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ERRγ target genes are poor prognostic factors in
Tamoxifen-treated breast cancer
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Abstract

Background: One-third of estrogen (ER+) and/or progesterone receptor-positive (PGR+) breast tumors treated with
Tamoxifen (TAM) do not respond to initial treatment, and the remaining 70% are at risk to relapse in the future.
Estrogen-related receptor gamma (ESRRG, ERRγ) is an orphan nuclear receptor with broad, structural similarities to
classical ER that is widely implicated in the transcriptional regulation of energy homeostasis. We have previously
demonstrated that ERRγ induces resistance to TAM in ER+ breast cancer models, and that the receptor’s transcriptional
activity is modified by activation of the ERK/MAPK pathway. We hypothesize that hyper-activation or over-expression of
ERRγ induces a pro-survival transcriptional program that impairs the ability of TAM to inhibit the growth of ER+ breast
cancer. The goal of the present study is to determine whether ERRγ target genes are associated with reduced distant
metastasis-free survival (DMFS) in ER+ breast cancer treated with TAM.

Methods: Raw gene expression data was obtained from 3 publicly available breast cancer clinical studies of women
with ER+ breast cancer who received TAM as their sole endocrine therapy. ERRγ target genes were selected from
2 studies that published validated chromatin immunoprecipitation (ChIP) analyses of ERRγ promoter occupancy.
Kaplan-Meier estimation was used to determine the association of ERRγ target genes with DMFS, and selected
genes were validated in ER+, MCF7 breast cancer cells that express exogenous ERRγ.
Results: Thirty-seven validated receptor target genes were statistically significantly altered in women who experienced
a DM within 5 years, and could classify several independent studies into poor vs. good DMFS. Two genes (EEF1A2 and
PPIF) could similarly separate ER+, TAM-treated breast tumors by DMFS, and their protein levels were measured in an
ER+ breast cancer cell line model with exogenous ERRγ. Finally, expression of ERRγ and these two target genes are
elevated in models of ER+ breast cancer with hyperactivation of ERK/MAPK.

Conclusions: ERRγ signaling is associated with poor DMFS in ER+, TAM-treated breast cancer, and ESRRG, EEF1A2,
and PPIF comprise a 3-gene signaling node that may contribute to TAM resistance in the context of an active
ERK/MAPK pathway.
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Background
With an estimated 1.38 million new cases diagnosed an-
nually, breast cancer is a global public health challenge
[1]. Endocrine therapy administered as an antiestrogen,
such as Tamoxifen (TAM) or Fulvestrant, or an aroma-
tase inhibitor (AI), such as Letrozole, Anastrozole, or
Exemestane, is the least toxic and most effective means by
which to manage hormone-dependent breast cancers.
TAM increases overall survival from invasive breast cancer,
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reduces the incidence of estrogen receptor-α positive (ER
+) disease in high-risk women, and can reduce the rate of
postmenopausal osteoporotic bone loss [2,3]. It remains
the standard of care for pre-menopausal breast cancer.
When compared to adjuvant TAM in post-menopausal
women, AIs alone or in sequence with TAM show signifi-
cantly improved disease-free survival [4,5], while only
letrozole provides a corresponding improvement in overall
survival [6]. Thus, the optimal endocrine therapy regi-
men – and appropriate length of treatment - remains
controversial for post-menopausal women.
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Whichever way these controversies are resolved, both
AIs and TAM will remain as key modalities in the man-
agement of ER+ breast cancers. Unfortunately, the in-
ability of endocrine therapies to cure many women with
ER+ disease will also remain. For example, one-third of
ER+/progesterone receptor-positive (PGR+) breast tu-
mors treated with TAM do not respond to initial treat-
ment, and the remaining 70% are at risk to relapse in
the future [7,8]. The development of resistance to AIs is
also clearly documented [9-12]. A number of mecha-
nisms have been proposed to regulate antiestrogen or
TAM resistance in ER+ breast cancer, including changes
in the expression or activity of genes and proteins that
regulate tumor cell survival [13,14]. These tend to fall
into 3 broad categories: genes that are (or can be) direct
transcriptional targets of ER (e.g. PGR, CCND1, MYC);
genes that are co-regulators which directly bind to ER or
act on ER to modify its function (e.g. AKT, MAPK,
AIB1, XBP1), and genes that can also act functionally
independent of the estrogen receptor (e.g. BCAR1,
BCAR3, IRF1). The identification of microRNA [15] and
long non-coding RNA [16] signatures with prognostic
power in ER+ breast cancers has further enhanced our
understanding of receptor-driven signaling.
Estrogen-related receptor gamma (ESRRG, ERRγ) is an

orphan nuclear receptor with broad, structural similar-
ities to classical ER that is widely implicated in the tran-
scriptional regulation of energy homeostasis [17]; in
breast cancer, ERRγ is preferentially expressed in ER+
disease [18]. We have previously published that a. ERRγ
is upregulated during the acquisition of Tamoxifen
(TAM) resistance by ER+ breast cancer cells and b. over-
expression of ERRγ is sufficient to induce TAM resist-
ance [19], and c. ERRγ’s transcriptional activity and
ability to induce TAM resistance is enhanced by activa-
tion of the ERK/MAPK pathway [20]. ERRγ overexpres-
sion also induces proliferation in ER+ breast cancer cells
in the presence or absence of estrogen [21], and cooper-
ates with cytoplasmic proline, glutamic acid and leucine
rich protein 1 (PELP1) to inhibit TAM-mediated death
in normal human mammary epithelial cells [22]. Inter-
estingly expression of ESRRG is also significantly associ-
ated with a reduction in pathologic complete response
(pCR) in locally advanced breast tumors treated with
chemotherapy [23]. Our central hypothesis is that hyper-
activation or over-expression of ERRγ induces a pro-
survival transcriptional program that impairs the ability
of TAM to inhibit the growth of ER+ breast cancer.
One of the barriers faced in addressing this hypothesis

is translating data from laboratory/cell line studies into
meaningful observations in breast cancer clinical data.
For example, in one clinical study we found that ERRγ
mRNA is significantly overexpressed in surgical (i.e. pre-
treatment) ER+ breast tumor specimens from women
who relapsed while receiving TAM [24], but this result is
either not observed or not statistically significant in sev-
eral other publicly available datasets of TAM-treated, ER
+ breast cancer patients. Chang et al. [25] reported simi-
lar challenges in correlating mRNA expression of family
member ERRα with poor outcome in breast cancer clin-
ical specimens, but successfully generated a reproducible
measure of ERRα activity in vivo by monitoring the
expression of receptor target genes. We therefore exam-
ined the expression of validated ERRγ target genes in
publicly available ER+ breast cancer datasets as a proxy for
receptor activity rather than expression, which we propose
is similarly a more relevant measure of in vivo ERRγ func-
tion in endocrine therapy response and resistance.

Methods
ERRγ target gene selection
Genes were selected from two independent studies in
which chromatin immunoprecipitation (ChIP) for ERRγ
was performed, and target genes were subsequently vali-
dated. Dufour et al. [26] performed high-throughput
ChIP-on-chip on wild type adult mouse heart tissues,
while Eichner et al. [27] analyzed ERRγ chromatin bind-
ing by conventional ChIP in BT-474 human breast can-
cer cells.

Clinical datasets, gene expression analyses and functional
annotation
Raw data from three publicly available datasets containing
ER+ breast tumor surgical specimens were downloaded
from Gene Expression Omnibus: Loi et al. GSE6532 and
GSE91915, [28]; Zhou et al. GSE7378, [29]; and Zhang,
GSE12093, [30]. Data processing pipelines in G-DOC [31]
were used to obtain lists of differentially expressed genes
(DEGs; fold change ≥1.5 and uncorrected p ≤ 0.05)
from all datasets as described in [32].

Cell culture, expression constructs, transfection, western
blot analysis, and cell line datasets
MCF7 cells were originally provided by Marvin Rich
(Karmanos Cancer Institute, Detroit, MI, USA), and cul-
tured in improved minimal essential media (IMEM) sup-
plemented with 5% fetal bovine serum (FBS). The pSG5
plasmid vector with cDNA insert encoding wild type,
hemagglutinin (HA)-tagged murine ERRγ (100% identi-
cal to human ERRγ) has been described previously
[19,20,33]. MCF7 cells were transiently transfected with
HA-ERRγ or pSG5 empty vector for 27 h using JetPrime
(VWR, Radnor, PA, USA) prior to whole cell lysis, poly-
acrylamide gel electrophoresis, protein transfer to nitrocel-
lulose membranes, immunoblotting, and chemiluminescent
detection performed as described in [20,34]. Primary
antibodies used were: anti-HA.11 clone 16B12 at 1:500
(Covance, Princeton, NJ, USA); anti-EEF1A2 SAB2100650



Figure 1 Selected clinical studies have similar proportions of distant
metastasis-free survival (DMFS). Survival data were plotted using the
Kaplan-Meier estimator, which show non-significant differences in
DMFS data amongst the 3 studies. Log-rank p = 0.09.

Table 1 Sources of ERRγ target genes

Study [Reference] Study type Species Tissue # ERRγ targets

Dufour et al. [26] ChIP-on-
chip

mouse adult heart 231 validated

Eichner et al. [27] Standard
ChIP

human BT-474 human
breast cancer
cell line

15 validated
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at 1:500 (Sigma, St. Louis, MO, USA); and anti-PPIF
SAB4500035 at 1:500 (Sigma). Membranes were reprobed
for β-actin (Sigma, 1:10,000) as a loading control. NIH
ImageJ (http://rsbweb.nih.gov/ij/) was used for densito-
metric analysis of ERRγ (HA), EEF1A2, and PPIF expres-
sion relative to β-actin. Levels of ESRRG, EEF1A2, and
PPIF mRNA in MCF7 and BT-474 cell line samples pub-
lished in [35,36] were obtained from ONCOMINE [37].

Statistical analysis
The KM Plotter Tool (http://kmplot.com/analysis/) [38]
was used to calculate hazard ratios, confidence intervals,
and log-rank P values for the aggregated breast cancer
clinical studies. All other statistical analyses were per-
formed in GraphPad Prism 5.0c for Mac (GraphPad
Software, Inc., La Jolla, CA, USA) using the Mantel-Cox
log-rank test, χ2 test, or Mann Whitney rank sum test, as
indicated. Statistical significance is defined as P ≤ 0.05.

Results and discussion
Identification of ERRγ target genes
ERRγ can stimulate transcription from multiple DNA
response elements: the palindromic estrogen response
element (ERE), a half site known as the estrogen-related
receptor response element (ERRE) which it shares with
other orphan nuclear receptors (e.g. steroidogenic factor
1 response element, SF1RE), and indirectly through
either the activator protein 1 (AP1) (reviewed in [24]) or
the specificity protein 1 (SP1) response element [39]. In
addition, Deblois et al. identified the hybrid element
ERRE/ERE as the major binding site for another member
of the estrogen-related receptor family (ERRα) in breast
cancer [40], which we have recently demonstrated can
also be regulated by ERRγ [20]. However, the most com-
prehensive collection of validated ERRγ transcriptional
targets comes from two independent, published studies in
which high-throughput chromatin immunoprecipitation
Table 2 Breast cancer datasets

Study [Reference] Study type Sample type

Loi et al. [28] Microarray Surgical spec

Loi et al. [28] Microarray Surgical spec

Zhou et al. [29] Microarray Surgical spec

Zhang et al. [30] Microarray Surgical spec
(ChIP-on-chip), or standard ChIP, data were obtained for
ERRγ binding to the ERRE half site in promoters/up-
stream regulatory regions (Table 1). Gene IDs identified in
[26] were converted from Mus musculus to Homo sapiens
nomenclature using Pathway Studio, then merged with
those from [27].
We used the Georgetown Database of Cancer (G-

DOC, [31]) to examine the expression of these ERRγ tar-
get genes in TAM-resistant and –responsive human
breast tumors from three independent clinical datasets
(Table 2). Data are derived from ER+ breast tumor spec-
imens collected at the time of surgery, prior to initiation
of TAM therapy. We selected these three datasets be-
cause they a) are primarily comprised of ER+ breast can-
cer patients who received TAM as their only systemic
therapy (with the exception of 18 patients in Zhou), b)
utilize compatible expression array platforms, and c)
have sufficient length of follow-up to perform a mean-
ingful comparison between those patients with docu-
mented distant metastasis ≤5 years (Event, 5yrE) and
those with no distant metastasis ≤5 years (Censored,
5yrC). All 3 studies have similar overall distant metasta-
sis (DM)-free survival proportions (Figure 1). We also,
where available, examined 3 clinical parameters that
could introduce bias into our results, because each has
independently been shown to be a prognostic factor for
DM [41]: age, lymph node status, and primary tumor size.
While primary tumor size is not significantly different
between groups, patients in the 5yrE group (documented
Array platform(s) GSE accession #

imen U133A, B, Plus 2.0 GSE6532

imen U133A, B, Plus 2.0 GSE9195

imen U133A GSE7378

imen U133A GSE12093

http://rsbweb.nih.gov/ij/
http://kmplot.com/analysis/


Table 3 37 DEGs significantly associated with distant
metastasis (DM) in ER+, TAM-treated patients

Analysis: DMFS ≤5 years Censor vs. Event

Treatment: TAM TAM TAM+

Patient #: 95 vs. 68 3 vs. 11 17 vs 7

Gene Loi Zhang Zhou

ACADM up

AHSA1 up up

ARIH2 up

ATP5C1 up

ATP5F1 up

CENPT up

CSMD1 down

DLST up

EEF1A2 up

ETFB up

GTPBP4 up

HSPA9 up

IDH1 up

MED23 up

MYCN down

NADK up up

NDUFA8 up

NDUFB5 up

NDUFS1 up

NDUFS7 up

ORMDL1 up

PAN2 up

PCMTD2 up

PPIF up

PTCD3 up

PTPN18 down

RAB11B down

RAB21 up up

RARA down

SDHD up

SLC35E2 up

SPTLC2 up

SUCLA2 up

TIMM17A up

TRRAP up

TSPAN8 up

UNC50 up

Legend: italicized, also present in prognostic list, but opposite regulation; bold,
present in >1 dataset.
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DM) are significantly younger (Mann Whitney rank sum
test, p < 0.01) and more likely to be lymph node-positive
(χ2, p < 0.0001) than those in the 5yrC group (no docu-
mented DM within 5 years).

ERRγ target genes in TAM-resistant breast tumors
We next identified statistically significant, differentially
expressed genes (DEGs; fold change ≥1.5 and uncor-
rected p ≤ 0.05) in the 5yrE group for each of the stud-
ies, and overlaid these lists with those of the validated
ERRγ targets. Then, to ensure that these ERRγ targets
were predictive of TAM-resistant distant metastasis ra-
ther than simply poor prognostic factors, we excluded
from the list genes that showed the same regulation
(direction of fold change) in an independent dataset of
ER+, lymph node-negative breast cancer patients from
(GSE7390, [42]) who received no systemic therapy. This
resulted in a final list of 37 DEGs (32 up-regulated, 5
down-regulated; Table 3). Using the KM Plotter Tool
(http://kmplot.com/analysis/) [38], we showed that these
37 DEGs (alone or with the addition of ESRRG) serve as
a molecular signature that is significantly associated with
poor distant metastasis-free survival (DMFS) in 504
women with ER+ breast cancer treated with TAM
monotherapy (Figure 2A, HR = 1.75, p = 0.0065). By
contrast, these 37 DEGs show the opposite association
(i.e. with improved DMFS) in 53 women with ER- breast
cancer treated with chemotherapy (Figure 2B, HR = 0.35,
p = 0.024).

ERRγ target gene functional annotation and validation
Using Gene Set Enrichment Analysis tools in Pathway
Studio, the Molecular Signatures Database (MSigDB,
[43]), and WebGestalt [44], we examined the ERRγ gene
signature for commonalities in Gene Ontology and func-
tional annotations. Given that ERRγ and its family mem-
bers promote mitochondrial biogenesis and control the
transcription of nearly all essential enzymes of the oxida-
tive phosphorylation pathway [17], it is not surprising
that many genes associated with respiratory oxidative
phosphorylation (p = 0.00024) and the electron trans-
port chain (p = 2.18E-13) are significantly overrepresented.
However, other functional categories highly relevant to the
TAM-resistant phenotype are also enriched, including
apoptosis (p = 0.027), protein folding (p = 0.0023) and
mitochondrial protein transport (p = 5.88E-05). Two novel
and particularly interesting ERRγ target genes in this re-
gard are eukaryotic elongation factor 1A2 (EEF1A2), a pu-
tative oncogene and elongation factor that delivers tRNAs
to active ribosomes, and peptidylprolyl isomerase factor F
(PPIF, more commonly known as Cyclophilin D), a key
component of the mitochondrial protein folding machin-
ery and the inner membrane permeability transition pore.
EEF1A2 strongly promotes cancer cell proliferation and

http://kmplot.com/analysis/


Figure 2 ERRγ and its target genes predict poor DMFS in ER+, but not ER-, breast cancer. Gene symbols for 35 of the 37 ERR target DEGs (2 were
not annotated) were entered into KM Plotter and used to classify DMFS data from women with ER+, TAM-treated breast cancer (A, n = 504, HR =
1.75, log-rank p = 0.006) or ER-, chemotherapy-treated breast cancer (B, n = 53, HR = 0.35, log-rank p = 0.024).
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resistance to apoptosis in several malignancies [45-47].
The role of PPIF in apoptosis is less clear; many studies
describe a pro-death role for PPIF and the mitochondrial
permeability transition pore in general, while others [48]
show that PPIF can suppress apoptosis induced by ex-
ogenous stimuli such as TNF, UV radiation, or arsenic tri-
oxide, possibly through negative regulatory interactions
with Bcl-2 [49,50]. In addition, a three-gene signature
comprised of ERRγ, EEF1A2, and PPIF alone is signifi-
cantly associated with poor distant metastasis-free survival
(DMFS) in the same 504 women with ER+ breast cancer
who received Tamoxifen monotherapy (Figure 3A, HR =
1.57, p = 0.022). To validate EEF1A2 and PPIF as target
genes of ERRγ in ER+ breast cancer, we measured their
Figure 3 Predictive value and expression of ERRγ target genes EEF1A2 and
and PPIF predicts poor DMFS in ER+, TAM-treated breast cancer using KM
and PPIF protein in MCF7 cells transiently expressing exogenous hemagglu
expression of EEF1A2 (1.57) and PPIF (1.07) in ERRγ-transfected cells vs. emp
protein expression in MCF7 cells transiently transfected
with ERRγ, which we [20] and others [21] have shown
induces Tamoxifen resistance and estrogen-independent
growth, respectively (Figure 3B). While PPIF is not in-
duced, EEF1A2 protein is ~1.5-fold increased in cells trans-
fected with ERRγ relative to the β-actin loading control.
We have recently shown that regulation of ERRγ pro-

tein by ERK/MAPK enhances the receptor’s transcrip-
tional activity and is required for its ability to induce
Tamoxifen resistance in ER+ breast cancer cells [20,51].
However, the relationship between ERK/MAPK and
either ERRγ or EEF1A2 at the mRNA level has not been
characterized. We therefore examined their message
levels in gene expression microarray data from ER+ MCF7
PPIF in ER+ breast cancer. A, The 3-gene signature of ESRRG, EEF1A2,
Plotter (n = 504, HR = 1.57, log-rank p = 0.022). B, Expression of EEF1A2
tinin (HA-) tagged ERRγ. β-actin serves as the loading control. Relative
ty vector control (1.0) was analyzed using NIH Image J.



Figure 4 Expression of ESRRG, EEF1A2, and PPIF correlates with ERK/MAPK activation status in ER+ breast cancer cells. Gene expression data from
Rae et al. obtained from ONCOMINE were analyzed for ESRRG (A), EEF1A2 (B), and PPIF (C) in n = 3 replicates per cell line. Mann Whitney rank-sum
p < 0.05 (*).
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and BT474 breast cancer cells [35], the latter well known
for overexpression of HER2 and hyperactivation of the
ERK/MAPK pathway. Expression of ESRRG (Figure 4A)
and EEF1A2 (Figure 4B), but not PPIF (Figure 4C), is sig-
nificantly higher in BT474 cells. Interestingly in a second
dataset [36], EEF1A2 expression is markedly and signifi-
cantly induced in ER+ MCF7 breast cancer cells in which
either MEK (4.01-fold increase, p = 0.027) or HER2 (3.34-
fold increase, p = 0.036) has been exogenously expressed
vs. the empty vector control. PPIF is also modestly in-
duced (MEK: 1.38-fold increase, p = 0.01; HER2: 1.27-fold
increase, p = 0.007).

Conclusions
The goal of the present study was to determine whether
ERRγ target genes are associated with reduced DMFS in
ER+ breast cancer treated with Tamoxifen. Our findings
suggest that i. ERRγ signaling is associated with poor
DMFS in ER+, TAM-treated breast cancer, and ii.
ESRRG, EEF1A2, and PPIF comprise a 3-gene signaling
node that may contribute to Tamoxifen resistance in the
context of an active ERK/MAPK pathway.
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