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Abstract

Purpose: The aim of this study was to evaluate the ability of a 41-gene signature derived from breast cancer stem
cells (BCSCs) to estimate the risk of metastasis and survival in breast cancer patients.

Methods: The centroid expression of the 41-gene signature derived from BCSCs was applied as the threshold to
classify patients into two separate groups—patients with high expression (high-EL) of the prognostic signature and
patients with low expression (low-EL). The predictive ability of the 41-gene signature was evaluated by Cox
regression model and was compared against other popular tests, such as Oncotype and MammaPrint.

Results: Our results showed that the 41-gene prognostic signature was significantly associated with age (P = .0351)
and ER status (P = .0095). The analysis indicated that patients in the high-EL group had a worse prognosis than
those in the low-EL group in terms of both overall survival (OS: HR, 2.05, P = .009) and distant metastasis-free survival
(DMFS: HR, 2.24, P = .002). Additionally, the 41-gene signature was an independent risk factor and separates patients
based on estrogen receptor status. While comparable to Oncotype, the analysis demonstrated that the 41-gene
signature had a better prognostic value in predicting DMFS and OS than AOL, NPI, St. Gallen, Veridex, and
MammaPrint.

Conclusions: This study confirms the utility of the 41-gene signature and adds to the growing evidence that gene
expression signatures of BCSCs have clinical potential to predict patient outcome and aid in treatment choice.
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Introduction
Personalized medicine, the selection of therapy based on
a patient’s individual characteristics, may result in better
outcomes than the use of generalized medicine [1-4].
Prognostic factors commonly applied in breast cancer
include age, tumor size, lymph node involvement, patho-
logical grade, and status of HER-2, Ki-67, and several
hormone receptors, including both estrogen receptor
(ER) and progesterone receptor (PR) [5,6]. Although sev-
eral guidelines have been developed to assist clinicians
in selecting patients who are at high risk of recurrence,
it still remains a challenge to distinguish patients who
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have poor prognosis and require demanding adjuvant
systemic therapy from those who could be spared such
treatment. Due to the complexity of the disease, several
other factors have been investigated for their potential to
predict breast cancer outcome. However, most have only
limited predictive power [7,8].
Recent findings support the concept that a rare popu-

lation of cells, termed cancer stem-like cells (CSCs), is
the cellular origin of cancer [9,10]. Such findings imply
that it is these CSCs that are responsible for tumor initi-
ation, progression, and response to therapy [11,12].
Therefore, an advance in our knowledge of the proper-
ties of CSCs has become a topic of considerable interest.
We previously identified a rare population of breast

cancer stem cells (BCSCs) from tissue [13,14]. Human
cancer is characterized by high heterogeneity in gene ex-
pression and phenotype, both of which influence tumor
growth rate and drug sensitivity. We performed expression
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profiling to identify signaling pathways enriched in BCSCs.
According to the gene expression profile, we found that
sixty-three probe sets corresponding to forty-one genes
showed greater than a four-fold difference in BCSCs com-
pared to non-BCSCs. We hypothesized that this BCSC
signature might be useful as a classification system since it
outperformed most other clinical variables in predicting
the likelihood of distant metastases and overall survival
(OS) in breast cancer patients.
A more accurate means of prognostication in breast

cancer will improve the selection of patients for adjuvant
systemic therapy and will improve clinical decisions and
strategies used to treat patients with this disease. There-
fore, the present study was conducted to further evaluate
the forty-one gene signature as a tool to accurately esti-
mate the risks of metastases and survival in breast can-
cer patients.

Methods
Database of patients
Normalized gene expression data, together with the pa-
tient’s characteristics, were retrieved from the public
GEO database (http://www.ncbi.nlm.nih.gov/geo; acces-
sion number GSE7390). For each patient, the informa-
tion generated from the dataset included surgery type,
angioinvasion (lymph vascular invasion), histopatho-
logical grading, ER status, OS, distant metastasis-free
survival (DMFS), clinical risk group according to St. Gallen
criteria, National Provider Identifier (NPI) criteria,
Adjuvant online (AOL) (http:// www.adjuvantonline.com),
Veridex signature, MammaPrint, and Oncotype Dx.

Study design
The 41 DEGs (differential expressed genes) correspond
to 63 probe sets. Based on these probe sets, we obtained
relevant expression values of patients from GSE7390.
The centroid expression of these probe sets was applied
as the patient classification threshold. Based on the
threshold of the prognostic signatures, breast cancer pa-
tients in the dataset can be classified into two separate
groups—patients with high expression (high-EL) of the
prognostic signature and patients with low expression
(low-EL) of the prognostic signature.

Statistical analysis
To assess the prognostic value of the 41-gene signature,
we utilized the Kaplan-Meier estimator to plot survival
curves and the log-rank test to compare differences be-
tween two groups [15]. Fisher's exact test was employed
to investigate the relevance between the 41-gene signa-
ture and clinical factors. Standard Cox proportional haz-
ards regression were implemented to predict OS and
DMFS. The performance of the 41-gene signature and
other standard criteria, including AOL, NPI, St. Gallen,
Veridex, Oncotype DX, and MammaPrint were evalu-
ated in terms of LHR and Akaike information criterion
(AIC) in a full model (all systems included) and in a
series of reduced models where each interested factor
was removed once each time. When removed from the
full model, the best option results in the largest drop in
LHR χ2 and an increase in AIC. All statistical analyses
were performed by the R programming package with rms.
End points considered in this study were time from

diagnosis to distant metastases (DMFS) and OS, which
was defined as time from diagnosis to death by any
cause. The linearity of the relation between the relative
hazard ratio and the diameter of the tumor, age, and ER
expression level were tested using the Wald test for non-
linear components of restricted cubic splines. No evi-
dence for nonlinearity was found (P = .83 for age, P = .75
for tumor diameter, P = .65 for the number of positive
nodes, and P = .27 for ER expression). We evaluated
whether the hazard ratio was proportional using the
method of Grambsch and Therneau.

Results
Characteristics of patients
The study was carried out with frozen archived tumor
material from early stage breast cancer patients using
the Affymetrix HG-U133A chip as previously described
by the TRANSBIG consortium [16].

Pattern of the 41-gene expression profile in breast cancer
patients
Functional annotation of these 41 genes (Table 1) pro-
vides insight into the underlying biological mechanism
leading to breast cancer tumorigenesis and the cellular
signaling pathways regulating BCSCs.
The gene-expression values of the 41 markers for all

198 tumors in this study are shown in Figure 1. As
shown in Figure 1A, red indicates increased mRNA ex-
pression in the tumor compared to the reference; green
indicates low level expression. The dotted line represents
the previously determined threshold between a good-
prognosis signature and a poor-prognosis signature. Tu-
mors are rank-ordered according to the expression level
of the 41 prognostic genes in tumors from 198 patients.
Figure 1B shows the time in years to distant metastasis
as a first event of this occurrence, as well as the total
duration of follow-up for all patients. Figure 1C shows
the living status of these breast cancer patients.

Association between the 41-gene prognostic signature
and clinical variables
The 198 patients were divided into two groups based on
high expression level (high-EL, n = 99) and low expres-
sion level (low-EL, n = 99), similar to earlier reports [17].
These levels correspond to a poor prognostic signature
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Table 1 List and functional annotation of the 41 genes in the study

ID Gene name Function

23586 DDX58 DEAD box protein.

1041 CDSN Corneocdesmosin, is a secreted protein found in corneodesmosomes.

259230 SGMS1 Sphingomyelin synthase 1.

81669 LOC643556 Similar to Aurora kinase A-interacting protein (AURKA-interacting protein).

54809 SAMD9 A sterile alpha motif domain-containing protein, regulating cell proliferation/apoptosis.

6352 CCL5 Chemokine (C-C motif) ligand 5.

90362 FAM110B Family with sequence similarity 110, member B.

4176 MCM7 DNA replication licensing factor, Minichromosome maintenance complex component 7.

4938 OAS1 Encodes a member of the 2-5A synthetase family, essential proteins involved in the innate
immune response to viral infection.

4939 OAS2 A member of the 2-5A synthetase family.

27289 RND1 A small (~21 kDa) signaling G protein, and is a member of the Rho family of GTPases.

3909 LAMA3 Laminin, alpha 3.

10268 RAMP3 Receptor (G protein-coupled) activity modifying protein 3.

5514 PPP1R10 A protein with similarity to a rat protein that has an inhibitory effect on protein phosphatase-1.

6324 SCN1B Sodium channel, voltage-gated, type I, beta.

9687 GREB1 An estrogen-responsive gene.

11151 CHRO1A Coronin, actin binding protein, 1A.

3434 IFIT1 Interferon-induced protein with tetratricopeptide repeats 1.

3433 IFIT2 Interferon-induced protein with tetratricopeptide repeats 2.

3437 IFIT3 Interferon-induced protein with tetratricopeptide repeats 3.

634 CEACAM1 Carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein).

4680 CEACAM6 Carcinoembryonic antigen-related cell adhesion molecule 6.

79971 WLS wntless homolog (Drosophila).

3456 IFNB1 Interferon, beta 1, fibroblast.

9442 MED27 Mediator complex subunit 27, the activation of gene transcription.

8638 OASL 2′-5′-oligoadenylate synthetase-like gene.

1316 KLF6 A member of the Kruppel-like family of transcription factors.

55422 ZNF331 A zinc finger protein containing a KRAB (Kruppel-associated box) domain.

3853 KRT6A A member of the keratin gene family.

653 BMP5 A member of the bone morphogenetic protein family.

10916 MAGED2 Melanoma-associated antigen D2.

3627 CXCL10 A chemokine of the CXC subfamily and ligand for the receptor CXCR3.

3433 IHIH2 Interferon induced with helicase C domain 2.

3569 IL6 Interleukin 6.

3576 IL8 Interleukin 8.

347733 TUBB2B A beta isoform of tubulin, which binds GTP and is a major component of microtubules.

629 CFB Complement factor B.

56999 ADAMTS9 A disintegrin and metalloproteinase with thrombospondin motifs protein family.

6482 HS.374257 ST3 beta-galactoside alpha-2,3-sialyltransferase 1.

90627 STARD13 StAR-related lipid transfer (START) domain containing 13.

64135 IFIH1 Interferon induced with helicase C domain 1.
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Figure 1 (See legend on next page.)

Yin et al. Journal of Experimental & Clinical Cancer Research 2014, 33:49 Page 4 of 10
http://www.jeccr.com/content/33/1/49



(See figure on previous page.)
Figure 1 Pattern of expression of genes used to determine the prognosis and clinical characteristics of 198 breast cancer patients.
Panel A shows the pattern of expression of the 63 marker genes in a series of 198 consecutive patients with breast carcinoma. Each row
represents the prognostic profile of the 63 marker genes for one tumor, and each column represents the relative level of expression of one gene.
The tumors are numbered from 1 to 198 on the y axis, and the genes are numbered from 1 to 63 on the x axis. Panel B shows the time in years
to distant metastasis as a first event for those in whom this occurred, and the total duration of follow-up for all other patients. Panel C shows the
living status. The black dots represent the number of patients who died.
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and a good prognostic signature, respectively. To gain
insight into the relationship between the 41-gene prog-
nostic signature and clinical variables, we performed
correlation analysis with histopathologic data of patients,
such as, age, surgery type, grade, and ER expression as
determined by immunohistochemical (IHC) staining.
The results showed that the 41-gene prognostic signa-
ture was significantly associated with age (P = .0351) and
ER status (P = .0095). Patients in the high-EL group were
younger in age and had ER-negative tumors. There was
also a slightly significant association with tumor grade.
However, the p value showed no statistical significance.

Analysis of DMFS and OS based on the prognostic signature
Our analysis indicated that the likelihood of patients de-
veloping distant metastasis at 5 years and 10 years was
higher in the low-EL group than in the high-EL group
Figure 2 Kaplan-Meier analysis of the probability that patients would r
value of DMFS by the 41-gene signature. Patients were divided into those wit
signature according to gene-expression profiling; B. prediction value of OS by
criteria; D. prediction value of DMFS by St. Gallen criteria; E. prediction of Verid
(5 year DMFS: 88% versus 75%, respectively; 10 years
DMFS: 83% versus 64%, respectively). Prolonged OS was
also observed in low-EL patients.
Additionally, multivariate analysis was conducted to

adjust for confounding variables including age, tumor
size, tumor grade, and ER status. Results confirmed that
the 41-gene signature was an independent prognostic
factor for these breast cancer patients (OS: HR, 1.96,
P = .02; DMFS: HR, 2.09, P = .008).

Survival comparison between the new markers and other
standard criteria
The Kaplan-Meier curve (Figure 2A) showed a signifi-
cant difference (HR, 2.236; 95% confidence interval [CI],
1.319 to 3.79) in the probability that patients would re-
main metastasis-free in the low-EL compared to the
high-EL group (P = .002). The 41-gene prognostic
emain free of distant metastasis among all patients. A. prediction
h a good-prognostic signature and those with a poor prognostic
AOL consensus criteria; C. prediction value of DMFS by NPI consensus
ex signature. The p values were calculated by log-rank test.
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signature was also extremely useful in predicting the
outcome of OS (HR, 2.050; 95% CI, 1.186 to 3.545; P =
0.009) (Figure 3A).
To obtain a more powerful estimate of the signature

in predicting clinical outcome, we compared the 41-gene
prognostic signature with other commonly used criteria,
such as AOL, NPI, St. Gallen, and Veridex. Based on this
analysis, patients in the database can be divided into a
high-risk group and a low-risk group according to vari-
ous histologic and clinical characteristics. We calculated
DMFS and OS according to these different prognostic
profiles. The analysis indicated that the 41-gene signa-
ture had the best prognostic value in predicting DMFS
(P = .058 for AOL; P = 0.017 for NPI; P = .11 for Veridex;
and P = .212 for St. Gallen) (Figure 2B, 2C, 2D, 2E) and
OS (P = .074 for AOL; P = .031 for NPI; P = .053 for
Veridex; and P = .312 for St. Gallen) for early breast can-
cer patients (Figure 3B, 3C, 3D, 3E).

Prognostic value in high-risk patients defined by other
standard criteria
The 41-gene prognostic signature was also highly pre-
dictive of the risk of DMFS and OS among the subgroup
of patients, which were thought to be high risk accord-
ing to other existing criteria. As shown in the Kaplan-
Meier curves, we found significant differences in the
probability of remaining metastasis-free between the
high-EL signature and the low-EL signature, even
though all were assigned to the high-risk group based on
other criteria (P = .001 for AOL; P = .001 for NPI; P = .049
for Veridex; P = .004 for St. Gallen; P = .006 for
Figure 3 Kaplan-Meier analysis of the probability of OS. A. prediction
with a good-prognostic signature and those with a poor prognostic signature
AOL consensus criteria; C. prediction value of OS by NPI consensus criteria; D.
signature. The p values were calculated by log-rank test.
MammaPrint; and P = .018 for Oncotype Dx) (Figure 4A,
4B, 4C, 4D; Figure 5C, 5F). A similar trend was observed
when assessing OS (Figure 4E, 4F, 4G, 4H; Figure 5B, 5E).
Thus, the new prognostic signature more accurately pre-
dicts breast cancer survival rate (or metastasis) than other
histologic and clinical characteristics. These results high-
light the value of the prognosis profile and the robustness
of the profiling technique.
Comparison of the prognostic value of the 41-gene
signature with Oncotype Dx and MammaPrint
To assess the concordance of the 41-gene signature with
published prognostic gene signatures, we implemented
the original algorithms of the Oncotype Dx (Genomic
Health) and MammaPrint (Agendia) gene signatures and
applied them to the 41-gene signature in our compen-
dium of microarray datasets.
Using data from the 198 patients with node-negative

tumors, we analyzed the prognostic value of the 41-gene
signature, Oncotype Dx, MammaPrint, and other criteria
(Table 2). The results of multivariate analysis indicated
that there was significant prognostic power for the 41-
gene signature (P = .03) and Oncotype Dx (P = .002).
However, there was no statistically significant difference
observed for the analysis using MammaPrint (P = .647),
AOL criteria (P = .551), NPI criteria (P = .16), St. Gallen
criteria (P = .383), or Veridex criteria (P = .335).
We further investigated the prognostic ability of the

41-gene signature under different definitions of “high risk”
using forest plots. As shown in Figure 5A and Figure 5D,
value of OS by the 41-gene signature. Patients were divided into those
according to gene-expression profiling; B. prediction value of OS by
prediction value of OS by St. Gallen criteria; E. Prediction value of Veridex



Figure 4 The 41-gene signature was a stronger predictor of clinical outcome. A. prediction value of DMFS in high-risk patients defined by
AOL criteria; B. prediction value of DMFS in high-risk patients defined by NPI criteria; C. prediction value of DMFS in high-risk patients defined by
Veridex criteria; D. prediction value of DMFS in high-risk patients defined by St. Gallen criteria; E. prediction value of OS in high-risk patients
defined by AOL criteria; F. prediction value of OS in high-risk patients defined by NPI criteria; G. prediction value of OS in high-risk patients
defined by Veridex criteria; H. prediction value of OS in high-risk patients defined by St. Gallen criteria.

Figure 5 Prognostic value represented by forest plot in patients defined by other standard criteria. A. prognostic value of OS represented
by forest plot; B. prognostic value of OS in high-risk patients defined by Mammaprint; C. prognostic value of DMFS in high-risk patients defined
by Mammaprint; D. prognostic value of DMFS represented by forest plot; E. prognostic value of OS in high-risk patients defined by Oncotype;
F. prognostic value of DMFS in high-risk patients defined by Oncotype.
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Table 2 Comparison of the prognostic value of 41-gene
signature with other risk assessment criteria

OS DMFS

ΔLHR P-value ΔAIC ΔLHR P-value ΔAIC

Signature −4.929 0.03* 2.929 −10.513 0.008* 5.475

ONCOTYPE −13.286 0.002* 11.286 −13.734 0.004* 8.696

MAMMAPRINT −0.221 0.647 −1.779 −3.038 0.986 −2

AOL −0.377 0.551 −1.623 −3.325 0.601 −1.713

NPI −3.658 0.16 2.764 −6.823 0.131 2.756

St. Gallen −0.724 0.383 −1.276 −3.33 0.582 −1.708

Veridex −0.991 0.335 −1.009 −3.987 0.343 −1.051

The independent contribution of each interested factor to patient outcome
was assessed by first removing the factors concerned and then calculating the
difference of LHR and AIC. A larger drop of LHR and an increase in AIC
indicate a higher significance of the removed system.
ΔLHR, change of likelihood ratio between full model fitting and one concerned
system removed; ΔAIC, change of Akaike information criterion between full
model fitting and one concerned system removed; *, statistical significant.

Yin et al. Journal of Experimental & Clinical Cancer Research 2014, 33:49 Page 8 of 10
http://www.jeccr.com/content/33/1/49
the new markers displayed good predictive ability in al-
most all subgroups except for ER-positive patients.

Subgroup analysis according to ER status
In order to discuss the impact of ER status on the 41-
gene signature, we separately analyzed the predictive
Figure 6 The prognostic value of 41-gene signature in ER positive an
B. prognostic value of DMFS in ER− patients; C. prognostic value of OS in E
value of these markers in ER-positive and ER-negative
patients. The survival curves were statistically signifi-
cantly different between the high-EL patients and low-
EL patients for DMFS (P = .014) and OS (P = .028) in ER
negative patients, indicating a good predictive ability in
this subgroup (Figure 6A, 6B). However, the signature
did not show strong predictive ability for ER positive pa-
tients (Figure 6C, 6D). These curves confirmed earlier
results from forest plot analysis (Figure 5A, 5D).
Discussion
Previous studies linking gene expression profiles to clin-
ical outcome in breast cancer have demonstrated that
the potential for distant metastasis and OS probability
may be attributable to biological characteristics of the
primary tumor [18-21]. In their seminal work, Paik et al.
[22] reported that a 21-gene recurrence score (RS) assay
quantifies the likelihood of distant recurrence in women
with ER-positive, lymph node-negative breast cancer
treated with adjuvant tamoxifen; it also predicts the
magnitude of chemotherapy benefit. Perou et al. [23]
identified tumors with distinct patterns of gene expres-
sion termed “basal type” and “luminal type”, using com-
plementary DNA (cDNA) microarray to analyze breast
d ER negative patients. A. prognostic value of OS in ER− patients;
R+ patients; D. prognostic value of DMFS in ER+ patients.
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cancer tissues. These subgroups differ with respect to
disease outcome in patients with locally advanced breast
cancer. Generally, it is agreed that patients with poor
prognostic features benefit most from adjuvant therapy.
We previously identified a gene expression profile of

41-gene markers that is associated with BCSCs. Since
BCSCs are considered to be the root of metastasis, pro-
mote recurrence of the malignancy, and are resistant to
traditional therapy [24-27], we tested this profile in a
series of 198 consecutive patients who were diagnosed
with early breast cancer. The results showed that the 41-
gene profile performed best as a predictor of DMFS by
classifying patients into high-EL and low-EL groups. The
prognostic signature is also a strong predictor of OS in
patients with lymph node negative disease in this cohort.
To our knowledge, this is the first attempt at using

cancer stem cell related markers as a prognostic signa-
ture predicting the survival and recurrence of breast
cancer patients. This finding is important since the pres-
ence of cancer stem cells is a strong predictor of poor
survival and resistance to traditional therapy. This find-
ing also sheds new light on the common biological pro-
cesses relevant for predicting outcome in breast cancer.
Comparing Figure 2A and Figure 3A, we see a strong

correlation between the good-prognostic signature and
DMFS (P = .002). Similar results were observed in the
analysis of OS (P = .0086). To obtain a more useful esti-
mate of clinical outcome, we calculated the probability
of patients who remained free of distant metastasis and
OS according to the prognosis profile. For this analysis,
our results indicated that the prognostic signature was
highly predictive of the risk of distant metastasis. Pro-
longed OS was also observed in patients with low ex-
pression of the 41-gene signature compared to patients
in the high-EL group. These results highlight the value
of prognostic profiles and the robustness of the profiling
technique.
For the purpose of comparison, we also analyzed well-

established criteria currently used in the clinic predicting
clinical outcomes for breast cancer patients, such as
AOL, NPI, St. Gallen, and Veridex. Figure 2 and Figure 3
shows the Kaplan-Meier estimates of the probability that
patients would remain free of distant metastasis and OS
among the 198 patients with lymph-node-negative breast
cancer. In these analysis, patients were classified either
by the 41-gene-expression profile or by another com-
monly used criteria, such as AOL, NPI consensus cri-
teria, St. Gallen criteria, or Veridex criteria. The results
indicated that only the NPI consensus criteria (P = .0172)
predicted a statistically significant survival outcome in
this cohort. It is worth noting that no statistical signifi-
cance was observed for AOL, NPI, or St. Gallen criteria
in predicting clinical outcome for this cohort of breast
cancer patients.
MammaPrint [28] and Oncotype Dx [29] are currently
commercially available diagnostic tests that quantify the
likelihood of disease recurrence in women with early-
stage breast cancer. Within this cohort, the analysis re-
vealed that the 41-gene signature and Oncotype Dx both
had strong prognostic value in predicting DMFS and OS
in this 198 patient group. However, there was no statisti-
cally significant difference observed for the analysis with
MammaPrint.
High-risk patients identified by AOL, NPI, St. Gallen,

or Veridex criteria tended to have a lower likelihood of
DMFS and OS than those classified according to the 41-
gene expression profiling. This result indicates that both
sets of the currently used criteria “misclassified” a clinic-
ally significant number of patients. Indeed, the high-risk
group, defined according to these criteria, might include a
number of patients who actually had a good-prognostic
signature with a possible good outcome. Since both these
subgroups contain some “misclassified” patients (who can
be better identified through the prognosis signature), these
patients might be mistreated in current clinical practice.
Based on our analysis, we predict that the 41-gene sig-

nature profile significantly associates with clinical out-
come in the entire patient cohort. Thus, we further
evaluated the prognostic utility of these 41-genes in ER
positive and ER negative patients, respectively. In the
subgroup analysis, there was a significant association be-
tween the 41-gene signature and both OS and DMFS in
ER-negative breast cancer patients. In contrast, the sig-
nature did not show strong predictive ability for ER
positive patients.
The molecular mechanisms regulating BCSCs are dis-

tinct from the mechanisms governing differentiated
tumor cells. Our data indicate that classification of pa-
tients into high-risk and low-risk subgroups on the basis
of the 41-gene prognostic profile could prove to be a very
useful means of guiding adjuvant therapy in patients with
lymph-node-negative breast cancer. This approach should
also improve the selection of patients who would benefit
from adjuvant systemic treatment, reducing the rate of
both over-treatment and under-treatment. Even though
these results are encouraging, a larger scale prospective
study is required to confirm these results.

Conclusion
The 41-gene prognostic profile demonstrates prognostic
significance with strong capability of predicting DMFS and
OS in node-negative breast cancer patients. This 41-gene
signature of BCSCs was even more strongly associated with
clinical outcomes compared with other existing criteria,
such as AOL, NPI, Veridex, St. Gallen, and MammaPrint.
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