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Abstract
Background: We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after 
combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases 
(COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell 
differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information 
concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells.

Methods: Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used 
in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 
cancer-related genes.

Results: Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes 
known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton 
remodeling. These changes were detected in both cell lines, and they were independent of the type of specific 
inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also 
found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both 
ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the 
same inhibitor (CA or CX) in combination with ATRA in both cell lines.

Conclusions: Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-
induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

Background
The therapeutic approach based on induced cell differen-
tiation of transformed cells into mature phenotypes is
one of the most promising strategies in recent anti-neo-
plastic treatment. Retinoids represent the most fre-
quently used group of differentiation inducers, both in
leukemias and in some types of solid tumors [1-6]. How-
ever, evidence of potential toxicity and intrinsic or
acquired resistance substantially limits the use of retin-
oids in clinical protocols.

Special attention has thus been paid to the combined
treatment with retinoids and other compounds that are

able to enhance or modulate the differentiation effect of
retinoids. For example, all-trans retinoic acid (ATRA)-
induced cell differentiation in the HL-60 leukemia cell
line can be enhanced either by combined treatment with
bile acids [7,8] or with inhibitors of the arachidonic acid
degradation pathway, especially of lipoxygenases (LOX)
and cyclooxygenases (COX) [9-11].

In neuroblastomas, which are the most common
extracranial malignant solid tumors of childhood, differ-
entiation therapy with retinoids is of special interest.
Because neuroblastomas are classified as embryonal
tumors arising from immature cells of the neural crest,
the induced differentiation of neuroblastoma cells has
become a part of therapeutic protocols [12-16]. In our
previous work, we investigated possible ways of modulat-
ing the ATRA-induced differentiation of two neuroblas-
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toma cell lines, SK-N-BE(2) and SH-SY5Y, with LOX/
COX inhibitors. We used caffeic acid (CA) as an inhibitor
of 5-LOX and celecoxib (CX) as an inhibitor of COX-2.
Our results clearly confirmed the power of CA to
enhance the differentiation potential of ATRA, especially
in the SK-N-BE(2) cells, whereas combined treatment
with CX led predominantly to the cytotoxic effect [17].

In this study, we focused on a more detailed investiga-
tion of the results described above. We performed gene
expression profiling of the cell populations treated with
the same combinations of ATRA and LOX/COX inhibi-
tors as in our previous experiments, and the results gen-
erate new knowledge about possible molecular
mechanisms of the enhancement of ATRA-induced dif-
ferentiation in neuroblastoma cells.

Methods
Cell lines and cell cultures
SK-N-BE(2) (ECACC cat. no. 95011815) and SH-SY5Y
(ECACC cat. no. 94030304) neuroblastoma cell lines
were used for this study. Cell cultures were maintained in
DMEM/Ham's F12 medium mixture (1:1) supplemented
with 20% fetal calf serum, 1% non-essential amino acids,
2 mM glutamine, and antibiotics: 100 IU/ml of penicillin
and 100 μg/ml of streptomycin (all purchased from PAA
Laboratories, Linz, Austria) under standard conditions at
37°C in an atmosphere of 95% air: 5% CO2. The cells were
subcultured 1-2 times weekly.

Chemicals
ATRA (Sigma Chemical Co., St. Louis, MO, USA) was
prepared as a stock solution at the concentration of 100
mM in dimethyl sulfoxide (DMSO; Sigma). CA (Sigma)
and CX (LKT Laboratories, Inc., St. Paul, MN, USA) were
dissolved in DMSO at the concentrations of 130 and 100
mM, respectively. Reagents were stored at -20°C under
light-free conditions.

Induction of cell differentiation
Stock solutions were diluted in fresh cell culture medium
to obtain final concentrations of 1 and 10 μM of ATRA,
13 and 52 μM of CA and 10 and 50 μM of CX. In all
experiments, cells were seeded onto Petri dishes 24 h
before the treatment, and untreated cells were used as a
control. The experimental design was the same as in our
previous study [17]: cell populations were treated with
ATRA alone or with ATRA and inhibitor (CA or CX) in
respective concentrations. However, a combined treat-
ment with 10 μM ATRA and 50 μM CX was not included
in these experiments due to the predominant cytotoxic
effect on cell populations. Cells were harvested after
three days of cultivation in the presence of ATRA and
inhibitors.

Expression profiling
Total RNA of treated cell populations was isolated using
the GenElute™ Mammalian Total RNA Miniprep Kit
(Sigma), and its concentration and integrity were deter-
mined spectrophotometrically. Conversion of experi-
mental RNA to target cDNA and further amplification
and biotin-UTP labeling was performed using TrueLabel-
ing-AMP™ 2.0 cRNA (SABiosciences, Frederick, MD,
USA). After purification of labeled target cRNA with the
SuperArray ArrayGrade cRNA Cleanup Kit, the cRNA
was hybridized to Human Cancer OHS-802 Oligo GEAr-
ray membranes that profile 440 genes (both SABiosci-
ences). The expression levels of each gene were detected
with chemiluminescence using the alkaline phosphatase-
conjugated streptavidin substrate, and membranes were
recorded using the MultiImage™ II Light Cabinet (DE-
500) (Alpha Innotech Corp., CA, USA).

Data processing and analysis
The image data were processed and analyzed by the
GEArray Expression Analysis Suite software (SABiosci-
ences) with background subtraction. All data were stan-
dardized as a ratio of gene expression intensity to the
mean expression intensity of selected housekeeping genes
(ACTB, RPS27A, HSP90AB1). Cluster analyses were per-
formed using the GEArray Expression Analysis Suite
software according to the design of the experiments, i.e.,
separately for each cell line and inhibitor type.

Results
Our experiments were aimed at a detailed analysis of the
changes in gene expression in SK-N-BE(2) and SH-SY5Y
cells induced by combined treatment with ATRA and
LOX/COX inhibitors (CA or CX). We used the same
experimental design as in our previous study [17] that
reported at the cellular level the influence of this treat-
ment on cell differentiation and apoptosis: we evaluate
cell populations treated with ATRA alone or with ATRA
and inhibitor (CA or CX) in respective concentrations.

We performed the comparison of cluster analyses of
achieved data to detect genes or gene groups with the
same types of changes in their expression (Figure 1, Table
1). After combined treatment with ATRA and CA, we
detected 50 genes with changed expression in SK-N-
BE(2) cells and 91 genes with changed expression in SH-
SY5Y cells. As a result of combined treatment with ATRA
and CX, 98 genes with changed expression were identi-
fied in SK-N-BE(2) cells and 66 genes with changed
expression were identified in SH-SY5Y cells. We analyzed
these data from two different viewpoints.

First, we determined genes the expression of which was
changed in the same cell line (SK-N-BE(2) or SH-SY5Y)
after combined treatment with both ATRA and CA, or
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Figure 1 Results of gene cluster analysis. Genes were clustered according to type of changes in expression in particular cell lines (SK-N-BE(2) or SH-
SY5Y) after combined treatment with ATRA and particular inhibitors (CA or CX). ATRA was applied in concentrations of 1 or 10 μM (1 ATRA, 10 ATRA); 
CA in concentrations of 13 and 52 μM (13 CA, 52 CA), and CX in concentrations of 10 and 50 μM (10 CX, 50 CX). The green color at the farthest left end 
of the color scale corresponds to the minimal value; the red color at the farthest right end of the color scale corresponds to the maximal value; and 
the black color in the middle of the color scale corresponds to the average value. Each of the other values corresponds to a certain color according to 
its magnitude. The colors are assigned according to the value of the particular gene expression in all samples in the respective experimental variant 
(I, II, III or IV).
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Table 1: Description of different types of changes in gene expression after combined treatment with ATRA and inhibitors 
(CA or CX) in SK-N-BE(2) and SH-SY5Y cell lines

cluster number of genes type of change in gene expression

I. Treatment with ATRA and CA; SK-N-BE(2) cell line

I.A 7 strong increase especially after treatment with 10 ATRA/52 CA; marked increase noted also after treatment with 
1 ATRA alone and all other combinations

I.B 14 marked increase especially after treatment with 1 ATRA/13 CA; the increase noted also after treatment with 1 
ATRA alone

I.C 18 marked increase especially after treatment with 1 ATRA and also both combinations of ATRA with CA; 10 ATRA 
alone or in combinations with CA decreases gene expression

I.D 6 slight increase after treatment with 1 RA; marked decrease after treatment with 10 RA and all combinations

I.E 5 decrease after treatment with 10 ATRA in both combinations with CA

II. Treatment with ATRA and CA; SH-SY5Y cell line

II.A 12 strong increase especially after treatment with 10 ATRA/52 CA; marked increase noted also after treatment with 
10 ATRA alone and all other combinations in concentration-dependent manner

II.B 58 marked increase especially after treatment with 1 ATRA in both combinations with CA and also after treatment 
with 10 ATRA/52 CA; application of ATRA alone showed no influence on gene expression

II.C 27 marked increase after treatment with 1 ATRA in both combinations; application of ATRA alone and 10 ATRA in 
both combinations showed no influence on gene expression

II.D 4 strong increase after treatment with 10 ATRA/52 CA; application of ATRA alone and all other combinations 
showed no or minimal influence on gene expression

III. Treatment with ATRA and CX; SK-N-BE(2) cell line

III.A 6 strong increase after treatment with 10 ATRA/10 CX and 1 ATRA/50 CX; slight increase after treatment with 1 
ATRA/10 CX; application of ATRA alone showed no or minimal influence on gene expression

III.B 6 marked increase after treatment with ATRA in all combinations with CX; treatment with 1 ATRA alone showed the 
same effect on gene expression as observable in control cells

III.C 22 strong increase after treatment with ATRA in all combinations with CX; slight increase after treatment with 1 ATRA 
alone

III.D 4 marked increase after treatment with ATRA in all combinations with CX; decrease after treatment with ATRA alone

III.E 60 strong increase after treatment with 1 ATRA/10 CX; slight increase after treatment with 1 ATRA alone

IV. Treatment with ATRA and CX; SH-SY5Y cell line

IV.A 15 marked increase after treatment with 10 ATRA alone and also in both combinations with CX; application of 1 ATRA 
alone or in combinations with CX showed no or minimal influence on gene expression
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ATRA and CX. Under this criterion, we ascertained 25
genes in SK-N-BE(2) cells and 46 genes in SH-SY5Y cells
(Table 2).

Second, we detected genes the expression of which was
changed after treatment with the same inhibitor (CA or
CX) in combination with ATRA in both cell lines. In this
condition, we identified 37 genes with changed expres-
sion after combined treatment with ATRA and CA in
both cell lines and 30 genes with changed expression after
combined treatment with ATRA and CX in both cell lines
(Table 3).

Most interestingly, we identified 14 genes with changed
gene expression in both cell lines and after both com-
bined treatments with ATRA and LOX/COX inhibitors
(Tables 2, 3).

Discussion
Retinoic acid and its derivatives are known to induce dif-
ferentiation in leukemias as well as in several types of
solid tumors, including neuroblastoma [1-3,13,18]. In our
previous study, we reported the possibility of modulating
the differentiation potential of ATRA in SK-N-BE(2) and
SH-SY5Y neuroblastoma cell lines by combined treat-
ment with ATRA and LOX/COX inhibitors, especially
with CA as the inhibitor of 5-LOX [17]. The aim of this
work was to investigate in detail the changes in gene
expression of cancer-related genes in neuroblastoma cells
after the same combined treatment as described in the
previous study, with special regard to the genes involved
in cell differentiation.

Based on the analysis of the expression of 440 cancer-
related genes by the Human Cancer Oligo GEArray
microarray, we noted an overall increase in gene expres-
sion and only a minimal number of downregulated genes
after treatment with ATRA alone or with ATRA in com-
binations with CA or CX. These findings are not surpris-
ing with regard to known mechanisms of retinoid action:
both RA and retinoids bind to the inducible nuclear
retinoid receptors that function as transcriptional factors
of genes with RA-responsive elements [18,19].

Our results in both cell lines clearly show the crucial
role of the RET proto-oncogene in retinoid-induced cell

differentiation in neuroblastoma cells. RET is overex-
pressed in both cell lines after the application of ATRA
alone or in combination with CA or CX. However, these
cell lines differ in their response sensitivity: RET expres-
sion is upregulated in SK-N-BE(2) by treatment with 1
μM ATRA and its combinations with CA or CX, whereas
10 μM ATRA (alone or in combination) is needed for the
overexpression of RET in SH-SY5Y cells. These findings
are completely in accordance both with other experi-
ments on RET overexpression after retinoid-induced cell
differentiation in the same neuroblastoma cell lines [18]
and with our previous results with regard to the differ-
ence in response sensitivity [17]. Moreover, RET overex-
pression is associated with neuronal differentiation and
correlates with the expression of NF-200 [17,20].

The other gene that is overexpressed in both cell lines
after the application of ATRA alone or in combination
with CA or CX is RHOC, which encodes a member of the
Rho GTPase family. Proteins of this family, especially
RhoA, Rac1 and Cdc24, are known to play an important
role in actin cytoskeleton remodeling, and they are also
involved in the neurite outgrowth and remodeling during
neuronal differentiation [21,22]. Besides playing a role in
the metastasis of some human cancers, namely of breast
carcinomas [23], overexpression of the RhoC protein was
detected in glial precursors during differentiation of fetal
neuroepithelial cells [24]. The detected overexpression of
RHOC in both cell lines after treatment, especially in a
concentration-dependent manner after combined treat-
ment with CX, suggests the possible participation of this
molecule in retinoid-induced differentiation. In contrast,
same changes in the expression of RHOA were observed
only in SK-N-BE(2) cells treated with ATRA and CX. In
SH-SY5Y cells, RHOA was overexpressed after treatment
with 1 μM ATRA and especially with its combinations
with CA, whereas the same effect for RHOC was detected
after treatment with 10 μM ATRA in SK-N-BE(2) cells.
These data are in accordance with the hypothesis that the
expression and activity of RhoA, B, and C proteins in can-
cer cells may be altered in different ways [25].

Remodeling of the cytoskeleton seems to be an impor-
tant part of the induced cell differentiation of neuroblas-

IV.B 15 strong increase after treatment with 1 ATRA/10 CX; slight increase after treatment with 10 ATRA in both 
combinations with CX

IV.C 32 strong increase after treatment with 10 ATRA/50 CX

IV.D 4 marked increase after treatment with 1 ATRA/10 CX; marked decrease after treatment with all other combinations

ATRA was applied in concentrations of 1 or 10 μM (1 ATRA, 10 ATRA); CA in concentrations of 13 and 52 μM (13 CA, 52 CA), and CX in 
concentrations of 10 and 50 μM (10 CX, 50 CX). All decriptions are related to the gene expression identified in control untreated cells.

Table 1: Description of different types of changes in gene expression after combined treatment with ATRA and inhibitors 
(CA or CX) in SK-N-BE(2) and SH-SY5Y cell lines (Continued)
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toma cells because cell morphology undergoes
substantial changes during this process. The product of
the CTT5 gene, i.e., chaperonin containing TCP-1, sub-
unit epsilon, is generally involved in protein folding and
assembly in the cytoplasm of eukaryotic cells [26], and it
was reported as active in cytoskeleton rearrangements
during neuritogenesis in mouse neuroblastoma cells,
especially in the perikaryal region of the cytoplasm [27].
Because CCT5 is overexpressed in both cell lines after
combined treatment with CA as well as with CX in a con-
centration-dependent manner, we can suppose that the
protein participates in rearrangements of cytoskeletal
components during induced neuronal differentiation. A
similar function, i.e., participation in cytoskeleton rear-
rangements, was also reported in the case of the Tu trans-
lation elongation factor, a product of the TUFM gene
[28], which was detected as overexpressed in both cell
lines after combined treatment with CA as well as with
CX.

Taken together, overexpression of the genes listed
above was detected in our experiments as a common
phenomenon in both cell lines as a result of combined
treatment with ATRA and inhibitor (CA or CX). Overex-
pression of the RET protooncogene is generally associ-
ated with retinoid-induced cell differentiation. Products
of other genes, i.e., RHOC, RHOA, CCT5 and TUFM,
were reported as also being involved in cytoskeleton rear-
rangements that are necessary for changes of cell mor-

phology during the neuronal differentiation of
neuroblastoma cells. The common overexpression of
these genes in both cell lines independent of the inhibitor
used (CA or CX) and mostly in a concentration-depen-
dent manner suggests that they participate in the process
of cell differentiation induced by ATRA and potentiated
by both CA and CX. This hypothesis is supported by the
observation of initial changes in cell morphology in both
cell lines at day two after treatment in the same experi-
mental design [17].

Moreover, our previous study suggested a higher sensi-
tivity of SK-N-BE(2) cells to the induced differentiation,
especially by combined treatment with ATRA and CA
(17). In this cell line, we found strong overexpression of
the GDF15 gene after combined treatment with ATRA
and inhibitor (CA or CX) in a concentration-dependent
manner. Overexpression of GDF15 (also known as MIC-
1, NAG-1, PDF, PLAB, or PTGFB) was reported as a
result of the induced neuronal differentiation of PC12
cells [29]. Despite various effects of this cytokine, as
described in many types of human cancer cells, its
proapoptotic and antitumorigenic role is widely accepted,
and an increase in its expression by COX-inhibitors has
been proved [30]. In contrast, other authors suggest that
the activity of this cytokine is not related to the COX-2
expression and that it seems to be cell type-specific [31].
An increase in the expression of the IER3 encoding tran-
scriptional factor, immediate early response 3, was

Table 2: Genes with changed expression detected in particular cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment 
with ATRA and both inhibitors (CA or CX)

SK-N-BE(2) cell line AP2M1, ATF4, CCT5, CDK4, COX6C, COX7A2, GDF15, GSK3A, HLA-C, HLA-G, HMGB1, IER3, LONP1, MAP2K2, NQO1, 
PRKAR1A, RET, RHOC, SIVA1, SOD1, TBRG4, TIMP1, TP53I3, TUFM, XRCC5, XRCC6

SH-SY5Y cell line ANXA5, AP2M1, ATF4, ATP5B, ATP5O, BLMH, CCT5, CDKN1A, CLNS1A, COX6C, COX7A2, GTF2I, HLA-C, HLA-G, KPNA2,

LAMB1, LONP1, MCM2, NINJ1, NME1, NME2, PHB, PKM2, PPARD, PRDX4, PTMA, RAP1A, RARA, RB1, RBBP4, RET, RHOC,
SLC20A1, SMO, SND1, SNRPB2, TK1, TNFRST10B, TSG101, TUFM, UBC, UBE2L6, VDAC1, XRCC1, XRCC5, XRCC6

ATRA was applied in concentrations of 1 or 10 μM (1 ATRA, 10 ATRA); CA in concentrations of 13 and 52 μM (13 CA, 52 CA), and CX in 
concentrations of 10 and 50 μM (10 CX, 50 CX). The same genes influenced in both cell lines are underlined.

Table 3: Genes with changed expression detected after the same combined treatment (ATRA with CA or ATRA with CX) in 
both cell lines (SK-N-BE(2) and SH-SY5Y)

Treatment with ATRA and CA AKT1, AP2M1, ATF4, CAP1, CCT5, CDK4, CLNS1A, COX6C, COX7A2, GSK3A, HLA-C, HLA-G, KPNA2, LONP1,
MAP2K2, MCM2, MSH6, MYBL2, NME1, NME2, PGAM1, PHB2, PKM2, PRKAR1A, PTMA, RAB5A, RET, RHOC,
SIVA1, SLC20A1, TBRG4, TSG101, TUFM, UBE2L6, VDAC1, XRCC5, XRCC6

Treatment with ATRA and CX AP2M1, ATF4, ATP5O, BLMH, CCT5, CDKN1A, CDKN1B, CLNS1A, COX6C, COX7A2, GDF15, HLA-C, HLA-G, 
HMGA1, HSPB1, LAMB1, LONP1, NQO1, PPARD, PRDX4, RAP1A, RARA, RB1, RET, RHOC, SOD1, TIMP1, TUFM, 
XRCC5, XRCC6

ATRA was applied in concentrations of 1 or 10 μM (1 ATRA, 10 ATRA); CA in concentrations of 13 and 52 μM (13 CA, 52 CA), and CX in 
concentrations of 10 and 50 μM (10 CX, 50 CX). The same genes influenced by combinations with both inhibitors are underlined.
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reported in the SK-N-BE(2)C neuroblastoma cell line
during retinoic acid-induced neuronal differentiation
[32]; our findings in the SK-N-BE(2) cell line are com-
pletely in accordance with these results.

However, overexpression of NME1 and NME2 genes
was found only in SH-SY5Y cells after combined treat-
ment with ATRA and inhibitors. The overexpression of
this gene family was reported to be associated with more
differentiated phenotypes in human and murine neuro-
blastoma cell lines [33-35]. Similar changes were
observed in the SH-SY5Y cell line and in the expression of
the CDKN1A gene after combined treatment with ATRA
and both inhibitors; the CDKN1B gene was overex-
pressed in SH-SY5Y cells with a combination of ATRA
and CX only. An increase in the expression of cyclin
kinase inhibitors by RA alone and in combination with
histone deacetylase inhibitors was reported [36]. More-
over, inhibition of cdk activity was repeatedly confirmed
to be a determinant of neuronal differentiation [37]. The
same expression pattern was found in SH-SY5Y cells and
for the NINJ1 gene; this gene encodes adhesion molecules
promoting neurite outgrowth [38]. RA-induced differen-
tiation of neuroblastoma cells is also associated with the
overexpression of tumor necrosis factor receptors
(TNFRs) [39]. In SH-SY5Y cells, we noted an increase in
the expression of the TNFRST10B gene after treatment
both with 10 μM ATRA alone and with all combinations
of ATRA and inhibitors.

To summarize, in addition to the genes generally over-
expressed in both cell lines after combined treatment, as
listed above, we also identified other genes that are spe-
cifically influenced in specific cell lines, including SK-N-
BE(2) or SH-SY5Y. These genes are also known to be
involved in the process of neuronal differentiation in neu-
roblastoma cells; however, their regulation is obviously
cell type-specific and is independent of the inhibitor type.

Nevertheless, we also determined sets of genes influ-
enced specifically by combined treatment with ATRA
and CA in both SK-N-BE(2) and SH-SY5Y cell lines; but
changes in the gene expression of such genes may differ
between these cell lines. In contrast, the very same
increase of AKT1 gene expression in both cell lines
treated with the combination of 1 μM ATRA and CA was
observed. Published results on SH-SY5Y cells suggest
that the PI3K/Akt signaling pathway is activated during
RA-induced differentiation [40].

We also identified genes influenced specifically by the
combined treatment with ATRA and CX in both SK-N-
BE(2) and SH-SY5Y cell lines. The most interesting find-
ing is the overexpression of the HMGA1 gene in both cell
lines after combined treatment with ATRA and CX in a
concentration-dependent manner. According to pub-
lished data, retinoic acid may increase HMGA1 expres-

sion in RA-resistant neuroblastoma cells, but it inhibits
this expression in cells undergoing RA-induced neuronal
differentiation [41]. Nevertheless, HMGA1 expression is
influenced by MYCN status in neuroblastoma cells: this
gene is significantly more expressed in MYCN-amplified
neuroblastomas and it might be also activated by c-MYC
or other transcription factors [42]. Fort this reason, a
detailed investigation of the HMGA1 expression in neu-
roblastoma cell lines treated with ATRA and LOX/COX
inhibitors is needed.

Metronomic chemotherapy refers to the prolonged
administration of low-dose cytotoxic and/or anti-angio-
genic agents. This approach was reported to be poten-
tially effective in the treatment of relapsed and poor-
prognosis pediatric cancers, even in neuroblastoma [15]
and CNS tumors [43]. In both these reports, chemother-
apy agents were combined with administration of cele-
coxibe and isotretinoin. In context of our previous results
[17] and especially of these data on expression profiling,
therapeutic usage of retinoid in combination with COX
inhibitor has strong biological rationale. Moreover,
dietary uptake of the natural phenolic compounds includ-
ing caffeic acid, for example, in honey, apple juice, grapes
and some vegetables may also potentiate the cell differen-
tiation induced by retinoids [44-46]. For these reasons,
phase I/II clinical trials are highly warranted to further
testing of the promising effect of LOX/COX inhibitors on
retinoid-induced differentiation in pediatric cancer
patients.

Conclusion
These data support our initial hypothesis that ATRA-
induced cell differentiation may be modulated by the
combined application with LOX/COX inhibitors. Using
expression profiling, we identified common changes in
the expression of genes involved especially in cytoskele-
ton rearrangements that accompany neuronal differentia-
tion of neuroblastoma cells. Not surprisingly, we also
noted nonspecific activation of genes involved in repara-
tion processes or that participate in the cell response to
oxidative stress (for example, XRCC5, XRCC6, NQO1,
SOD1, etc.). Nevertheless, the detected increase in
expression of genes related to cell differentiation, mostly
in a concentration-dependent manner (both for ATRA
and inhibitors), suggests that the ATRA-induced differ-
entiation of neuroblastoma cells may be enhanced by
compounds affecting the intracellular metabolism of
ATRA, especially via inhibition of arachidonic acid meta-
bolic pathway.

List of abbreviations
ATRA: all-trans retinoic acid; CA: caffeic acid; CX: cele-
coxib; COX: cyclooxygenase; LOX: lipoxygenase.
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