cells. For a more general detection and characteri-
zation of malignant tumor cells in solid human tumors, a
cytopathological examination and the measurement of
telomerase activity was suggested [14].

Enzymatic digestion of breast tumor tissue by distinct pro-
teases to obtain single cells and further subculture by
trypsinization include non-specific proteolytic effects
which may interfere with intracellular signaling mecha-
nisms and cell cycle progression [15,16]. Recent studies
have demonstrated that the architecture of the mammary
tissue requires cell adhesion proteins, in particular E- and
P-cadherins, which play an important role to maintain
normal mammary cell functions and proliferation [17].
Moreover, transmembrane adhesion molecules such as
integrins and their interaction with the cytoskeleton are
essential for normal as well as breast cancer cells, respec-
tively [15,18], and the epithelial cells are highly suscepti-
ble to alterations of the extracellular matrix (ECM)
[10,16]. This suggests, however, that enzymatic degrada-
tion of parts of this sensitive ECM network may abolish
distinct signaling pathways or induce a certain aberrant
signal transfer in breast tumor tissue. Indeed, previous
work has demonstrated that the detection and function of
certain marker proteins in HBCEC was restricted to short
term cultures and characteristics of the original tumor tis-
sue could not be preserved during extended cultivation
[7].

In the present study we characterize primary human
breast cancer epithelial cells (HBCEC), derived from a
direct tumor tissue outgrowth without any protease diges-
tion. These primary HBCEC cultures could serve as a
patient-specific approach to optimize an individually-

designed cancer therapy. Moreover, the tumor tissues can
be maintained for long term in culture and the obtained
HBCEC cultures represent typical tumor cell properties in
contrast to limited cell divisions of normal HMEC, thus
providing a potential testing platform to investigate new
therapeutic strategies.

Materials and methods
Individual mammary tumor-derived cell cultures
Small tissue pieces from 8 different breast cancer patients
were collected during surgery and pathologically charac-
terized as ductal carcinomas, respectively. Informed writ-
ten consent was obtained from each patient for the use of
individual biopsy material and the study has been
approved by the Institutional Review Board, Project
#3916 on June 15th, 2005. The tissue samples were cut
into small blocks of approximately 1 mm3 and washed
extensively in PBS to remove blood cells and cell debris.
After negative testing for HIV-1, hepatitis B & C, bacteria,
yeast and fungi, respectively, the tissue pieces of the mam-
mary tumors were incubated using plain uncoated plastic
dishes (Nunc GmbH, Langenselbold, Germany) in serum-
free mammary epithelial cell growth medium (MEBM)
(PromoCell GmbH, Heidelberg, Germany), supple-
mented with 52 μg/ml of bovine pituary extract, 0.5 μg/ml
of hydrocortisone, 10 ng/ml of human recombinant epi-
dermal growth factor and 5 μg/ml of human recombinant
insulin in a humidified atmosphere at 37°C. Half of the
cell culture medium was replaced about every fourth day
and the other half was used as conditioned medium.
Under these conditions, an outgrowth of primary tumor-
derived cells was observed, which were adherent to the
tumor tissue blocks and to each other. In the subconfluent
growth phase the tumor tissue pieces were separated from
the culture and placed into a separate culture dish to allow
further outgrowth of primary tumor cells. The remaining
tumor-derived cells were used for the appropriate assays.

Normal human mammary epithelial cell cultures
Primary cultures of normal human mammary epithelial
cells (HMEC) were isolated from a 50 year old caucasian
female and commercially provided by BioWhittaker Inc.
(Walkersviell, MD, USA) as culture passage 7 (Lot
#1F1012). HMEC were tested positive for cytokeratins 14
and 18 and negative for cytokeratin 19, respectively. They
were performance tested and tested negative for HIV-1,
hepatitis B & C, mycoplasma, bacteria, yeast and fungi.
HMEC were seeded at 4,500 cells/cm2, cultured in MEBM
(PromoCell) and the appropriate medium of each culture
was replaced every two to three days. At subconfluent con-
ditions the cells were subcultured by incubation with
0.025%/0.01% trypsin/EDTA (PromoCell) for about 6
min/37°C until the cells detached. Thereafter, immediate
addition of trypsin neutralization solution (TNS) from
soybean was required to inactivate the trypsin followed by
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subsequent centrifugation (220 g/6 min). The pelleted
cells were resuspended in new medium at about 4,500
cells/cm2 and cultured further on in the next passage
number. Subcultured cells required about 24 h to recover
and resume growth.

MCF-7 cell line
Human MCF-7 mammary gland adenocarcinoma cells
originally isolated from a 69 year old caucasian woman
with several characteristics of differentiated mammary
epithelium were derived from the American Type Culture
Collection (ATCC #HTB-22) as passage 146 or earlier and
cultured inititally at about 1,500 cells/cm2 in DMEM-
medium (Invitrogen GmbH, Karlsruhe), including 10%
(v/v) heat-inactivated fetal calf serum (FCS) (Biochrom
KG), 2 mM L-Glutamin (Invitrogen), 1 mM Na-Pyruvat
(Invitrogen) and 1 mM Penicillin/Streptomycin (Invitro-
gen).

MDA-MB-231 cell line
Human MDA-MB-231 mammary gland adenocarcinoma
cells isolated as one of a series of breast tumor lines from
pleural effusions of a 47 year old caucasian female were
derived from the ATCC (#HTB-26) and cultivated initi-
tally at about 1,500 cells/cm2 in Leibovitz's L-15-medium
(Invitrogen) with 10% (v/v) FCS, 2 mM L-Glutamin and
1 mM Penicillin/Streptomycin.

Electron microscopy
The mammary tumor tissues were cultured on appropriate
microscope slides for scanning (SEM) and transmission
electron microscopy (TEM), respectively. Following ex vivo
outgrowth of tumor-derived cells, the individual cultures
were fixed on these slides in a solution containing 3% glu-
taraldehyde in 0.1 M sodium cacodylate, pH 7.4 for at
least 24 h. Thereafter, the samples were postfixed in 1%
OsO4 in H2O before being dehydrated in an ethanol gra-
dient. For SEM, critical point-dried specimen were coated
with gold-palladium (SEM coating system E5400,
Polaron, Watford, UK) and examined in a JEOL SSM-
35CF scanning electron microscope at 15 kV.

For TEM, the ethanol dried mammary tumor tissues were
embedded in Epon. Ultrathin sections were stained with
uranyl acetate and lead acetate and examined in a Philips
CM10 electron microscope, operated at 80 kV.

Immunofluorescence
Mammary tumor-derived cells were cultured onto micro-
scope slides, washed 3× with PBS/Tween-20 for 5 min,
and air-dried for 60 min. Thereafter, the samples were
fixed with ice-cold acetone for 10 min and rehydrated in
PBS for 5 min. After treatment with PBS/5% (w/v) BSA for
10 min to block non-specific binding-sites, the samples
were incubated with a mouse anti-vimentin antibody

(cloneV9 (1:100); Dako, Hamburg, Germany) for 30 min.
Following three washes with PBS/Tween-20 for 5 min,
respectively, the samples were incubated with a TRITC-
labelled anti-mouse secondary antibody ((1:40); Dako)
for 90 min. Another 3 washes with PBS/Tween-20 were
performed for 5 min, and after blocking with a mouse
serum ((1:40); Dako), the samples were incubated with a
FITC-conjugated monoclonal anti-pan cytokeratin anti-
body (clone MNF116 (1:20); Dako) for 90 min. After fur-
ther three washes with PBS/Tween-20 for 5 min, the
samples were incubated with a DAPI-containing medium
(Dako), which simultaneously preserve the samples for
subsequent immunofluorescence microscopy. For back-
ground and control staining, the tumor-derived cell pas-
sages were incubated with mouse sera of the appropriate
IgG subclass instead of using the primary antibodies. Flu-
orescence microscopy was performed with an Olympus
SIS F-View II CCD-camera associated with an Olympus IX-
50 fluorescence microscope (Olympus, Hamburg, Ger-
many). The fluorescence image analysis and the fluores-
cence overlay image was obtained with the SIS bundle
analySIS'B image software (Olympus). Accordingly,
cytokeratin filaments demonstrated green, vimentin fila-
ments red, and DNA within the cell nuclei blue fluores-
cence, respectively.

Cytokeratin and vimentin quantification by flow 
cytometry
About 5 × 105 mammary tumor-derived cells were fixed by
consecutive addition of ice-cold ethanol to a final concen-
tration of 70% (v/v). Thereafter, the cells were stored at
4°C for at least 24 h. Following 2× washes with PBS, the
cells were incubated with a monoclonal anti-pan-cytoker-
atin (clone MNF116; Dako), anti-vimentin antibody
(clone V9; Dako) and anti-desmin antibody (clone D33;
DakoCytomation), respectively, for 30 min at 4°C. After
washing with PBS the samples were incubated with a RPE-
conjugated F(ab')2 fragment of goat anti-mouse immu-
noglobulin (1:10 (v/v); Dako) for 30 min at 4°C in the
dark. Incubation of the cells with the secondary antibod-
ies alone was used as a negative control and background
staining. Following three washes with PBS the samples
were analyzed in a Galaxy FACScan (Dako) using FloMax
analysis software (Partec GmbH, Münster).

Flow cytometry analysis of surface marker expression
Tumor-derived HBCEC obtained from the same tumor
piece after tissue culture for 176d and for 462d, respec-
tively, were trypsinized and fixed in 70% ice-cold ethanol
at 4°C for 24 h. Thereafter, the cells were washed twice
with PBS and incubated with the FITC-conjugated CD24,
CD44, and CD227 antibodies (all from BD Biosciences,
Heidelberg, Germany, according to the manufacturer's
protocol) and the isotype-specific negative controls
(Dako), for 30 min at room temperature. After two addi-
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tional washing steps, the cells were measured with a Gal-
axy FACScan (Dako) using FloMax analysis software
(Partec).

SA-β-galactosidase assay
The mammary tumor-derived cells after 722d of tumor
tissue culture were compared to normal HMEC in passage
16 after 32d. The cells were fixed and stained against the
senescence-associated β-galactosidase (SA-β-gal) for 24 h/
37°C in the dark according to the manufacturers protocol
and recommendations (Cell Signaling Technology, Dan-
vers, MA, USA). Following two washes with PBS the differ-
entially-stained cell cultures were documented by phase
contrast microscopy with an Olympus IX50 microscope
using the Olympus imaging software cellB (Olympus).

Telomerase (TRAP-)assay
The TRAPEZE® Gel-Based Telomerase Detection assay
(Chemicon International, Temecula, CA, USA) was per-
formed according to the manufacturer's protocol using
the isotopic detection. HBCEC populations from two dif-
ferent patients were tested, whereby one was obtained
after 308d of tumor tissue culture. HBCEC from the other
patient were collected after 152d of tumor tissue culture
both, by trysinization or by scraping with a rubber police-
man. The human embryonic kidney (HEK) cell line 293T
was obtained by trypsinization of a steady state culture
and used as a positive control. Briefly, HBCEC and 293T
control cells were washed with ice-cold PBS and homoge-
nized in 100 μl ice-cold 1× CHAPS lysis buffer (Chemi-
con). After incubation for 30 min on ice, the homogenates
were centrifuged (12000 g/30 min/4°C) and the superna-
tants were transferred to a new tube and subjected to a
protein quantification measurement using the BCA pro-
tein assay. According to the Chemicon protocol, the TS
primer were radioactively end-labeled with γ-32P-ATP
before the telomeric repeat amplification reaction was set
up to allow the isotopic detection (see Chemicon proto-
col). Each assay included an internal standard (36 bp
band) to control the amplification efficiency. A primer-
dimer and PCR contamination control was performed by
substituting the cell extract with 1× CHAPS lysis buffer.
For data analysis, 25 μl of the amplified product were
loaded on a 12.5% non-denaturating PAGE in 0.5× TBE
buffer and eventually visualized using a PhosphorImager
(GE Healthcare, Freiburg, Germany).

ATP release assay following treatment with 
chemotherapeutic compounds
The effects of chemotherapeutic reagents on two different
primary HBCEC were analyzed using the luciferin-luci-
ferase-based ATP tumor chemosensitivity assay (ATP-
TCA). Cytotoxicity was determined by measuring the
luminescence of luciferin that is proportional to the ATP-
release of intact cells. Triplicates of about 1.5 × 104

HBCEC were incubated with different concentrations of
chemotherapeutic compounds (Taxol (Bristol-Myers-
Squibb); Epothilone A and B (kind gift from Prof. G.
Höfle, Helmholtz Center for Infection Research, Braun-
schweig, Germany); Epirubicin (Pharmacia&Upjohn);
Doxorubicin (Sigma)) in a 96-well plate for 6d at 37°C,
5% CO2. The ATP-TCA assay was performed according to
the manufacturer's protocol (DCS Diagnostica GmbH,
Hamburg, Germany) using non-treated cells and cells
incubated with the Maximum ATP-inhibitor Solution
(DCS) as controls together with an ATP standard. Follow-
ing lysis of the tumor cells with an extraction buffer
(DCS), the luminescence was measured in a fluoro/lumi-
nometer (Fluoroskan Ascent FL Labsystems, Thermo Sci-
entific, Dreieich, Germany) after addition of the luciferin-
luciferase reagent and the percentage of intact (viable)
cells was calculated using the Ascent software (Thermo
Scientific).

Results
The ex vivo culture of tumor tissue from breast cancer
patients after surgery was associated with the outgrowth of
adherent human breast cancer epithelial-like cells
(HBCEC) and demonstrated a massive extension of cyto-
plasmic protrusions similar to the morphology as
described for normal human mammary epithelial cells
(HMEC) (Fig. 1A) [2]. In contrast to the HMEC growth as
a monolayer, HBCEC cultures revealed a multilayer cell
growth and were connected to each other by numerous
desmosomes (Fig. 1B).

Immunofluorescence staining exhibited a significantly
green-colored cytokeratin expression within all of the
HBCEC cultures (Fig. 1C), demonstrating epithelial-like
cells rather than a contamination with other cell types
such as fibroblasts. Additional testing for the fibroblast-
specific prolyl-4-hydroxylase remained below detection
limit in HBCEC cultures (data not shown). Co-immun-
ofluorescence analysis was performed with red-labeled
vimentin, which also appeared in certain cells (Fig. 1C).
Blue DAPI staining of the nuclei and an overlay image
revealed a co-expression of cytokeratin and vimentin in a
variety of cells, demonstrating a different intracellular
localization of these intermediate filaments (Fig. 1C).
Quantification of vimentin and cytokeratin expression by
flow cytometry revealed about 99% of cytokeratin-posi-
tive cells, whereby about 32% of this population demon-
strated both, vimentin-positive and cytokeratin-positive
cells, respectively (Fig. 1D). In contrast, flow cytometry
analysis of desmin filaments which are predominantly
observed in myoepithelial and myofibroblastic cell phe-
notypes revealed no detectable staining of either culture
(Fig. 1D). Although the amount of vimentin may vary
throughout different HBCEC cultures, cytokeratin levels
were always detected at 95% or higher. Moreover, while
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Characterization of primary human breast cancer epithelial cells (HBCEC)Figure 1
Characterization of primary human breast cancer epithelial cells (HBCEC). A. Scanning electron micrographs of 
human breast cancer-derived cell cultures. The cells are squamous with many short and thin processes and grow upon each 
other. B. Ultrathin sections of two human breast cancer-derived cells, which partially overlap and are connected by desmo-
somes. The cells contain bundles of intermediate filaments and cytoplasmic vacuoles, whereas organelles are almost absent. In 
the right transmission micrograph, two squamous cell processes are connected by desmosomes and bundles of intermediate 
filaments are orientated in parallel to the cell surface. C. Immunofluorescence of intermediate filaments. Nuclei became visual 
using DAPI and the intermediate filament proteins cytokeratin (green) and vimentin (red) were detected by FITC-conjugated 
mouse anti-cytokeratin and mouse anti-vimentin antibody, respectively. D. Quantification of cytokeratin, vimentin and desmin 
expression by flow cytometric analysis. About 99% of the HBCEC population stained positive for cytokeratin, whereof some 
were positive for both, cytokeratin and vimentin intermediate filament proteins. Expression of desmin intermediate filaments 
remained undetectable. The FITC-labeled IgG control and the secondary antibody control served as background staining bal-
ance.
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the expression of intermediate filaments (Fig. 1C and 1D)
was obtained from primary tumor cells after 34d, longer
term culture remained stable displaying a similar pattern
of intermediate filaments (data not shown). Together,
these data suggested an almost exclusively epithelial-like
cell population of HBCEC.

To evaluate cell surface markers during long term culture
of the breast tumors, an HBCEC population after 176 days
was analyzed for CD24, CD44 and CD227, respectively,
and compared to a tumor culture of the same patient after
462 days (Fig. 2A). Thus, CD24 was expressed in 89% of
176d HBCEC and in 86% of 462d HBCEC. Moreover,
CD44 appearance was detectable in 94% of 176d HBCEC
and in 99% of 462d HBCEC, suggesting little if any
changes of both, CD24 and CD44 during long term tumor
culture (Fig. 2A). In contrast, expression of the CD227
(MUC1) surface protein significantly increased from 52%
in 176d HBCEC to 88% in 462d HBCEC (Fig. 2A).

Further characterization of the HBCEC cultures was per-
formed to determine aging cells in a senescence-associ-
ated β-galatosidase (SA-β-gal) assay as compared to
normal post-selection human mammary epithelia cells
(HMEC) (Fig. 2B). Thus, SA-β-gal staining of primary cul-
tures from breast cancer biopsies after 722d demonstrated
majorly small young cells and only occasional positively-
stained senescent cells in contrast to normal post-selec-
tion HMEC (P16) after 32d with almost exclusively large
SA-β-gal positive senescent cells (Fig. 2B).

Evaluations by video microscopy (data not shown) and
previous work have demonstrated the proliferative capac-
ity of small-seized young breast epithelial cells [5]. Conse-
quently, telomerase assays were performed and revealed
telomerase activity of autonomously proliferating cells in
all HBCEC populations (Fig. 2C). The human embryonic
kidney (HEK) 293T cell line served as a positive control
and the buffer was used as a negative control. Together,
these findings suggested a sustained expression of epithe-
lial stem cell-like markers in HBCEC paralleled by only
occasional senescence and a marked telomerase activity.

Individually-derived HBCEC populations from cultured
breast cancer biopsies were tested for their response to dis-
tinct chemotherapeutic compounds and combinations.
Thus, HBCEC populations (39d) from tumor biopsies of
a 40 year-old (Fig. 3A) and HBCEC populations (34d) a
63 year-old patient (Fig. 3B) were treated with 125 nM
and 1 μM of Taxol, Epothilone A, Epothilone B, Epiru-
bicin, Doxorubicin, and the combinations of Epirubicin/
Taxol, Epirubicin/Epothilone A, and Epirubicin/Epothi-
lone B, respectively. Similar treatments were performed
with the non-metastatic breast cancer cell line MCF-7 (Fig.
4A), with the highly metastatic MDA-MB-231 cell line

(Fig. 4B) and with normal post-selection HMEC of pas-
sage 16 (Fig. 5), respectively. Incubation with a single
dose of 1 μM (blue bars) and 125 nM (red bars) of Taxol,
epothilones or the anthracyclins and combinations for 6d
were less effective as compared to a sequential incubation,
whereby the same compounds with the same concentra-
tions of 1 μM (yellow bars) and 125 nM (turquoise bars)
were replaced after 3d, resulting in a similar 6d (= 2× 3d)
incubation period, respectively. Moreover, the lower con-
centrated drugs (125 nM) were less effective than the 1 μM
dose of these compounds, respectively. In contrast,
Epothilone A and B displayed different effects in both
HBCEC populations. Thus, a sequential dose of these two
compounds significantly increased the cytotoxicity in one
population (Fig. 3B), whereas little if any effects were
observed in HBCEC from a different breast cancer patient,
respectively (Fig. 3A). Similarly, Epothilone A and B
exhibited different effects on the two breast carcinoma cell
lines (Fig. 4A, B). Moreover, the non-metastatic MCF-7
cell line displayed an overall increased sensitivity to the
administered drugs or drug combinations as compared to
the highly metastatic MDA-MB-231 cells (Fig. 4A, B). Nor-
mal post-selection HMEC (P16) demonstrated reduced
cytotoxic effects of the chemotherapeutics as compared to
the HBCEC cultures (Fig. 5). These differences in response
to certain anti-cancer drugs could be explained by the
reduced or ceased proliferative capacity of senescent post-
selection HMEC (P16) in contrast to the continuous pro-
liferation of HBCEC.

Discssion
Protease digestion-free ex vivo culture of human breast
cancer epithelial cells (HBCEC) from breast cancer tissue
revealed a cell morphology which resembled normal
human mammary epithelial cells (HMEC). A successful
primary culture of individualized HBCEC requires the
immediate placement of a sterile biopsy from the tumor
tissue in the appropriate culture medium to avoid further
lesions and cell damage by the air oxygen. HBCEC were
growing in vitro within a three-dimensional cellular net-
work with numerous desmosomal contacts, which may be
supported by desmosomal cadherins [17]. The appear-
ance of other populations, e.g. fibroblasts or myoepithe-
lial cells remained undetectable and further
characterization of HBCEC revealed a predominant co-
expression of cytokeratins and vimentin within the
tumor-derived cells. Indeed, previous work has docu-
mented that culture of epithelial cells derived from solid
tumors can express both, cytokeratin and vimentin inter-
mediate filaments [1,19], whereas vimentin expression in
vivo could differ from the in vitro culture [20,21].

The expression of certain cell surface marker proteins,
CD24, CD44 and CD227, was maintained during long
term tissue culture-derived HBCEC, demonstrating that
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Surface marker expression, SA-β-gal staining and telomerase activity in HBCECFigure 2
Surface marker expression, SA-β-gal staining and telomerase activity in HBCEC. A. Determination of the percent-
age of cell surface marker expression in HBCEC at different ages. Expression of the surface marker proteins CD24, CD44, 
CD227 was maintained during long term culture of HBCEC. Whereas CD24 and CD44 were similarly expressed after 176d 
and 462d, CD227 increased from 52% to 88% in HBCEC 462d. The flow cytometry measurements varied by about 8%. B. SA-
β-gal staining of primary HBCEC and HMEC cultures. Staining for SA-β-gal of a HBCEC population after 722d in culture 
revealed little if any positive cell. Normal HMEC in passage 16, however, displayed already predominantly enlarged senescent 
cells after 32d, demonstrated by the dark-green stain (bar = 200 μm). C. Telomerase (TRAP-)assay of primary cultures from 
breast cancer biopsies. Telomerase activity was analyzed according to the Telomeric Repeat Amplification Protocol (TRAP). 
HBCEC populations demonstrated telomerase activity independent of the age of the culture and the harvest method. The 
human embryonic kidney (HEK) 293T cell line was used as a positive control and 1× CHAPS buffer served as a negative con-
trol. Quantification was performed using densitometric analysis.
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Chemotherapeutic effects on HBCEC from breast cancer patientsFigure 3
Chemotherapeutic effects on HBCEC from breast cancer patients. HBCEC derived from a 40 year-old (HBCEC 366) 
(Fig. 3A) and a 63 year-old (HBCEC 367) (Fig. 3B) woman both with ductal breast carcinoma, the breast cancer cell lines 
MCF-7 (Fig. 4A) and MDA-MB-231 (Fig. 4B), and normal HMEC in passage 16 (Fig. 5) were incubated with a single dose of 
1 μM (blue bars) and 125 nM (red bars) of appropriated chemotherapeutic compounds (Taxol, Epothilone A, Epothilone B, Epi-
rubicin, Doxorubicin) and certain anthracyclin combinations (Epirubicin/Taxol, Epirubicin/Epothilone A, Epirubicin/Epothilone 
B) for 6d, respectively. Alternatively, the drugs were replaced after 3d, resulting in a similar 6d (= 2× 3d) incubation of the 
same compounds, using concentrations of 1 μM (yellow bars) and 125 nM (turquoise bars), respectively. Whereas the higher 
concentration of 1 μM was generally more effective, this was further promoted by a sequential treatment. Moreover, the 
HBCEC populations revealed distinct effects to the anticancer drugs Epothilone A and B, suggesting an individual responsive-
ness specific for the appropriate patient (Fig. 3A, B). Similarly, Epothilone A and B exhibited different effects on the two breast 
carcinoma cell lines. Furthermore, the non-metastatic MCF-7 cell line displayed an overall increased sensitivity to the adminis-
tered drugs or drug combinations as compared to the highly metastatic MDA-MB-231 cells (Fig. 4A, B). HMEC (P16) demon-
strated reduced cytotoxic effects of the chemotherapeutics as compared to the HBCEC cultures (Fig. 5). Data represent the 
mean +s.d. (n = up to 5 replicates). P values were calculated by the unpaired T-test according to the appropriate untreated 
control cells (Control). Results were considered as statistically significant when P value was < 0.5 (*P < 0.5; **P < 0.05; ***P < 
0.005).
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Chemotherapeutic effects on HBCEC, breast cancer cell linesFigure 4
Chemotherapeutic effects on HBCEC, breast cancer cell lines. HBCEC derived from a 40 year-old (HBCEC 366) 
(Fig. 3A) and a 63 year-old (HBCEC 367) (Fig. 3B) woman both with ductal breast carcinoma, the breast cancer cell lines 
MCF-7 (Fig. 4A) and MDA-MB-231 (Fig. 4B), and normal HMEC in passage 16 (Fig. 5) were incubated with a single dose of 
1 μM (blue bars) and 125 nM (red bars) of appropriated chemotherapeutic compounds (Taxol, Epothilone A, Epothilone B, Epi-
rubicin, Doxorubicin) and certain anthracyclin combinations (Epirubicin/Taxol, Epirubicin/Epothilone A, Epirubicin/Epothilone 
B) for 6d, respectively. Alternatively, the drugs were replaced after 3d, resulting in a similar 6d (= 2× 3d) incubation of the 
same compounds, using concentrations of 1 μM (yellow bars) and 125 nM (turquoise bars), respectively. Whereas the higher 
concentration of 1 μM was generally more effective, this was further promoted by a sequential treatment. Moreover, the 
HBCEC populations revealed distinct effects to the anticancer drugs Epothilone A and B, suggesting an individual responsive-
ness specific for the appropriate patient (Fig. 3A, B). Similarly, Epothilone A and B exhibited different effects on the two breast 
carcinoma cell lines. Furthermore, the non-metastatic MCF-7 cell line displayed an overall increased sensitivity to the adminis-
tered drugs or drug combinations as compared to the highly metastatic MDA-MB-231 cells (Fig. 4A, B). HMEC (P16) demon-
strated reduced cytotoxic effects of the chemotherapeutics as compared to the HBCEC cultures (Fig. 5). Data represent the 
mean +s.d. (n = up to 5 replicates). P values were calculated by the unpaired T-test according to the appropriate untreated 
control cells (Control). Results were considered as statistically significant when P value was < 0.5 (*P < 0.5; **P < 0.05; ***P < 
0.005).
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the extended culture conditions of the tumor tissue did
not affect the expression of these adhesion molecules in
the HBCEC. Several studies demonstrated an association
of the hetreodimeric CD227 (MUC1) with breast cancer
development, whereby MUC1 is involved in the regula-
tion of the p53 gene and is aberrantly glycosylated in
mammary tumors [22-24]. Moreover, this transmem-
brane protein served to identify certain luminal epithelial

progenitor cells in the mammary tissue [25]. In addition,
mammary epithelial cells could be separated from non-
epithelial cells by CD24 expression and populations
expressing CD24high were more precisely distinguished as
luminal epithelial cells [26]. This mucin-like adhesion
molecule was also shown to be associated with tumor pro-
gression and metastasis, as it was identified as a ligand of
the endothelial P-selectin [27,28], and was discussed as a
marker of malignancy and poor prognosis [28]. CD44
represents a proteoglycan-rich surface protein that is
involved in numerous signaling mechanisms and contrib-
utes to processes such as cell adhesion, migration and
invasion [29] and thus, the characterization of a distinct
population of highly tumorigenic breast cancer cells
revealed CD44 expression [30,31]. Of interest, certain
expression levels of CD24 and CD44 are considered as
breast cancer stem cell markers [32] and a significant
reduction of CD24 and CD44 surface markers is observed
during HMEC aging [33]. Together, the expression of
CD44, CD24 and CD227 indicated a malignant potential
of HBCEC which is also supported by the detection of tel-
omerase activity. Whereas the lack of telomerase activity
in normal somatic cells induces chromosomal instability
followed by cell cycle arrest and cellular senescence [34],
cancer cells regain activity of telomerase reverse tran-
scriptase (hTERT) and overcome this proliferation barrier
[35]. In this context, staining for the aging marker SA-β-
gal after 722d of tumor tissue culture revealed hardly any
senescent cells in the HBCEC population in contrast to
normal senescent post-selection HMEC in passage 16,
which exclusively exhibited enlarged positive cells already
after 32d in culture.

Chemosensitivity assays verified an enhanced responsive-
ness of HBCEC to different chemotherapeutic compounds
as compared to the growth-arrested normal HMEC P16.
These effects revealed a specific sensitivity to the microtu-
bule-targeting agents Epothilone A and Epothilone B,
which are used predominantly for the treatment of meta-
static breast cancers [36]. Taxanes also stabilize the micro-
tubule assembly and can thereby inhibit mitosis of the
tumor cells, however, resistance to taxanes can be over-
come by epothilone treatment, evolving a different antitu-
mor mechanism [37,38]. The variable reactions of distinct
HBCEC populations to Epothilone A and partially Epothi-
lone B indicated certain tumor-specific responsiveness in
individual patients.

Conclusion
Taken together, the morphological evaluation and cytok-
eratin expression revealed epithelial-like cells in the pri-
mary tumor tissue-derived cultures without a significant
contamination of other cell types. Moreover, long term
culture of the tumor biopsies revealed HBCEC popula-
tions expressing certain precursor cell-like and tumor-

Chemotherapeutic effects on normal human mammary epi-thelial cells in passage 16 (HMEC P16)Figure 5
Chemotherapeutic effects on normal human mam-
mary epithelial cells in passage 16 (HMEC P16). 
HBCEC derived from a 40 year-old (HBCEC 366) (Fig. 3A) 
and a 63 year-old (HBCEC 367) (Fig. 3B) woman both with 
ductal breast carcinoma, the breast cancer cell lines MCF-7 
(Fig. 4A) and MDA-MB-231 (Fig. 4B), and normal HMEC 
in passage 16 (Fig. 5) were incubated with a single dose of 1 
μM (blue bars) and 125 nM (red bars) of appropriated chem-
otherapeutic compounds (Taxol, Epothilone A, Epothilone B, 
Epirubicin, Doxorubicin) and certain anthracyclin combina-
tions (Epirubicin/Taxol, Epirubicin/Epothilone A, Epirubicin/
Epothilone B) for 6d, respectively. Alternatively, the drugs 
were replaced after 3d, resulting in a similar 6d (= 2× 3d) 
incubation of the same compounds, using concentrations of 1 
μM (yellow bars) and 125 nM (turquoise bars), respectively. 
Whereas the higher concentration of 1 μM was generally 
more effective, this was further promoted by a sequential 
treatment. Moreover, the HBCEC populations revealed dis-
tinct effects to the anticancer drugs Epothilone A and B, sug-
gesting an individual responsiveness specific for the 
appropriate patient (Fig. 3A, B). Similarly, Epothilone A and B 
exhibited different effects on the two breast carcinoma cell 
lines. Furthermore, the non-metastatic MCF-7 cell line dis-
played an overall increased sensitivity to the administered 
drugs or drug combinations as compared to the highly meta-
static MDA-MB-231 cells (Fig. 4A, B). HMEC (P16) demon-
strated reduced cytotoxic effects of the chemotherapeutics 
as compared to the HBCEC cultures (Fig. 5). Data represent 
the mean +s.d. (n = up to 5 replicates). P values were calcu-
lated by the unpaired T-test according to the appropriate 
untreated control cells (Control). Results were considered 
as statistically significant when P value was < 0.5 (*P < 0.5; 
**P < 0.05; ***P < 0.005).
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associated markers, including CD24, CD44 and CD227,
respectively, which was paralleled by little if any senes-
cence and a detectable telomerase activity. Finally, the
HBCEC responded to chemotherapeutic agents used for
breast cancer treatment, although a distinct responsive-
ness could be observed among individual HBCEC popu-
lations. Collectively, these findings suggest, that the
successful long term culture of tumor tissue to obtain pri-
mary HBCEC contributes to optimize an individualized
therapeutic approach. Thus, a representative number of
these individual HBCEC cultures could provide a suitable
screening platform for potentially new breast cancer ther-
apeutics. Moreover, the long term culture of tumor tissue
to obtain primary HBCEC also exhibits the opportunity to
investigate metabolic and functional alterations of the
tumor, including the characterization of putative biomar-
kers, understanding the mechanism of tumor progression
and consequently, to examine the potential for develop-
ing metastatic capacity, e.g. lymph node metastases.
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