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Abstract

important for the diagnosis and effective therapy.

Keywords: Src, SH3GL1, Autoantibody, Glioma, SEREX

Background: Glioma is the most common primary malignant central nervous system tumor in adult, and is usually
not curable in spite of various therapeutic approaches. Clarification of the oncogenic process in its early stage is

Methods: In the present study, we used the serological identification of antigens by recombinant cDNA expression
cloning (SEREX) to explore the subtle changes of the protein expression in low-grade glioma. The levels of serum
autoantibodies to the SEREX-identified glioma-related antigens were analyzed by ELISA, and the epitope site was
identified using deletion mutants and overlap peptide array. Changes in the serum autoantibody levels were
examined in the rat glioma model using C6 and 9 L glioma cell lines.

Results: We identified 31 glioma-related antigens by SEREX. Among them, the serum level of autoantibody to
src-homology 3-domain GRB2-like 1 (SH3GL1) was significantly higher in patients with low-grade glioma than
healthy volunteers or high-grade gliomas. The 10 amino-acids at the C-terminal were identified as the epitope site
by the overlap peptide array and the ELISA using deletion mutants. The tissue expression of SH3GL1 protein
increased in proportion to glioma progression. The rat glioma models confirmed the increase of anti-SH3GL1
autoantibody level in the early stage and the suppression in the late stage.

Conclusion: SH3GL1 may be involved in the oncogenic process of gliomas and effectively elicit an autologous

antibody response in low-grade gliomas. The immunological reaction to SH3GL1 would contribute to the
establishment of a novel diagnostic and therapeutic target for gliomas.

Introduction

Glioma is the most common primary malignant central
nervous system (CNS) tumor in adults and arises from
neuroepithelial cells, mostly astrocytes or oligodendro-
cytes. Glioma is divided into 4 grades according to
World Health Organization (WHO) histological classifi-
cation, and the prognosis of glioma is still poor [1,2].
Glioblastoma (GB), WHO grade IV, and anaplastic astro-
cytoma (AA), WHO grade III, are referred to as high-
grade glioma, and the median survival time of patients
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with AA and GB is 2-3 years and only approximately
1.5 years, respectively [2]. In the cases of WHO grade II
tumor, the median survival time of patients with diffuse
astrocytoma (WHO grade II) is also limited to approxi-
mately 5-7 years [3]. In most cases, patients with glioma
present large cerebral lesion at diagnosis, which prevents
effective removal without neurological deficits, and the
remnant tumors relapse even though receiving post-
operative treatments with radiotherapy and chemo-
therapy [4]. The clarification of the oncogenic process
especially in the early stage would contribute to its early
diagnosis and to new molecular targets.

Serological identification of antigens by recombinant
¢DNA expression cloning (SEREX) is one of the powerful
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tools for finding novel cancer antigens [5] and has been
applied on a nationwide basis to target many cancers, in-
cluding gliblastoma [6-8]. However, the specific and cru-
cial changes in the protein expression in low-grade
gliomas have not been identified yet. In contrast, it is well
known that activation of the receptor tyrosine kinases
such as epidermal growth factor receptor (EGFR) is the
most frequent molecular aberration found in high-grade
gliomas [9]. The receptor tyrosine kinases make the ras
pathway activation through a protein-protein interaction
of the adaptor protein called GRB2 with Son of Sevenless
(Sos) protein through src-homology 3 (SH3) domain
[10,11]. The connection of the adaptor protein and Sos is
a key step toward activating the ras-mediated oncogenic
pathways in the downstream of receptor tyrosine kinases.

In the present study, the authors applied SEREX to gli-
oma to find SH3-domain GRB2-like 1 (SH3GL1) as a
novel glioma-related antigen. The levels of serum auto-
antibodies to SH3GL1 were significantly higher in
patients with low-grade gliomas than in healthy donors
by ELISA. In contrast, the serum autoantibody level
was significantly depressed in high-grade glioma
patients compared with low-grade gliomas patients. We
identified the epitope site of SH3GL1 by overlap pep-
tide array and an ELISA using deletion mutants. The
rat glioma model using C6 and 9 L glioma cells also
showed the increases of the anti-SH3GL1 autoantibody
level in the early stage and decreases in the late stage.
Although low-grade gliomas are not always in an early-
stage of the disease, it is usually accepted that gliomas
often progress from low-grade tumors to higher-grade
tumors as the time proceeds [12]. The present clinical
data and the animal models suggested the immunosur-
veillance can work in low-grade glioma patients and
the immune tolerance would occur in those with high-
grade gliomas. The present findings would contribute
to the knowledge of molecular basis of low-grade gli-
omas and the establishment of a novel diagnostic and
therapeutic target.

Materials and methods

Sera and glioma tissue

Sera were obtained from patients with various types of gli-
oma and from healthy volunteers after they had provided
written informed consent. Patients with glioma underwent
surgery and the tumor was histologically diagnosed as
grade II-IV glioma at Chiba University Hospital in 1998—
2008; healthy donors were confirmed to have no cerebral
diseases using radiological imaging such as computed
tomography or magnetic resonance imaging. No patient
received steroid therapy at the time of blood sampling.
Each sample was centrifuged at 3 000 x g for 5 min and
then frozen at —80°C until use. Glioma tissue was col-
lected from the tumor tissue during surgical treatment.
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Normal brain tissue, which did not show any glioma cell
infiltration under microscopic examination, was isolated
from the circumference of the glioma specimen and from
non-neoplastic CNS tissues that were obtained during a
lesionectomy from a patient with intractable epilepsy or
during a lobectomy from patients with benign CNS
tumors, such as meningioma. The Local Ethical Review
Board of the Graduate School of Medicine, Chiba Univer-
sity approved the studies in this issue, and we obtained
written informed consent from the patients and healthy
volunteers concerning the use of material for scientific
research.

Phage cDNA library

A total RNA was prepared from the human glioblastoma
cell-line U-87 MG (ATCC, HTB-14) using the acid gua-
nidium thiocyanate-phenol-chloroform method with an
mRNA purification kit (AquaPure RNA isolation kit,
BioRad, Hercules, CA) used in accordance with the
manufacturer’s instructions. Double-stranded cDNA was
synthesized through conventional procedures and ligated
into the EcoRI-Xhol site of AZAP II phage. The library
size was over 1.0 x 10° PFU/ml.

Immunological screening using SEREX

E. coli XL1-Blue MRF was infected with AZAP II phages
containing a ¢cDNA library and the expression of cDNA
was induced by blotting on nitrocellulose membranes,
pretreated with 10 mM isopropyl-p-D-thiogalactoside
(IPTG; Wako Pure Chemicals, Osaka, Japan). After
washing and blocking, the membranes were exposed in
1:2000-diluted serum for 1 h. The membranes were trea-
ted with 1:5000-diluted alkalinephosphatase-conjugated
goat anti-human IgG (Jackson ImmunoResearch Labora-
tories, West Grove, PA). After incubation in a color devel-
opment solution containing 0.3 mg/ml of nitroblue
tetrazolium chloride (Wako Pure Chemicals) and 0.15 mg/
ml of 5-bromo-4-chloro-3-indolylphosphate (Wako Pure
Chemicals), positive reactions were detected. Positive
clones were re-cloned twice to obtain monoclonality.

Sequence analysis of identified clones

Monoclonalized phage ¢cDNA clones were converted to
pBluescript phagemids through in vivo excision using
ExAssist helper phage (Stratagene, La Jolla, CA). Plasmid
DNA was obtained from an E. coli SOLR strain trans-
formed by the phagemid. The inserted ¢cDNAs were
sequenced using the dideoxy chain termination method
and the sequences were analyzed for homology with a
public database provided by the National Center for Bio-
technology Information (NCBI).
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Production of glutathione S-transferase (GST)

fusion proteins

c¢DNA inserts of these clones incorporated in pBluescript
were cleaved by EcoRI and Xhol generally and cloned into
the EcoRI-Xhol site of pGEX-4 T-3, pGEX-4 T-2, and
pGEX-4 T-1 vectors (Amersham Bioscience, Piscataway,
NJ) that express recombinant GST fusion proteins. E. coli
JM109 cells containing pGEX clones (Aggg = 0.3—0.5) were
cultured in 200 ml of Luria broth (LB), and lysed through
sonication. The lysate was then centrifuged and the GST-
fusion proteins in the supernatants were purified by gluta-
thione-Sepharose. These samples were centrifuged and
affinity-purified with glutathione-Sepharose.

ELISA

Purified recombinant proteins diluted at 10 pg protein/ml
in PBS were added to each well of 96-well plates and incu-
bated at room temperature overnight. As a control, the
same amount of GST was applied. Sera diluted at 1:100
in PBS with 10% FBS were added to the wells and incu-
bated for 1 h. The wells were exposed to 1:2 000-diluted
horseradish peroxidase-conjugated goat anti-human
IgG antibody (Jackson ImmunoResearch Laboratories,
West Grove, PA). Then, 100 pl of a peroxidase substrate
(o-phenylenediamine, 0.4 mg/ml) containing 0.02% (v/v)
H,O, were added. Absorbance at 490 nm was deter-
mined using a microplate reader (Emax, Molecular
Devices, Sunnyvale, CA).

Construction of SH3GL1 deletion mutants

Some deletion constructs of SH3GL1 were obtained
through digestion with restriction enzymes or the inverse
PCR method. The SEREX-identified phage clone was con-
taining a full-length coding sequence of SH3GL1 (1-368
amino acids), that comprised Bin-Amphiphysin-Rvs (BAR)
domain (amino acid positions between 5 and 242) in the
N-terminal portion, coiled-coil (CC) domain (amino acid
proteins between 180 and 250) at the middle, and the SH3
domain (amino acid positions between 309 and 364) in the
C-terminal portion. The region of SH3GL1 ¢cDNA corre-
sponding to amino acids between 260 and 368 was cleaved
by Smal and Xhol and subcloned into the pGEX 4 T-3
vector at the Smal-Xhol digestion sites (SH3GL1 mut-1).
Amino acids 316-368, 260—289 and 354—368 were deleted
through the inverse PCR method with the KOD-Plus Mu-
tagenesis Kit (Toyobo, Osaka, Japan) using the SH3GL1
mut-1 cDNA as a template (SH3GL1 mut-2, 3 and 4, re-
spectively). The primers for SH3GL1 mut-2 were for-
ward 5'-CCAGTCTTCCGACAAGCCCATC-3’, reverse
5" TGGGGATCCACGCGGAACCAG-3’; for SH3GL1
mut-3 were forward 5-TCGAGCGGCCGCATCGTGA
C-3', reverse 5 -GCCCGACTGGCCGTCCAGCATG-3';
and for SH3GL1 mut-4 were; forward 5'-TCGAGCGG
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CCGCATCGTGAC-3', reverse 5-GCCCGACTGGCCG
TCCAGCATG-3'".

Overlap peptide array

Peptides spanning amino acid residues 1-368 of
SH3GL1 were synthesized on cellulose membranes as a
series of peptides with the overlapping by 12 amino
acids using F-moc amino acids according to the manu-
facturer’s protocol (Auto spot robot ASP222; ABIMED
Analysen-Technik GmbH, Langenfeld, Germany) as pre-
viously described [13]. Membranes were incubated with
the sera of patients at 1:200 dilutions for more than
12 h. Then, the antigen-antibody complexes were
detected with FITC-conjugated goat anti-human IgG
(109-095-098; Jackson ImmunoResearch, West Grove,
PA) at 1:10000 dilutions. The fluorescence of the peptide
spots were detected using Typhoon 9400 (Amersham
Biosciences, Stockholm, Sweden) with a 488 nm/520 nm
filter. The scanned image was also analyzed with CS
analyzer ver. 3.0 (Atto & Rise Corporation, Tokyo, Japan)
and fluorescent intensity of each spot was calculated.

Immunohistochemical staining for SH3GL1 protein
Immunohistochemistry with the polyclonal antibody
against SH3GL1 (sc-25495; Santa Cruz) was performed
using commercially available reagents, Histofine (Nichirei
Bioscience Inc, Tokyo, Japan), and according to the manu-
facturer’s recommendations. This antibody was confirmed
to be cross-reactive for human, mouse, and rat SH3GL1.
Sections were counterstained with hematoxylin, then
dehydrated and mounted.

Staining of tissue specimens was observed in 100 x
fields with approximately all fields presenting glioma cells.
The staining intensity in cytosole was classified into 5
groups, absent (), light partial staining (+), homogeneous
light staining (+), partly strong positive staining (++) and
homogeneous strong positive staining (+++).

Brain Tumor Model, Monitoring of Tumor Size, and Serum
Sampling

Rat C6 glioma cells and 9 L gliosarcoma cells were ori-
ginally obtained from ATCC and maintained in Dulbec-
co's modified Eagle medium (D-MEM) supplemented
with 10% fetal calf serum in a humidified atmosphere of
5% CO,. Male Wister rats for C6 cells and Fisher rats
for 9 L cells, weighing between 200 and 240 g (7—8 weeks
old) were used. The animals were anesthetized and
placed in a stereotaxic apparatus. A burr hole was made
at 4 mm posterior to bregma and 3 mm right to midline.
A 25-gauge needle was inserted to the point of 3 mm
ventral from dura where 1x10° syngeneic C6 or 9 L
tumor cells in 10 pl medium were slowly injected. To es-
timate i.c. tumor volume sequentially, all the animals
were examined with a 7 tesla MRI every 7 days started
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on day 7 after the tumor inoculation. The sera were
obtained from tail vein every 7 days. The animal experi-
mentation was reviewed and approved by the Institutional
Animal Care and Use Committee of National Institute of
Radiological Science.

Statistical analysis

The significance of differences among healthy donors,
patients with low-grade glioma, and patients with high-
grade glioma was calculated using the Kruskal Wallis
H-test and the Mann—Whitney U-test with Bonferroni
correction. Differences were considered significant only
if p<0.05. The overall survivals from the date of initial
diagnosis were estimated using Kaplan-Meier method-
ology and compared by the Log rank test to estimate the
clinical significance of production of autoantibody for
SH3GLL1.

Results

Serological screening of cDNA library

The phage expression library was constructed using
mRNA derived from the U-87 MG glioblastoma cell-line.
To identify glioma-associated antigens, a total of 5 x 10°
c¢DNA clones were screened using sera from 48 patients
with glioma and 57 reacting clones were isolated from 19
of 48 sera. DNA sequence analysis and a search for hom-
ologous sequences in an NCBI-accessible database indi-
cated that these isolated clones comprised 31 independent
genes (Table 1).

The GST-fusion recombinant proteins were success-
fully produced using pGEX-4 T vectors in 10 of 31 anti-
gens—centromere protein F, 350/400 ka (CENPE);
macrophage migration inhibitory factor (MIF); myosin
phosphatase-Rho interacting protein (M-RIP); retino-
blastoma binding protein 8 (RBBPS8); ribosomal protein,
large, PO (RPLPO); SH3GL1, TAF7 RNA polymerase II,
TATA box binding protein-associated factor, 55 kDa
(TAF7?7); talin 1 (TLN1); transforming growth factor
beta-induced 68 kDa (TGFBI), and unc-45 homolog A
(UNC45A) (Figures 1 and 2).

ELISA to detect serum antibodies

Using a recombinant antigen protein, ELISA was per-
formed on sera from 32 patients with high-grade glioma,
40 with low-grade glioma and 56 healthy volunteers,
which were collected between 1998 and 2005 in Chiba
University Hospital. The serum used for SEREX screen-
ing was excluded. The characteristics of the sera are
shown in Table 2 (left).

The levels of serum antibodies of CENPF, MIF, M-RIP,
RPLPO, TGFBI and UNC45A were significantly lower in
patients with high-grade glioma than in those with low-
grade glioma (Figure 1A-C, E, H and I) and, moreover,
the levels of anti-M-RIP and anti-RPLPO antibodies in
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patients with high-grade glioma were also significantly
lower than in healthy volunteers (Figure 1C and E).

The levels of serum antibodies to SH3GL1 were sig-
nificantly higher in patients with low-grade glioma than
those with high-grade glioma (P=0.0243) and healthy
volunteers (P =0.0045) (Figure 2A). When the antibody
levels were divided into 2 groups with a cut-off value of
0.383 corresponding to the mean + 2 standard deviations
(SD) of SH3GL1 antibodies in healthy volunteers, the
positive rate of patients with low-grade glioma was
62.5% (25 of 40), whereas those of patients with high-
grade glioma and healthy volunteers were 8.9% (5 of 56)
and 15.6% (5 of 32), respectively.

Independent validation test for the levels of antibodies to
SH3GL1

To verify the generality of low-grade glioma-specific in-
crease in serum antibodies to SH3GL1, an independent
validation test was carried out using other serum set. In
validations, consecutive serum samples that were col-
lected in 2005-2008 after the first serum sampling, were
enrolled, and no apparent differences in the characteris-
tics were observed between the 2 serum sets (Table 2).
The results of the ELISA based on the newly collected
serum set showed that the levels of serum autoanti-
bodies to SH3GL1 were significantly higher than those
of healthy donors (P=0.0189) (Figure 2B). Although
there was no statistical significance in the levels of anti-
gens between patients with low- and high-grade glioma,
similar distribution was recognized. In the combined
population of the first sampling test and the validation
test, there was a significant difference between low-
grade gliomas and high-grade gliomas (p = 0.0351).

The same results of both ELISA based on the inde-
pendent serum sets support the possibility that SH3GL1
is aberrantly expressed and efficiently elicits a systemic
immune response in low-grade glioma patients. The
level of anti-SH3GL1 autoantibody could be a novel
low-grade glioma-specific serum marker. In contrast, the
lower serum autoantibody levels against these deter-
mined SEREX-antigens in patients with high-grade gli-
oma as opposed to those with low-grade glioma and
healthy volunteers suggest that the existence of some
immunosuppressive mechanisms in high-grade gliomas.

Patients survival

Overall survival of the patients with low-grade gliomas
according to the serum level of anti-SH3GL1 autoanti-
body was analyzed by Kaplan-Meier analysis. The
patients included in the test set and the validation set
were divided into 2 groups with a cut-off value of the
mean+1 SD of anti-SH3GL1 antibodies in healthy
volunteers. The patients with higher serum level of anti-
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Table 1 Genes identified by SEREX
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Gene name Symbol NCBI accession no.  Coding sequence  cDNA inserts of
recombinant protein®

amplified in breast cancer 1 ABC1 NM_022070 18.3563

anillin, actin binding protein (scraps homolog, Drosophilia) ANLN NM_018685 205.3579

ATP synthase, H + transporting, mitochondrial F1complex, beta ATP5B NM_001686 106..1695

polypeptide, nuclear gene encoding mitochondrial protein

catenin (cadherin-associated protein), alpha-like 1 CTNNAL1 NM_003798 22.2248

CDV3 homolog (mouse) CDbV3 NM_017548 316..1092

centromere protein F, 350/400 ka (mitosin) CENPF NM_016343 175.9519 3553.4866

chromosome 14 open reading frame 145 Cl140rf145  NM_152446 172.3456

coagulation factor Il (thromboplastin, tissue factor) F3 NM_001993 124.1011

coiled-coil domain containing 86 CCDC86 NM_024098 56.1138

cyclin G1, transcript variant 2 CCNG1 NM_199246 135..1022

eukaryotic translation elongation factor 1 alpha 1 EEFTA1 NM_001402 64..1452

ferritin, heavy polypeptide 1 FTH1 NM_002032 236..787

ferritin, light polypeptide FTL NM_000146 200.727

heterogeneous nuclear ribonucleoprotein C (C1/C2), HNRPC NM_001077443 219.1100

transcript variant 4

homeobox B2 HOXB2 NM_002145 121.1191

Homo sapiens mRNA for KIAAO146 gene, partial cds. KIAAO146  NM_00108039%4 1.3218

macrophage migration inhibitory factor MIF NM_002415 98.445 23.561

myosin phosphatase-Rho interacting protein, transcript variant 1~ M-RIP NM_015134 57.3173 2194.3856

nucleolar protein 8 NOL8 NM_017948 304.3807

oral-facial-digital syndrome 1 OFD1 NM_003611 312.3350

postmeiotic segregation increased 1(S.cerevisiae) PMS1 NM_000534 231.3029

retinoblastoma binding protein 8, transcript variant 1 RBBP8 NM_00289%4 332.3025 473.1274

ribosomal protein, large, PO, transcript variant 1 RPLPO NM_001002 179.1131 433.1217

RNA export 1 homolog (S.pombe), transcript variant 1 RAE1 NM_003610 342.1448

serine/threonine kinase 3(STE20 homolog, yeast) STK3 NM_006281 142.1617

SH3-domain GRB2-like 1 SH3GL1 NM_003025 107.1213 43.1615

synaptonemal complex protein SC65 SCé5 NM_006455 289..1598

TAF7 RNA polymerase Il, TATA box binding protein TAF7 NM_005642 741.1790 1578.2310

(TBP)-associated factor, 55 kDa

talin 1 TLN1 NM_006289 91.7716 5712...8187

transforming growth factor, beta-induced, 68 kDa TGFBI NM_000358 48.2099 1371...2691

unc-45 homolog A (Celegans), transcript variant 2 or 3 UNC45A NM_001039675 836..3625 1924.3471

1 cDNA inserts of positive clones were successfully expressed into proteins followed by ELISA.

SH3GL1 autoantibody survived significantly longer than
those with lower levels (p =0.0124) (Figure 3).

Search for epitope sites of SH3GL1

To determine the accurate immuno-reactive site, an
ELISA using 4 deletion mutants of SH3GL1 cDNA was
performed. The BAR domain deletion mutant, identified
as SH3GL1 mut-1, was obtained first, and the N-
terminal and C-terminal deletion mutants of SH3GL1
mut-1 were produced, as SH3 mut-2 and 3, respectively
(Figure 4A). The serum antibody levels to SH3GL1 mut-

1 and mut-3 in the patients with low-grade glioma were
still significantly higher than those in other groups
(Figures 4B and D), while the levels of anti-SH3GL1
mut-2 showed no difference among the groups
(Figure 4C). Although these results indicated that the C-
terminal of SH3GL1 contributed to the immune-re-
sponse, the differences were disappeared in SH3GL1
mut-4, deleting only 15 amino acids at the 3" end of
SH3GL1 mut-1 (Figure 4D). These results were suitable
for that of overlap peptide array, and approximately the
15 amino acids in the C-terminal of SH3GL1 are
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Figure 1 Serum antibody levels of glioma SEREX antigens. cDNA inserts of identified clones were recombined in-frame into pGEX vectors
that express recombinant GST fusion proteins. Using the fusion proteins as antigens, the levels of antibodies were examined by the ELISA and
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differences among healthy donors, patients with low-grade glioma and with high-grade glioma was calculated using Kruskal Wallis H-test and
Mann-Whitney U-test with Bonferroni correction. The box-and-whisker plots display the 10th, 25th, 50th, 75th and 90th percentiles.
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plied. In the present analysis, series of peptides of 14
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significant higher levels of autologous antibody against SH3GL1 in low-grade glioma patients, than healthy donors (P=0.045 and 0.0189).
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Table 2 Characteristics of screening serum sets

1st sampling Validation

test test
Sampling periods 1998-2005 2005-2008
No. of patients 128 115
Healthy donors, n (%) 56 (43.8) 48 (41.7)
Age (mean +SD), range 48.1+183, 513+15.2,
16-76 16-76
Low-grade glioma, n(%) 40 (31.3) 42 (36.5)
Age (mean +SD), range 458+ 148, 442 +14.7,
20-74 22-78
Pilocytic astrocytoma, n (%) 2 (5.0 4 (9.5)
Diffuse astrocytoma, n (%) 18 (45.0) 15 (35.7)
Oligodendroglioma, n (%) 16 (40.0) 19 (45.2)
Oligoastrocytoma, n (%) 3(75) 1(24)
Ependymoma, n (%) 1(2.5)
Ganglioglioma, n (%) 3(7.1)
High-grade glioma, n (%) 32 (25.0) 25 (21.7)
Age (mean £SD), range 497+ 183, 498+ 15.5,
8-78 28-78
Glioblastoma, n (%) 24 (75.0) 17 (68.0)
Anaplastic astrocytoma, n (%) 5(15.6) 3(12.0)
Anaplastic oligodendroglioma, n (%) 2 (6.3) 2 (8.0)
Anaplastic oligoastrocytoma, n (%) 1(3.1) 1 (4.0)
Anaplastic ependymoma, n (%) 1 (4.0)
Choroid plexus carcinoma, n (%) 1 (4.0)

without serum as background control, were applied in
the peptide array (Figure 5B-C). All of three sera of
patients showed the fine specific reaction in two con-
secutive blots, spot 177 and 178, indicating the
C-terminal-end of SH3GL1, comparing with the sera

1 1 T l

p=0.0124

Overall survival rate

T T T T T T T T T T T T T T
0 12 24 36 438 60 72 84
months

Figure 3 Kaplan-Meier analysis for the overall survival of the
patients with low-grade gliomas according to the serum level
of anti-SH3GL1 autoantibody. The patients with higher serum
level of anti-SH3GL1 autoantibody (solid line) survived significantly
longer than those with lower levels (gray line) (p=0.0124).
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from normal volunteers. The calculated fluorescence in-
tensity normalized by background control (Figure 5E)
revealed that the common sequence in 2 reactive blots,
FPLSYVEVLVPL, was suggested as a minimum epitope site.

Immunohistochemical staining for SH3GL1 protein

To verify the SH3GL1 expression in glioma tissues dir-
ectly, immunohistochemical stains for SH3GL1 was
obtained in normal brain, low-grade glioma and high-
grade glioma. In the normal brain, clear contrast was
observed between gray matter (cerebral cortex) and
white matter (medulla) (Figure 6A). In the gray matter,
where neuronal cells (neurons) abundantly existed, cyto-
plasm was stained homogeneously, while nuclei were oc-
casionally stained in white matter, which contained
mainly glial cells.

It is known that glioma cells are commonly localized
in white matter and progress along neural fibers [14].
Therefore, we compare the immunostaining levels be-
tween normal glial cells in white matter and glioma cells.
In glioma tissues, strong positive staining of SH3GL1
was observed in the cytoplasms but not in the nucleus
(Figure 6B). The levels of stain in white matter increased
according to the malignancy of tumors; that is, high-
grade glioma tissues were most heavily stained while
normal glial cells were barely stained (Figures 6C). These
results indicated that the protein levels of SH3GL1 were
much higher in glioma cells than in normal glial cells in
white matter.

Alteration of anti-SH3GL1 autoantibody level in rat
glioma model

To confirm the changes in the serum anti-SH3GL1 auto-
antibody level, we used rat glioma models with C6 and
9 L cells which expressed its messenger RNA (data not
shown). In the models, the brain tumors constantly be-
came visible on MRI at 2-week after tumor inoculation
and over 200 mm? at 4-week (Figure 7A). All the tumor-
bearing animals died within 5 weeks from the tumor in-
oculation. In the C6 glioma model, the serum levels of
autoantibody to SH3GL1 significantly increased in the rats
at 2-week after tumor inoculation compared with those at
3-day after the inoculation (p=0.0028) (Figure 7B). In
contrast, at the time of 4-week after the inoculation, the
serum levels tended to decrease. In the other experi-
ment using 9 L gliosarcoma cells, the result showed the
same tendency without statistical significance (data not
shown). These results show that the serum levels of auto-
antibody to SH3GL1 increased at the early stage of the ani-
mal models and turned to decrease at the late stage
according to the increase of tumor volume as the time
proceeded.
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Discussion

The molecular pathogenesis of glioblastoma has been
well characterized and involves both gain and loss of a
number of genes participating in proliferative or mito-
genic signals. One of the most prevalent molecular
changes consists of aberrant activation of EGFR, which

occur in 50% of glioblastoma, but not seen in low-grade
astrocytomas [12,15]. We have shown in this study that
the SH3-domain of GRB2-like protein, which links the
receptor tyrosine kinases activation to the ras pathway,
had already overexpressed in low-grade gliomas and
strongly induced a humoral immune response. In high-
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grade gliomas, the tissue expression of SH3GL1 was fur-
ther increased, but the immune response was suppressed.
Although there are few reports describing overexpression
of this protein in human cancers, SH3GL1 protein is
related to the activation of MLL proto-oncogene by
chromosomal translocation [16]. Solitary SH3GL1 overex-
pression in NIH3T3 cells also reported to do some onco-
genic behaviors in vivo [17,18]. It is not clear whether the
overexpression is a result of amplification of receptor tyro-
sine kinases or not. However, the net result of these sig-
naling complexes induces the shift of ras-GDP to its
activated form ras-GTP, and may lead to activate the
MAPK cascade and resultant alteration in gene expression
concerning cell proliferation.

SH3GL1 is known to be predominantly localized in the
nuclei of haematopoietic cells and fibroblasts in contrast
to cytoplasmic localization in neurons and osteoblasts
[19,20]. In the adult brain, SH3GL1 is highest in the neu-
rons of the granular layer of the cerebral cortex [21] and
known to be involved in the development of central ner-
vous system [22,23]. These published data were compat-
ible with our results of immunohistochemical staining
with SH3GL1 antibody. In glioma tissues, strong positive
staining of SH3GL1 was obtained in the cytoplasms but
not in the nucleus, and the levels of staining in white mat-
ter increased according to the advance of its malignancy.

These results suggested that the SH3GL1 overexpression
might have some oncogenic roles in gliomas. However,
the levels of serum autoantibodies to SH3GL1 in the
patients with high-grade glioma were not increased in our
study, while the levels in the patients with low-grade gli-
oma were increased. It is believed that the abnormal cyto-
plasmic SH3GL1 overexpression in glioma cell has a
potential to induce immune responses, but various
mechanisms of immunosuppression prevent the reaction
in high-grade glioma [24-27]. All the other candidate genes
identified in this study showed the same low immunoreac-
tivity in patients with high-grade gliomas. The suppression
of the immunosurveillance mechanism in high-grade gli-
oma would attenuate the recognition of SEREX-derived
antigens in antigen presenting cells (APC). In fact, it has
been known that various immunosuppressive molecules,
such as TGF-B, IL-10, and prostaglandins, are highly
expressed in cancers including high-grade glioma [24,25],
and these molecules could inhibit the maturation of profes-
sional APCs. Such an evading immune destruction has now
added to the hallmark of cancer [28].

The major cause of the lower level of anti-SH3GL1
autoantibody in high-grade glioma patients would be the
non-specific immunosuppression caused by increased
immunosuppressive cytokines [24,25]. However, the ani-
mal experiment provides an additional hypothesis that
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Figure 6 Immunohistochemical analysis of SH3GL1 in glioma cells. Inmunohistochemical stain for SH3GL1 in whole normal brain, consisted
of white matter and gray matter (A), and three representative results of normal white matter, low-grade glioma and high-grade glioma (B) were
shown. Immunostaining for SH3GL1 was classified in five groups, and numbers of tissues in each group were scored (C).
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the depressed autoantibody levels could be partly due to
the antigen-specific immune tolerance induced by the
existence of large tumor and long-term antigen expos-
ure. The early stage of the rat glioma models indicates a
relatively small tumor and short-term antigen exposure,
and the late stage indicates a large tumor and long-term
antigen exposure to the immune system. The long-term
antigen exposure from a large tumor could generally in-
duce immune tolerance through development of immune
resistant tumor variants and the tumor microenvironment
inducing immune cell anergy or death [26,27]. It is usually
accepted that gliomas often progress from low-grade
tumors to higher-grade tumors as the time proceeds, al-
though low-grade gliomas are not always in an early-stage
of the disease and secondary glioblastoma is less frequent
than de novo glioblastoma [12]. The possible contribution
of antigen-specific immune tolerance to the depressed
autoantibody levels in high-grade glioma patients remains
to be elucidated.

SEREX is one of the most powerful tools to find novel
tumor antigen for various cancers [5], and some autolo-
gous antigens to esophageal cancer have been identified in
our groups [29-31]. Compared with other screening tech-
niques such as transcriptomics or proteomics, SEREX
offers a crucial advantage that subtle changes in the pro-
tein expressions can be detected through immunological
reactions [32,33]. Several authors have already applied
SEREX to glioma, and some antigens, including glioma-
expressed antigen 2 (GLEA2) [7], PHD finger protein 3
(PHF3) [7,34], and SRY-box 6 (SOX6) [8] have been iden-
tified. It should be noted that we found autologous anti-
bodies against SH3GL1 to be a low-grade glioma-specific
marker with similar experimental systems to others. Our
unique approach was the quantitative comparison of the
levels of serum antibodies using the ELISA, while the ap-
proach of others was qualitative analysis. The application
of ELISA in the validation step could lead to the dis-
covery of a low-grade glioma-specific high titer of the
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autoantibody levels were significantly increased at 2-week after
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autoantibody and the decrease in high-grade gliomas. Al-
though some candidates of glioma biomarkers have been
identified by various screening methods [6-8,34-37], no
serum marker for early diagnosis has been found yet.
Therefore, it is quite valuable to find a novel serum bio-
marker for its early diagnosis, prediction of the prognosis
in each patient, and development of a new molecular tar-
get. Indeed,

The results of an overlap peptide array and ELISA
using deletion mutants of SH3GL1 showed that 12
amino acids in the C-terminal portion, FPLSYVEVLVPL,
were indicated as a major epitope site. By using a syn-
thetic peptide corresponding to the epitope as an anti-
gen, a more accurate screening for the patients with
low-grade gliomas and a specific peptide vaccine therapy
would be achieved in the future.
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