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Abstract

Over the last decades, billions have been spent and huge efforts have been taken in basic and clinical cancer
research [CA Cancer J Clin 63:11-30]. About a decade ago, the arms race between drugs and cancer cells reached a
new level by introduction of tyrosine kinase inhibitors (TKI) into pharmacological anti-cancer therapy. According to
their molecular mechanism of action, TKI in contrast to so-called “classic” or “conventional” cytostatics belong to the
group of targeted cancer medicines, characterized by accurately fitting with biological structures (i.e. active centers
of kinases). Numerous (partly orphan) indications are covered by this new class of substances. Approximately ten
years after the first substances of this class of medicines were authorized, patent protection will end within the next
years. The following article covers clinical meaning and regulatory status of anti-cancer TKI and gives an outlook to
what is expected from the introduction of generic anti-cancer TKI.
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Introduction
Pharmacological cancer therapy for decades was per-
formed with non-targeted mostly DNA-interacting
cytostatic drugs. Administration of these so-called con-
ventional cytostatics usually is entailed with severe
side-effects [1]. One of the main disadvantages of those
substances is that they do not specifically target cancer
cells but all (also benign) rapidly dividing cells. This
non-specific mechanism of action was the rationale to
develop specifically targeted anti-cancer TKI. Initially,
great expectations were associated with these drugs;
some were met, others not. Tyrosine kinase inhibitors
(TKI) are a very worthy additional option for physicians
in clinical management of certain types and lines of
cancer treatment (refer to Table 1 for a tabular over-
view). However, the initial expectation of a new era of
cancer-therapy with substantially less side effects was
not fulfilled. TKI have numerous, partly severe side ef-
fects eventually entailed with fatal outcome (Table 2).
On the other hand, when a tumor becomes resistant to
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conventional or targeted anti-cancer therapy, TKI serve
as additional options in second-, third- and/or fourth-line
therapy regimes according to their approved indications.
For instance Sunitinib is approved after Imatinib resist-
ance formation in gastrointestinal stromal tumors (GIST),
and Lapatinib after non-responding to antracycline- or
taxane-based chemotherapy in combination with Trastu-
zumab in HER-2 positive breast cancer. Taken together,
TKI are a valuable extension of the cancer drug arma-
mentarium [2,3].
Molecular mechanism of action
Many chemotherapy-naive and nearly all drug resistant
tumors are characterized by pronounced Receptor-
Tyrosine-Kinase (RTK) signaling. This pattern is at least
in part due to the fact that chemoresistance can be trig-
gered by overexpression and/or activation of RTKs: ERB
B1-4, IGF-1R, VEGFR 1-3, and PDGF-receptor family
members [4,5]. The underlying mechanisms of this over-
activation are diverse and comprise at least the following
mechanisms [6].
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Table 1 General information on anti-cancer TKI

Tyrosine kinase
inhibitor (INN)

Branded
name

Market Authorization
Holder (MAH)

Target tyrosine
kinases

Indication(s) European
birth date

CMA Orphan designation

Bosutinib Bosulif® Pfizer BCR-ABL,SRC Patients with CML for which Imatinib,
Nilotinib, and Dasatinib are not
appropriate

27th March 2013 Yes CML

Dasatinib Sprycel® Bristol-Myers Squibb BCR-ABL CML 23th December 2005 No CML, ALL

Erlotinib Tarceva® Hoffman-La Roche EGFR NSCLC, pancreatic cancer 19th September 2005 No No

Gefitinib Iressa® Astra Zeneca EGFR NSCLC in carriers of activating
EGFR-mutations

24th June 2010 No No

Imatinib Glivec® Novartis BCR-ABL, KIT, PDGFR-A,
PDGFR-B

CML, GIST, BCR-ABL- positive ALL,
dermatofibrosarcoma protuberans,
myeloproliferative neoplasms,
hypereosinophilic syndromes

7th of November 2001 No Expired and withdrawn

Lapatinib Tyverb® Glaxo Smith Kline ERBB2 (HER-2) HER-2 positive breast cancer 10th June 2008 Yes No

Nilotinib1 Tasigna® Novartis BCR-ABL, KIT,PDGFR-A,
PDGFR-B

CML 19th November 2007 No CML

Pazopanib Votrient® Glaxo Smith Kline VEGFR, PDGFR, KIT Renal cell carcinoma, STS 14th June 2010 No Withdrawn

Ponatinib2 Iclusig® Ariad BCR-ABL Patients with CML for which Imatinib,
Nilotinib, and Dasatinib are not
appropriate (or patients carrying a
T315I single-point-mutation)

1st July 2013 CML, ALL

Sorafenib Nexavar® Bayer VEGFR-2,VEGFR-3 Renal cell carcinoma, hepatocellular
carcinoma

19th July 2006 No Renal cell carcinoma,
Hepatocellular carcinoma

Sunitinib Sutent® Pfizer VEGFR 1-3, PDGFR-A,
PDGFR-B; KIT, FLT3

Renal cell carcinoma, GIST, pNET 19th July 2006 Initially, then full
approval

Withdrawn

ALL, acute lymphatic leukemia; CML, chronic myeloid leukemia ; CMA, Conditional Marketing Authorization (none of the above mentioned is currently authorized under exceptional circumstances, according to
European Medicines Agency (EMA) website accessed in Sept 2013 [15]); GIST, gastrointestinal stromal tumor; MA, Marketing Authorization; MAH, Marketing Authorization Holder; NSCLC, non-small cell lung cancer;
pNET, pancreatic neuroendocrine tumors; STS, soft tissue sarcoma; 1Nilotinib is similar to Imatinib according to the orphan regulation; 2US-Food and Drug Administration (FDA) asked the manufacturer of Ponatinib to
suspend marketing due to the risk of life-threatening blood clots and severe narrowing of blood vessels; source of information: European Public Assessment Reports (EPARs) of the above mentioned TKI [15].
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Table 2 Safety profiles of TKI

Small
molecule TKI

CNS Nerve
disorders

Eye disorders Heart disorders Lung airways
disorders

Thyroid
disorders

Liver, Bile
disorders

Bosutinib XX XX XX XX

Dasatinib X XX XX XX XX X

Erlotinib X XX XX XX X

Gefitinib XX XX XX

Imatinib X XX XX X XX X XX

Lapatinib X XX X XX XX

Nilotinib X XX XX XX XX XX

Pazopanib XX XX X XX XX XX

Ponatinib XX XX XX XX XX

Sorafenib X XX X X X

Sunitinib X XX XX X XX XX X

Small
molecule TKI

Gastrointestinal
disorders

Renal
disorders

Musculoskeletal and
bone disorders

Blood and
lymphatic system

Vascular
disorders

Skin
disorders

CMR

Bosutinib XX XX XX XX XX

Dasatinib XX X X XX XX XX XX

Erlotinib XX XX X XX XX

Gefitinib XX XX XX XX XX

Imatinib XX X XX XX X XX XX

Lapatinib XX XX XX XX XX

Nilotinib X X X XX X XX XX

Pazopanib XX XX XX XX XX XX XX

Ponatinib XX XX XX XX XX

Sorafenib X X X XX XX XX XX

Sunitinib XX XX XX XX XX XX XX

XX = common, very common; X = rare, uncommon; CMR, carcinogenic, mutagenic and toxic for reproductive system; CNS, central nervous system; source of
information: Summaries of Product Characteristics (SmPCs) of marketed TKI [16].
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→ Formation of a self-sustaining autocrine loop with
secreted growth factors such as EGF, VEGF, PDGF,
amphiregulin or others [5].

→ Expression of intrinsically active RTK in the cell
membrane [7].

→ Over-activation of downstream signaling by
imbalance of tumor-suppressor genes (p53, PTEN)
and (proto-) oncogenes (PI3K, monomeric G
Proteins such as RAS, RAF and others) [8] etc.

In vitro investigations of cancer cell-lines derived from
numerous tumor-entities regularly uncovered receptor
tyrosine kinase (i.e. EGFR) activation by phosphoryl-
ation of specific residues located in the β-subunit [9,10].
Downstream the adaptor protein GAB1 (Grb2-associ-
ated binder 1) recruits PI3 kinase to phosphorylated
EGFR [11]. The main function of GAB1 is to enhance
PI3K/AKT activation thereby prolonging MAPK signal-
ing [12]. While RAS/RAF/MEK/ERK signaling cascade
usually ends up in cellular proliferation and tumorigenic
transformation, enhanced AKT-kinase signaling usually
is entailed with evasion of apoptosis, which is the
turning-point in drug resistance formation [13]. Given
this, TKI can interrupt signaling cascades evading apop-
tosis, thereby re-sensitizing cancer cells to induction of
apoptosis. Figure 1 gives a schematic overview of the
molecular mechanisms of action of TKI.

Challenges of generic TKI drugs in cancer therapy
According to their European Birth Date during the past
decade, these substances successively will be running
off-patent within the next years (Table 1). From a regula-
tory point of view, this raises the question how market-
ing authorization applications (MAA) should be filed
and especially, how therapeutic equivalence should be
established for generic applications. In general, demon-
strated bioequivalence (BE) allows generic medicinal prod-
ucts to refer to the efficacy and safety data of the originator
medicinal product. It is easy to anticipate, that numerous
questions in this regard will arise in the near future.



Figure 1 Schematic model of tumorigenic signaling pathways and their inhibition by anti-cancer-TKI.
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Aqueous (non-complicated) intravenously applied drug
products have a 100% bioavailability directly per defin-
ition, thus, no BE studies are required for a MAA of such
generic drugs. However, for orally applied drug products,
BE with the originator product needs to be shown, which
may be done using patients or healthy volunteers in re-
spective in vivo studies or by means of comparative in-
vitro investigations.
Since decades BE-acceptance criteria for AUC and

Cmax require the 90% confidence intervals being com-
pletely within 80 - 125% (for AUC and Cmax) to assume
BE. The acceptance range may be tightened to 90 -
111% for one or both pharmacokinetic characteristics
according to the European BE-Guideline [14] in the case
of narrow therapeutic index drugs (NTID). In cases of
class I and III compounds having identified not to have
a narrow therapeutic index – specific in-vitro dissolution
data may substitute for human BE-studies considering
also particular requirements on excipients. This concept
follows the principles of the biopharmaceutical classifi-
cation system (BCS) [14].
It is likely that numerous questions in regard to the ap-

propriate data package will arise in the near future includ-
ing questions on the appropriate study design, on the
appropriate study population, nutrition status, single or
repeated dose-design, appropriate BCS classification of the
individual compound or the classification as NTID.
MAA for new generics may be processed via different

regulatory authorizations routes, i.e. national procedures
in European member states, decentralized procedures in-
volving several European member states or centralized
procedures for all European member states. As the latter
is an option only for generics for which the originator me-
dicinal products already obtained marketing authorization
from a centralized procedure, this option may receive
more attention with the increasing number of medicinal
products with centralized authorizations that are running
off data protection and patent in the next years.
With the intent to enable a consistent approach for

these different routes the European Medicines Agency
(EMA) issued an initiative to harmonize the data re-
quirements throughout European Member States, i.e.
EMA initiated a pro-active program “Product-specific
Bioequivalence-Guidance for Generics” [15]. EMA de-
fines the objective of this initiative as follows: “Product
specific guidance for the bioequivalence assessment of
immediate release generic formulations should a priori
be defined.” Thus, applicants should be given a clear sci-
entific guidance, how to design BE-studies and, thus,
how to file generic applications. This program includes
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BCS-classifications for drug substances, so that a harmo-
nized view on the BCS classification and consequently
the appropriateness of a BCS-based biowaiver approach
can be expected for respective products. Furthermore,
the guidance provides information on the type of ex-
pected data, e.g. appropriate study population (patients
or healthy volunteers), mode of administration (fasten or
fed), single dose or steady state-design, appropriate dose
strength and analytes, the classification as NTID. The
first wave of 16 medicinal products is dominated by
anti-infectives and TKI. Dasatinib, Erlotinib, Imatinib,
Sorafenib and Sunitinib are covered in this first round of
harmonization [15].
From a clinician’s point of view regarding drug safety

(Table 2), one could be tempted to assume that all anti-
cancer medicinal products including TKI are considered
as NTID. However, this is not the case. Different defini-
tions of NTID by different regulatory agencies do exist.
US-FDA classification of narrow therapeutic ratio:

→ Less than a 2-fold difference in median lethal dose
(LD50) and median effective dose values (ED50), -or

→ Less than 2-fold difference in the minimum toxic
concentrations (MTC) and minimum effective con-
centrations (MEC) in the blood or

→ Safe and effective use of the drug products require
careful titration and patient monitoring.

In contrast to the US, for the EU no list of substances
with NTID-designation is available. So far the consider-
ation of a given substance as NTID is mainly based on
national traditions. Only for a few medicinal substances
(e.g. Ciclosporine, Tacrolimus) a harmonized EU deci-
sion was issued by a referral procedure. According to
the draft “Product-specific Bioequivalence - Guidance
for Generics” no drug is newly considered as NTID, only
Tacrolimus is considered as such based on the previ-
ously finalized referral procedure.
According to the European BE-Guideline [14] clinical

considerations are the basis for NTID decisions. Thus,
safety-and efficacy profile have to be taken into account.
Most conventional cytotoxic medicinal products are

given parenterally for a short duration in repeated cycles.
They are mostly dosed on an individual basis (e.g. body
surface or weight). The recommended dose is normally
the maximum tolerated dose (MTD) or close to it.
Marketed TKI drugs are typically given continuously

via the oral route and at a flat dose. Although a most
effective and durable target saturation is the primary ob-
jective for dose development of TKI drugs, it is obvious
that for several TKI drugs the recommended dose is the
same as the reported MTD, e.g. Bosutinib, Pazopanib,
Ponatinib or Sunitinib (Table 3). The dose-limiting toxic-
ities include grade 3 gastrointestinal and hepatic toxicities,
grade 3 skin toxicities, grade 3 fatigue, and grade 3 hyper-
tension. For Sunitinib grade 2 bullous skin toxicity, grade
3 fatigue, and grade 3 hypertension are reported as dose-
limiting toxicities. Furthermore, at approx. twice the
therapeutic concentration a grade 2 QT-prolongation is
expected (Summary of Product Characteristics/SmPC
Sutent® [16]).
From a clinical point of view there are arguments for

consideration as an NTID for selective TKI which are
elucidated for the example of Sunitinib: The dose of
50 mg/d is the recommended dose for renal cell carcin-
oma and the MTD at the same time. The documented
adverse events (AE) and adverse drug reactions (ADR)
are serious, and toxicity may be difficult to control due
to long half-life of parent compound and main metabol-
ite (40-60 h and 80-110 h, respectively). The described
toxicity induces a high probability of dose reductions
with the intent to reduce exposure. The patient safety
may be impaired in case of an exchange between origin-
ator and generic medicinal product following dose re-
duction: Dose reductions of 12.5 mg represent a 25%
and 33% decrease from the recommended dose for renal
cell carcinoma and neuroendocrine tumors of pancreatic
origin, respectively. In case of exchange of the originator
for a generic drug the AUC from the reduced dose of
the generic may be the same as the AUC from the nor-
mal dose of the originator if normal acceptance criteria
for BE (90% CI for AUC and Cmax 80-125%) are applied.
From a safety point of view it should be mentioned

that chronic exposure to a dose that was identified as
the maximum tolerable dose in a short term study may
render the tolerable short term toxicity into intolerable
long term toxicity.

Safety of certain TKI
Dasatinib, Nilotinib & Bosutinib – CML-TKI with different
safety profiles from a regulatory point of view and avail-
ability of second generation TKI
In general TKI are well tolerated in clinical practice,
particularly, if compared with the toxicity of cytostatic
drugs normally used in oncology. Often side-effects are
only mild (grade 2 and lower) and occur early in the
treatment course. Frequently they last only some days or
weeks and resolve spontaneously. Moreover, even if
drug-related toxicity requires drug discontinuation, re-
exposition is often successful and permanent dose re-
duction is rarely necessary.
The advent of Imatinib in 2001 has dramatically chan-

ged the prognosis in patients with chronic myeloid
leukemia (CML): The five year survival rate of patients
with chronic phase CML improved from approximately
20% in the pre-TKI era to more than 90% patients [17].
In those patients who achieve a stable cytogenetic re-
sponse with Imatinib overall survival is reported with



Table 3 Clinical pharmakokinetic profiles of TKI marketed in the EU
TKI tmax (h) Bioavailability

(oral, %)
Concomitant
food intake
effect on
bioavailability

Concomitant
food intake: FDA
recommendation

V (L/kg)
70-kg subject
assumed

Primary
enzymes
involved in
metabolism

Major
metabolites

Plasma
half-life (h)

Plasma
protein
binding (%)

Suggested
threshold for
response or
concentration
attained in
therapy (mg/L)

Bosutinib 6 18 [20] derived
from colon
tumor
xenograft
models

With food 131-214 [21] CYP3A4 M2
(oxydechlorinated
Bosutinib) M5
(N-desmethyl
Bosutinib)

94-96

Dasatinib 0.5–3 <34 Increases
AUC (14%)

With/without
food

30-40 CYP3A4, FMO-3 M4 (BMS-582691),
M5 (BMS-606181),
M6 (BMS-573188)

3–5 92–97 0.01–0.1 [22]

Erlotinib 4 69-76 Increases
bioavailability
(24%–31%)

Without food 3 CYP3A4, CYP3A5,
CYP1A2

NorErlotinib
(OSI-420)

41 92-95 >0.5

Gefitinib 3-7 57 No effect With/without
food

24 CYP3A4, CYP2D6,
CYP3A5 (possibly
CYP1A1)

NorGefitinib
(M523595)

48 79 >0.2

Imatinib 2–4 98 No effect With food 2–6 (Imatinib),
15–40
(NorImatinib)

CYP3A4, CYP3A5,
CYP2C8

NorImatinib
(CGP74588)

12–20
(Imatinib),
40–74
(NorImatinib)

95 (Imatinib
and
NorImatinib)

>1 (CML
and GIST)

Lapatinib 3-5 - Increases AUC
(167%–325%)

Without food 31 CYP3A4, CYP3A5 Norlapatinib
(GW690006)

14 >99 >0.5 mean
concentration
in patients
prescribed
1500 mg once
daily [23]

Nilotinib 3 30 Increases
Cmax (112%)
and AUC
(82%)

Without food 10–15 CYP3A4, CYP2C8 - 15–17 98 >0.6 Cmin
concentration
applicable to
quartile 1 from
cytogenetic
response [24]

Pazopanib 2.8 14-39 Increases AUC
and Cmax (2-fold)

Without food 0.1-0.2 CYP3A4, CYP1A2,
CYP2C8

Pazopanib M24,
Pazopanib M26,
Pazopanib M27

31 >99 >20

Ponatinib With/without
food

CYP3A4 (MRI PI) inactive carboxylic
acid

>99

Sorafenib 2-14 <50 Reduces
bioavailability
(29%)

Without food 3-6 CYP3A4, UGT1A9 Norsorafenib,
Sorafenib N-oxide
(BAY 67 3472)

20-40 >99 >3

Sunitinib 6-12 - No effect With/without
food

30 CYP3A4 Norsunitinib
(SU12662)

40–60
(Sunitinib),
80–110
(Norsunitinib)

95
(Sunitinib),
90
(Norsunitinib)

>0.05
(Sunitinib +
Norsunitinib)
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Table 3 Clinical pharmakokinetic profiles of TKI marketed in the EU (Continued)

TKI DLT MTD Clinical dose
(as recommended
by SmPC)

Dosage form Human AUC at
the clinical dose
(ng*h/ml)

In vitro IC50
values for target
kinase inhibitor
(ng/ml)

Dose-reduction

Liver renal

Bosutinib Grade 3 diarrhea,
grade 3 rash [25]

500 mg, q.d 500 mg, q.d. Tablet 2740 ± 790 250 nM [26] Yes

Dasatinib Grade 3 nausea,
grade 3 fatigue,
grade 3 rash [27]

>120 mg b.i.d 100 mg, q.d. (for
chronic phase),
70 mg, b.i.d. (for
accelerated phase
and blast phase)

Tablet 398.8 (b.i.d.
regimen)

0.0976 No, only in
severe liver
impairment

No

Erlotinib Diarrhea [28] 150 mg, q.d. 150 mg, q.d. Tablet 42679 0.787 [29] No No

Gefitinib Nausea, diarrhea,
vomiting, rash

700 mg, q.d. 250 mg, q.d. Tablet 7251.5 12.1 [30] No, only in
severe liver
impairment

No

Imatinib Nausea, vomiting,
fatigue, diarrhea

>1000 mg,
b.i.d.

400 mg, q.d Tablet 33200 12.3 [31] Yes No

Lapatinib Rash, diarrhea,
fatigue

1800 mg, q.d. 1250 mg, q.d. Tablet 33836.5 6.02 [32] Yes No, only in
severe renal
impairment

Nilotinib Liver function
abnormalities,
thrombocytopenia
[33]

600 mg, b.i.d. 400 mg, b.i.d. (for
chronic-phase and
accelerated-phase of
chronic myelogenous
leukemia), 300 mg, b.i.d.
(for newly diagnosed
chronic-phase
myelogenous
leukemia)

Capsule 19000 (b.i.d.
regimen)

not available No No

Pazopanib Grade 3 aspartate
aminotransferase
(AST)/alanine
aminotransferase
(ALT) elevations,
grade 3 malaise [34]

800 mg, q.d.
[35,36]

800 mg, q.d. Tablet 650 ± 500
μg*h/ml

10, 30, 47, 71, 84
or 74 nM

Yes No

Ponatinib Rash, fatigue 45 mg, q.d 45 mg, q.d. Tablet 77 (50%) or
1296 (48%)

0.4 or 2.0 nM Yes No

Sorafenib Hand-foot skin
syndrome
(HFS) [37]

600 mg, b.i.d. 400 mg, b.i.d. Tablet 36690 (b.i.d.
regimen)

7.79 [38] No No

Sunitinib Grade 3 fatigue,
grade 3 hypertension,
grade 2 bullous skin
toxicity (HFS) [39]

50 mg, q.d. 50 mg, q.d. Capsule 1406 0.797 No, only in
severe liver
impairment

No

AUC, area under the curve; b.i.d., twice daily; DLT, dose limiting toxicity; MTD, maximum tolerated dose; q.d., every day; tmax, time after administration when Cmax is reached; Source of information: Summaries of
Product Characteristics (SmPCs) of marketed TKI [16] unless otherwise indicated.
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95.2% at 8 years in the literature and thus does not differ
statistically significantly from that of the general popula-
tion [18]. Imatinib is still the most common TKI modal-
ity used as a frontline therapy in CML across the world.
However, due to the occurrence of Imatinib resistance
and intolerance, second generation TKI as Dasatinib,
Nilotinib and Bosutinib have been developed. In non-
clinical models they are 30 to 300 times more potent
than Imatinib and can inhibit most Imatinib-resistant
BCR-ABL mutations (EPARs for Imatinib, Dasatinib,
and Nilotinib [15]). Comparable with the experience in
anti-infective drugs, multidrug-resistant BCR/ABL muta-
tions occur which preclude further use of the approved
TKI. For example, patients with T315I mutation respond
only on treatment with third generation TKI Ponatinib,
which was specifically designed as a treatment option
for these populations.
TKI indicated in CML have some side-effects in com-

mon as myelosuppression, gastrointestinal complaints,
rash, fatigue, headache and peripheral and periorbital
edema; however, intensity varies significantly between
the different products. Other AE are peculiar of each
drug: Imatinib has been uncommonly associated with se-
vere heart failure, while Nilotinib is associated with QT
prolongation, pancreatitis, increased rate of cardiovascular
events, and occurrence of peripheral arterial occlusive dis-
ease (PAOD). Dasatinib may cause pleural, pericardial and
peritoneal effusions; additionally interaction with platelet
function is discussed to explain higher rates of gastrointes-
tinal bleeding observed in clinical practice. Bosutinib is as-
sociated with significant gastrointestinal toxicity (diarrhea)
and hepatotoxicity. Serious AE observed with Ponatinib
are an alarming high rate of arterial thrombosis, and car-
diovascular events as well as hepatotoxicity.
Differences in the safety profiles of these TKI seem to

be at least partially explained by the additional inhibition
of other signaling pathways apart BCR-ABL [c-Kit, Src
family kinases, PDGFR, and others].
However, it should be kept in mind that TKI treatment

of CML has to be administered lifelong and knowledge
about potential long-term risks and efficacy, especially
for the second generation TKI Dasatinib, Nilotinib and
Bosutinib, is still limited. Whether risks associated with
Ponatinib treatment can be tolerated is currently under
discussion again.
Not only from a regulatory perspective careful atten-

tion on recommended risk minimization measures as
defined in the product information is at the end essential
to avoid treatment complications that may completely
jeopardize the sought treatment success.

Orphan drug status of TKI
The orphan regulation aims at fostering drug development
for serious or life-threatening diseases with a prevalence of
less than 5 in 10.000 people in the EU. A sponsor may
apply for orphan designation any time prior to an applica-
tion for marketing authorization (usually even before clin-
ical development). The orphan drug status then needs to
be confirmed during the marketing authorization proced-
ure. The most important incentive of the regulation is ten
year market exclusivity for an orphan medicinal product
with respect to similar medicinal products. Neither EMA
nor EU member states can authorize a product, which is
regarded similar with respect to chemical structure and
mode of action and therapeutic indication. Generics, by
definition, fulfill all of these criteria.
Imatinib is the paradigm of targeted therapy with its

target, the Philadelphia chromosome, occurring in two
rare forms of cancer, CML and acute lymphatic leukemia
(ALL) which remain rare in spite of recent advances for
treatment. Other cancers, e.g. renal cell carcinoma, was
recently reported to exceed the prevalence threshold of
5 in 10.000 people so that no further orphan designa-
tions are expected.

Orphan similarity and market exclusivity
In addition to the incentive of the a.m. ten year market
exclusivity intended by the European orphan regulation
[19] there may be a probably unintended additional in-
centive. Special circumstances are conceivable under
which the market exclusivity granted for orphan prod-
ucts may exclude marketing authorization of a generic
product. These special circumstances first occurred
when the orphan drug Tasigna® (Nilotinib) was assessed
as “similar” to Glivec® (Imatinib). Glivec® was first autho-
rized in the EU in 2003. The Committee for Medicinal
Products for Human Use (CHMP) gave a positive opinion
on its benefit risk balance, the Committee for Orphan
Medicinal Products (COMP) confirmed the significant
benefit and so Glivec® got the most important incentive
for the development of medicines for orphan diseases – the
market exclusivity. Under the condition of the European
orphan drug regulation no medicinal product “similar” to
Glivec® would get marketing authorization for ten years –
unless the similar product had superior efficacy or safety or
the MAH of the protected product gives consent to the
marketing of the similar product.
Several years after marketing authorization of Glivec® was

granted, similarity assessment of Tasigna® concluded that
Tasigna® was a similar product to Glivec® and the market
exclusivity of Glivec® would therefore be prohibitive for the
authorization of Tasigna®. In the context of a similarity as-
sessment, three characteristics of a given drug are decisive:

1) The chemical structure (respectively structural
similarity to the innovator product)

2) The molecular mechanism of action, and
3) The indication(s).
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In the first step of Tasigna® marketing authorization,
this was not problematic, because Tasigna® was first autho-
rized in second line after first line-therapy with Glivec®.
However, with the extension of indications to first-line
treatment of CML, Tasigna® was authorized only with the
consent of the MAH of Glivec® (not surprisingly, as both
medicines are products of Novartis). The COMP con-
firmed a significant benefit and thus Tasigna® received its
ten own year market exclusivity beginning with the com-
mission decision in 2007.
When data protection and orphan market exclusivity

expired for Glivec® generic Imatinib products to the ref-
erence product Glivec® were submitted. There was, how-
ever, the previous regulatory decision that Glivec® and
Tasigna® are similar products – including the assessment
of Imatinib and Nilotinib as similar active substances
based on their chemical structure and pharmacological
mechanism. An authorization of a generic Imatinib prod-
uct to the reference product Glivec® would therefore not
be granted if it violated the 10 year market exclusivity of
Tasigna® which began in 2007.
It is safe to assume that the European orphan legisla-

tion was never meant to preclude the authorization of
generics after the data protection and the ten years or-
phan protection of the reference product had expired.
And it also seems that this was not a deliberate abuse of
a complicated legal and regulatory situation by Novartis
but rather unintended. If that had been a wicked, albeit
brilliant, marketing-driven strategy, the exact alignment
of the indications of Glivec® and Tasigna® would have ef-
fectively prevented any Imatinib generics for many years.
As the indications of Tasigna® and Glivec® overlap for
the majority of patients but are not identical, a market-
ing authorization for Imatinib generics restricted to the
indications not granted for Tasigna® became possible.
This is why the indications of generic Imatinib products
are different from the indications of the reference prod-
uct Glivec®.

Conclusion
A decade ago, TKI were introduced into clinical anti-
cancer therapy. At first sight, the molecular mechanism
of action appears to comprise only a targeted approach
in blocking tyrosine kinases. However, this should not be
misleading; numerous closely interconnected signaling
pathways are involved and the complexity of TKI mo-
lecular mechanism is far from being understood com-
pletely. For clinicians, TKI are a worthy new modality of
tumor-therapy amending classical cytotoxic regimes. TKI
are of substantial benefit in terms of efficacy with a toler-
able safety profile. However, long-term safety issues might
not be fully elucidated at present and, thus, cannot be
finally judged upon. Throughout the next years, many
of these substances will run off-patent. Thus, regulatory
guidance will be required for instance on whether certain
substances like Sunitinib fulfill the criteria of a narrow
therapeutic index drug. Apart from that, most TKI are or-
ally administered, thereby raising the question whether
BCS-based biowaiver can apply. In addition, design and
requirements of BE-studies will be an issue in the EMA-
initiative of product specific guidance on anti-cancer-TKI.
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