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P68 RNA helicase as a molecular target for cancer
therapy
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Abstract

The DEAD-box family of RNA helicase is known to be required in virtually all cellular processes involving RNA, and p68
is a prototypic one of the family. Reports have indicated that in addition to ATPase and RNA helicase ability, p68 can
also function as a co-activator for transcription factors such as estrogen receptor alpha, tumor suppressor p53 and
beta-catenin. More than that, post-translational modification of p68 including phosphorylation, acetylation, sumoylation,
and ubiquitylation can regulate the coactivation effect. Furthermore, aberrant expression of p68 in cancers highlights
that p68 plays an important role for tumorgenesis and development. In this review, we briefly introduce the function
and modulation of p68 in cancer cells, and put forward envisagement about future study about p68.
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Introduction
The DEAD-box family of RNA helicases contains nine
domains of strong peptide sequence conservation, in-
cluding the Asp-Glu-Ala-Asp (DEAD) helicase signature
sequence. In addition to regulating the conformation of
RNA structure and the known ATP-dependent RNA
helicase activity [1], DEAD box-containing proteins are
required for a variety of processes involving RNA like
ribosome biogenesis, embryogenesis, spermatogenesis,
and cell development and division [2].
P68 (DDX5) is considered as a prototypic member of

the DEAD-box family of RNA helicases. It was fortuit-
ously discovered through a cross-reaction with an anti-
body against the simian virus SV-40 T antigen, and shows
extensive amino-acid sequence homology to eukaryotic
translation initiation factor eIF-4A, the first identified
helicase capable of unwinding RNA [3]. In no time, p68
was reported to be an RNA-dependent ATPase and has
RNA-unwinding activity [4].
Many research studies demonstrated that p68 is import-

ant for a diverse range of cellular processes, including
pre-mRNA, rRNA and miRNA processing and tran-
scription [5]. Furthermore, the existence of p68 and the
highly related DEAD box family member p72 can be
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found in a diversity of complexes in the cell, together
with other factors [6]. There is a considerable body of
evidence indicating that p68 is an important co-activator
of transcription factors, for example, estrogen receptor α
(ERα) [7], MyoD [8], Runx2 [9], androgen receptor (AR)
[10], and p53 [11], which have shown clear significance in
cancer. Recent studies have also demonstrated that p68 is
aberrantly expressed/modified in several types of cancers,
suggesting that p68 plays important roles in cancer devel-
opment and progression [12].
For an illuminating purpose for cancer therapeutic

utilization, we summarize the structural and functional
characteristics of p68 in both biological and pathological
conditions, which will highlight the potential target for
anticancer therapy.
Structure characteristics and biological functions of
p68(DDX5)
P68 shares a “helicase core” of nine conserved motifs
with other members of the DEAD-box family, and these
conserved regions are critical for RNA binding, ATP
binding and hydrolysis, and intermolecular interactions
[13]. The core is divided into two flexibly linked RecA-
like domains, Domain 1(D1) and domain 2(D2). The D1,
consisting of Q-motif, motifs I, II and III, serves for
ATP-binding. The D2, including motifs IV, V and VI,
exhibits an RNA-duplex recognition domain [14]. The
Q-motif is present at the N-terminus of the catalytic core
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and is preceded by a conserved phenylalanine 17 amino
acids at the upstream [15]. This conserved aromatic group
and the Q-motif are identified as adenine recognition
motif and can regulate ATP binding and hydrolysis [16].
Further, the Q-motif was reported to affect the helicase
activity through regulating the affinity between the protein
with RNA substrates [17]. Motifs I and II (or Walker A
and B) are capable of binding ATP. The energy from ATP
hydrolysis is coupled to RNA unwinding by motif III and
cooperates with other motifs to create a high-affinity RNA
binding site [18]. And motif IV, together with motif Ia,
Ib and V, is engaged in ATP-dependent binding of RNA
substrates [19]. Obviously, the structure of p68 is in a
dominant position in the representation of function, and
there is a profound work which is remained to elucidate
the mechanism between structure and biological activity
[20] (Figure 1).
As is known to all, p68 is a prototypic multifunctional

protein, and the most well recognized function of p68
is to bind both double- and single-stranded RNA and
provide energy to perform bidirectional RNA duplex
unwinding activity as an ATPase [21]. Another important
function of p68 is for efficient spliceosome assembling and
RNA splicing [22]. Previous investigations demonstrated
that p68 could unwind and separate the connection
between the U1 small nuclear ribonucleoprotein particle
and the 5’ splice site, facilitating the dynamic formation
from pre-spliceosome to spliceosome [23]. However,
the assembly of the spliceosome is in an RNA helicase-
independent manner [24]. RNA helicase p68 could also
manifest conformational change activity enhancing the
U1-5’ss interaction [25]. Based on the observation, the p68
is important for RNA maturation. In succession, alterna-
tive splicing can also be regulated in this way [26].
Figure 1 Stereoview of secondary structure of the N-terminal
domain of the human DEAD-box RNA helicase DDX5(P68). left:
ribbon and helix diagram; right: surface representation. Different
secondary structures are marked by different colors. The conserved
motifs are colored red. They are successive and converge on one
side of the surface of the overall structure. The functional area can
be modified or combined with other proteins. (PDB ID: 4A4D).
MicroRNAs(miRNAs) are small non-coding RNAs that
can affect cell development through regulating protein
expression or messenger RNA synthesis [27]. The primary
miRNA (pri-miRNA) is cleaved by the nuclear RNase III
endonuclease Drosha in the cell nucleus and transitions
to precusor miRNA (pre-miRNA) which in sequence
will be transported to cytoplasm [28]. Afterwards, the
pre-miRNA is processed by another nuclear RNase III
endonuclease Dicer into mature double-strand miRNA.
The Drosha forms two multi-protein complexes, and
experimental results revealed that p68 is a component
of the larger one [29]. Moreover, p68 can function as a
recognizer of pri-miRNA and bind to the specific structure
[30]. It suggests that p68 is required in the early stages of
miRNA biogenesis involving the processing of pri-miRNA
to pre-miRNA. Recently, much work has been done in
the field of miRNA processing regulated by Drosha. The
transforming growth factor β(TGFβ) signal transducers,
Smad protein, as well as the tumor suppressor p53, has
been reported to recruite into Drosha by interaction
with p68, facilitating accumulation of Drosha complex
to specific pri-miRNA [31]. However, the Smad and
p53 are probably in competition for p68 binding and
thus maturation of miRNA is dynamically modulated
by these proteins [32].
It also has been indicated that p68 is required in rRNA

processing [33]. In the early stage of ribosome biogenesis
in nucleolus, p68 is related to the restructuring of 32S
pre-rRNA [34]. And in the following steps, the p68 is
exported from nucleoli and has been shown to be associ-
ated with nucleoplasmic processing of 5.8S pre-ribosomes
[30]. Nucleophosmin (NPM) (B23) is a nucleolus/nucleus-
cytoplasm shuttling protein and is indispensable in cell
development and proliferation. The fundamental function
of NPM is to transport ribosomes and ribosomal subunits
from nucleus to cytoplasm, and p68 is an important bind-
ing protein of it [35]. The tumor suppressor ARF, which
inhibits cell cycle, has been considered as a hinder of
exportation to suppress rRNA biogenesis by associating
with NPM [36]. Consistent with the appearance, the ARF
is also a blocker in the interaction between p68 and NPM,
and effects the production of mature rRNA [37].

Abnormal expression of p68 in cancer
Since p68 is ubiquitously expressed in human tissues and
plays a multifunctional role in a number of the cellular
processes, many experimental results revealed examples
of diseases concerned with p68, including obesity [38],
Down syndrome [39], myotonic dystrophies [40] and
especially cancer [5]. Over the past few decades, abnormal
expression of p68 has been detected in many cancers,
such as colon cancer [41], breast cancer [42], lung cancer
[43], cutaneous squamous cell carcinoma [44], leukemia
[45] and so on (Table 1).



Table 1 Aberrant expression of p68 in cancer

Type of tumor Expression level of p68 Involved factor Author/reference

Colorectal cancer elevated in HCT-116, LoVo, SW480 and SW620 cell lines relative to
normal colon cell lines

β-catenin, p21 Singh C et al., 1995 [41]

Shin S et al., 2007 [46]

higher p68 positive rate of adenocarcinoma than matched normal tissue,
and the expression degree increases from polyp to adenoma and
adenocarcinoma in sequence

Causevic M et al., 2001 [47]

Breast cancer increased progressively from the luminal to basal breast cancer cell
lines(38 cell lines)

miR-182,ERα Haines GK et al., 1996 [42]

elevated in cancer tissue than in normal breast tissue Wang D et al., 2012 [48]

higher DDX5 positive rate in malignant biopsies than benign Fujita T et al., 2003 [49]

Head and neck squamous
cell carcinoma

elevated in (UMSCC)-10B and (UTSCC)-19A cell lines compared two benign
epithelial keratinocytes

Not determined Beier UH et al., 2006 [50]

Prostate cancer higher p68 positive rate in PCa biopsies than in BPH AR Clark EL et al., 2008 [10]

Salivary gland
pleomorphic adenomas

elevated in adenoma than matched normal salivary gland tissue Not determined Zhang X et al., 2009 [51]

Leukemia higher level in SupT1, DND41, HBP-ALL, KOPT1, Jurkat, MOLT4, MOLT13,
MOLT15 and REX cell lines than selected acute myeloid leukemia cell lines

NOTCH1, MAML1 Lin S et al., 2012 [45]

elevated in human T-ALL bone marrow samples compared with normal
T cells

Glioma elevated in H-4, HS-683, U-87, U-251, and U-343 cell lines NF-kappaB, p50 Wang R et al., 2012 [52]

elevated in high-grade human glioma relative to low-grade glioma and
normal adjacent brain tissue

Cutaneous squamous
cell carcinoma

elevated in carcinoma than adjacent tissues and normal foreskin tissues Not determined Wang SJ et al., 2012 [44]

higher in carcinoma cases with metastasis than those without metastasis

Hepatocellular carcinoma down-regulated in HBV-positive and NBNC HCC tissues compared with
matched adjacent non-cancerous liver

Not determined Kitagawa N et al., 2013 [53]
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A clinical cohort study on prostate cancer (PCa) showed
that the p68 expression in the PCa biopsies was markedly
higher than matched benign prostatic hyperplasia (BPH)
[10]. It is consistent with previous work, which also
provided analogous comparison result between colon
cancer and normal tissues, and this study further showed
that defect in proteasomal degradation contributes to
p68 accumulation [47]. And then, an additional research
showed that post-translational modification, like sumoy-
lation and ubiquitylation, would strengthen the stability
of p68 [54]. Dysregulation of p68 expression may influence
the miRNA processing machinery and promote benign
tumor development [51]. And in cancers, the up-regulation
of p68 is detected in both invasive and periphery normal
tissues, suggested its early occurrence during tumor
development [47]. Moreover, some experimental results
indicated that the expression is associated with poor
prognosis and probably resistance to therapy [52,53],
which highlight the possible role of p68 in selection of
anticancer therapy and prediction of overall survival.

P68 as a transcriptional co-activator in tumor development
P68 is also an important transcriptional regulator, acting
both as a transcriptional co-activator for a diverse range
of transcription factors including estrogen receptor
α(ERα) [55], the tumour suppressor p53 [11] and the
myogenic regulatory factor MyoD [56]. Meanwhile, in
other conditions, as a promoter-dependent transcriptional
repressor [57].

Estrogen receptor co-activator
The estrogen receptor α is a member of the nuclear
hormone receptor family of transcription factors that is
activated by estrogen, and can regulate mammary gland
development. Much work has been reported recently that
ERα contributes a lot to the development and progression
of breast cancer [58]. SRC-1/TIF2 family proteins is a part
of the nuclear receptor AF-2 co-activator complexes with
CBP/p300 and an RNA co-activator, SRA. And it is
reported that p68/p72 can directly bind the SRC-1/TIF2
family proteins and interact with p72/p68 [59]. In
addition, another study showed that p68/p72 can cooper-
ate with SRC-1 and interact with ERα in an estrogen-
independent manner [60]. Based on these reports, p68/
p72, in synergy with ERα, CBP/p300, MyoD, can form a
component of the ERα transcriptional complex. This indi-
cates that p68 and p72 are important components of the
transcription machinery. So further study of p68 will pro-
vide more evidences of p68 playing an important role in
breast cancer development and/or progression.
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Androgen receptor
The androgen receptor (AR) belongs to the nuclear ster-
oid hormone receptor family. It is an androgen-dependent
transcription factor which play an essential role in the
development and progression of prostate cancer (PCa).
A number of androgen receptor (AR) transcriptional
co-regulators have been identified to play important
roles in prostate cancer (PCa). The p68 possess a LxxLL
motif which is observed in cofactors that interact with
ligand-activated nuclear hormone receptors [61]. What’s
more, p68 was found to be over-expressed in prostate
cancers, to interact with AR, enhance AR transcriptional
activity in luciferase reporter assays and to be recruited
to the AR-responsive prostate specific antigen (PSA)
promoter in the presence of RNAP II [62]. P68 siRNA
knockdown also resulted in decreased expression of AR-
responsive genes [10]. The observation demonstrate that
p68 is a co-activator of the AR, independent of the p68
helicase function and c-Abl activity. So the abnormal
regulation of p68 may affect the function of AR influen-
cing the development and progression of prostate cancer.

P53
P53 is now well established as an anti-oncogene, and p68
was found to be recruited to p53-responsive promoters in
response to DNA damage, and also to the p21 promoter
facilitating transcriptional initiation [11]. This would up-
regulate the level of p21. Meanwhile, the acceleration
of p21 results in more forming of cyclin D1/Cdk2 com-
plexes, which can phosphorylate the retinoblastoma
protein (pRb) [63]. Rb works as a regulator of the cell
cycle, controlling passage through G1 phase [64]. And
the unphosphorylated Rb would combine with the E2F
transcription factors to block cell cycle [65]. It is con-
sistent with previous work, which showed that p68 is
over-expressed in cancer cells. Taken together, it seems
that the p68 could regulate the cancer cell cycle.
P53 has multiple splicing variants. Δ133p53 is one of

the protein isoforms from mRNA variants, while it turns
to negatively regulate the apoptosis mediated by p53 [66].
Experiments in breast cancer indicated that the expression
of Δ133p53 is up-regulated in p53-independent manner
with p68 siRNA knockdown, and could inhibit the ability
of p68 to coactivate p53-dependent induction to the cell
cycle inhibitor p21 [67]. Recently, an additional research
showed that p68 plays an essential role in recruitment of
p53 to the p21 promoter, and selection of p53 function
[68]. Taken together, we can construct a dynamic inter-
action among p68, p53 and p21. As we mentioned before,
p53 could recruit to the Drosha complex through the
association with p68 and facilitates the processing of pri-
miRNAs to precursor miRNAs. And another study further
shows that the recruitment forms through a carboxy-
terminal half of the central DNA-binding domain [31].
Based on previous work, we can suppose that p68 may
contribute to the carcinogenesis by interact with p53,
Drosha and other factors in the procedure.

β-catenin
β-catenin is a protein that can modulate both cell adhesion
and gene transcription, and p68 may regulate the ability of
β-catenin in different ways. It has been reported that
p68 can form complex directly with β-catenin through
its helicase domain and facilitate the transcription
activation of β-catenin [46]. Besides, the phosphorylated
p68 could regulate the transcription of β-catenin down-
stream effectors including c-Myc, cyclin D1 [69]. It also
has been shown that the Wnt binds to receptors and
co-receptors initiating the translocation of destruction
complex, and nuclear localization of β-catenin [70]. And
p68, cooperated with mrhl RNA, negatively regulated the
Wnt signaling [71]. So it suggested that p68 plays an
important role in the stabilization of β-catenin level.
Recently, several work has been reported in the field of
the p68-β-catenin signaling. For example, the platelet
derived growth factor (PDGF), which is important for the
development of prostate cancer, was reported to activate
p68-β-catenin signaling in PCa cells [72]. Experiments
also indicated that the p68 is positively correlated with
endogenous β-catenin and modulate PDGF-BB induction
of Mcl-1 (myeloid cell leukemia-1) expression [73].
Smad protein is an important signal transducer of

TGF-beta, and the TGF-beta signaling can promote some
specific miRNA maturation through the binding of Smad
protein to the Drosha complex component p68 [32,74].
Recently, it has been discovered that the mesenchymal
to epithelial transition(MET) can be induced in response
to TGF-beta [75]. The mechanism is based on the inter-
action of some mesenchymal activators, including β-
catenin, and the Smad protein to form an EMT promoting
Smad complexes (EPSC) in tumors [76]. Consistent with
the outcome, there were some other works demonstrated
that the β-catenin-Smad complex could signal as a regula-
tor to TGF-beta induced EMT [77,78].

Post-translational modification of p68 in cancer
development and progression
Experimental data have indicated that the protein kinase
C(PKC) can phosphorylate p68 and the latter binds to
calmodulin in a Ca2 + − dependent manner [79]. Now it
is clearly that the p68 RNA helicase is a member of the
IQ domain-containing family and the C-terminal domain
of p68 is a substrate for PKC in the absence of RNA.
But both phosphorylation and calmodulin binding are
suppressors for p68 ATPase activity. And documents
further showed that the C-terminal domain of p68 RNA
helicase binds ssRNA [80]. In addition to the conserved
motifs, there was an RGS–RGG motif identified as an
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RNA–binding domain of p68 [81]. Moreover, different
phosphorylated residues may cause different decision on
effects [82]. In conclusion, the main emphasis is placed on
the topic on high correlation between phosphorylation
of p68 and cancer development and progression, and
more research is still required for the future diagnosis
and therapy for cancer.
Post-translational modifications can extremely increase

the diversity of protein in the progress of protein biosyn-
thesis. Ubiquitylation, sumoylation and acetylation are
also dominating modes for p68 modifications. Go on
with the previous work, the over-accumulated p68 in
variant cancers is then detected to be poly-ubiquitylated,
and the expression distinguish between normal and
tumor cells indicate that the ubiquitylation of p68 can
be important for the tumorgenesis [47]. Meanwhile,
sumoylation of p68/p72 is also upregulated. The sumoy-
lation is considered as a multiple-effect modification. It
is reported that SUMO (small ubiquitin-related modifier)
modification can increase the stability of p68 and promote
the binding to the acetyltransferase p300, furthermore,
to regulate the activity of p53 and estrogen receptor
[83]. Besides, SUMO modification is on a relative fixed
site (K53) of p68, and can in bi-direction regulate its
transcriptional repression activity and the ability as a
co-activator of p53 [84]. In addition, both p68 and p72
can bind to the acetyltransferase p300, and the acetylation
mediated by p300 resulted in aberrant activation of p68,
promoting the interaction with HDACs [83]. We can
Figure 2 The mesenchymal to epithelial transition(MET) and p68. (ora
destruction complex to nucleus, blocking the transcription of TCF gene, and r
(green line) The phosphorylated p68 deconstructed the interaction between
promoter of E-cadherin and blocking its transcription. (blue line) The destruct
associated with TCF, Snail1, β-catenin and some other transcriptional factors t
conclude that the regulation and modification of p68
may be a way to mediate the tumor development.

Emerging roles of p68 in cancer development and
progression
p68 is a promising research target for cancer, and the
topic is investigated quite intensively in recent years. In
addition to distinction in the expression of p68 between
cancer and matched normal tissues, the expression level
also varies with cancer cells in different states or degrees.
For example, in cutaneous squamous cell carcinoma, the
cancer tissue with metastasis has significantly higher than
cases without metastasis [44]. Another documentation is
the progressive increase of p68 expression level during the
transition from polyp to adenoma, and then to adenocar-
cinoma in colon [46]. These details suggested that the
RNA helicase p68 may play a vital role in regulating
cancer cell grade and invasive potential.
The phosphorylation of p68 on Y593 contributes to

the dissociation of β-catenin from the Axin destruction
complex and translocation to nucleus, promoting EMT,
which is always considered as an initiation of invasion and
metastasis [85,86]. Further, the remodeling of cytoskeleton
to form lamellipodia and filopodia is an essential step
in migration progress. Experiment demonstrated that
p68 could promote the deformation by cooperating with
calmodulin, increasing the motility of cells [87]. Another
previous experimental data also indicated that DDX5 plays
a role in reorganization of actin cytoskeleton in breast
nge line) The phosphorylated p68 dissociated β-catenin from Axin
egulating EMT related genes such as Snail2, fibronectin and vimentin.
HDAC and Snail1 promoter, facilitating the binding of HDAC to the
ion promoted the transcription of Snail1 gene. The Smad protein,
o form EPSC in tumors.
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cancer [48]. Then we can figure out that p68 is involved
in preparing fundamental conformational change for
migration cells. p68 could also regulate invasiveness of
cancer cells by interacting with other factors, including
COUP-TFI in breast cancer [88] and a specific RNA
aptamer in colon cancer [89]. A class of anticancer drugs
histone deacetylase inhibitors (HDACIs), was found to
have the ability to induce tumor cell EMT via the over-
accumulation of Snail [90]. Recent study showed that
phosphorylation of p68 at Y593 facilitate the deconstruc-
tion between histone deacetylase (HDAC)1 and Snail1
promoter, initiating the transcription of Snail1 gene
[91]. Then the upregulated Snail1 could block the tran-
scription of E-cadherin by recruiting HDAC to the tran-
scriptional promoter [92]. Combined with the observation
on β-catenin, we can figure that phosphorylation of p68
regulate cancer development and metastasis potential
(Figure 2).
Drug resistance is another important feature of cancer

cells [93]. It also has been reported that RNA helicase
p68 is phosphorylated at tyrosine residue in cancer
cells, compared with matched normal tissue, and the
treatment of TNF-alpha and TRAIL (Tumor necrosis
factor-related apoptosis-inducing ligand, an anticancer
agent) would weaken the effect of phosphorylation [94].
In succession, the team demonstrated that the phos-
phorylation of p68 on some specific residues mediates
the effect of apoptosis agents [95]. For example, a double
tyrosine phosphorylation of p68 at Y593 and Y595 in-
duced by PDGF can extenuate resistance to apoptosis
induced by TRAIL [96]. Therefore the phosphorylated
p68 may have a certain protective effect on the activities
of cancer cells.
With so many emerging implications of RNA helicase

p68 in tumorgenesis and progression, we can demonstrate
that p68 could be a potential target for cancer therapy.

Conclusion
As we have known, the modulation between p68 and the
transcription factors may be involved with cancer metasta-
sis potential and anticancer drug resistance. Unfortunately,
although a lot of effort has been spent on the problem,
the mechanism is still not so clear. In conclusion, we
emphasize the possible oncogenic function of p68. More-
over, the niche-targeting regulation of p68 activation and
expression may contribute to the possibility of blocking
tumorgenesis and reinforcing the sensitivity of cancer cells
to anticancer agents. So, further investigation of the mech-
anism of p68 promoting cancer development is highly
significant for future fundamental and clinical medicine.
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