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Tumor progression locus 2 ablation
suppressed hepatocellular carcinoma
development by inhibiting hepatic
inflammation and steatosis in mice
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Abstract

Background: Tumor progression locus 2 (TPL2), a serine-threonine kinase, functions as a critical regulator of
inflammatory pathways and mediates oncogenic events. The potential role of Tpl2 in nonalcoholic fatty liver
disease (NAFLD) associated hepatocellular carcinoma (HCC) development remains unknown.

Methods: Both wild-type and Tpl2 knockout male mice were initiated by a hepatic carcinogen (diethylnitrosamine, i.p.
with a single dose of 25 mg.kg−1)at 2 weeks of age, and then were given the high carbohydrate diet feeding to induce
hepatic steatosis, inflammation, adenoma and HCC for 24 weeks.

Results: Tpl2 knockout mice had significantly lower incidences of liver tumor and developed hepatocellular adenoma
only, which is contrast to wild-type mice where they all developed HCC. Tpl2 knockout mice had significantly down-
regulated phosphorylation of JNK and ERK, and levels of mRNA expression of pro-inflammatory cytokines (Il-1β, Il-18,
Mcp-1 and Nalp3), which correlated with the reduced incidence and number of hepatic inflammatory foci. Furthermore,
Tpl2 ablation resulted in decreased hepatic steatosis and expression of de novo lipogenesis related markers (ACC, SCD1,
SREBP1C and AKT phosphorylation), as well as reduction of endoplasmic reticulum stress biomarkers PERK and eIF-2a.

Conclusion: The study revealed for the first time that Tpl2 plays a significant role in promoting HCC development by its
pro-inflammatory effect, which suggested that Tpl2 could be a molecular target for HCC prevention.
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Background
Hepatocellular carcinoma (HCC) is the sixth most
prevalent human malignancy in the world and the third
leading cause of cancer-related mortality [1]. Relative
5-year survival rate of HCC is only 15 %, which empha-
sizes the importance of primary prevention of HCC.
Chronic infection by hepatitis B and hepatitis C virus,
exposure to aflatoxin, alcoholic injury and genetic dis-
orders have proven to play a critical role in the devel-
opment of HCC [2], however, the etiology remains
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unknown in almost 50 % of HCC patients. Recent stud-
ies suggest that nonalcoholic fatty liver disease
(NAFLD) is associated with an increased risk of HCC
[3, 4], but it remains unclear whether NAFLD is a
causative factor for HCC [5].
Steatosis is the initial stage of NAFLD, which can pro-

gress into more pathological stages including nonalcoholic
steatohepatitis (NASH), fibrosis and cirrhosis, with the re-
sult of the increased risk for HCC development. Previous
studies had indicated the significant contribution of NASH
to HCC development, where pro-inflammatory cytokine
and chemokines favors malignant transformation of hepa-
tocytes by providing a tumor microenvironment [6, 7]. In-
flammatory cascades through interactions of numerous
signaling pathways progressively stimulated hepatocyte
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proliferation and apoptosis [8]. However, the potential
causal relationships among inflammation, steatosis and
HCC development need more supporting evidence.
Tumor progression locus 2 (TPL2), a serine-threonine

kinase, functions as a critical regulator of inflammatory
pathways and mediates oncogenic events by phosphoryl-
ating its downstream targets extracellular signal regu-
lated kinases (ERKs), c-Jun N-terminal kinases (JNKs)
and P38 [9] and subsequently up-regulating the produc-
tion of tumor necrosis factor-α (TNF-α) and interleukin-
1β (IL-1β) [10]. The role of Tpl2 in acute and chronic
inflammatory disorders and the determination of cellular
death/survival ratios in the inflammatory microenviron-
ment had been well-documented [11]. Our previous
work demonstrated that whole-body ablation of Tpl2
attenuates high fat diet (HFD) induced hepatic inflam-
matory lesions compared to wild-type control mice, with
a concomitant significant reduction in hepatic inflam-
matory genes expression [12]. However, the potential
role of Tpl2 in tumorigenesis remains inconsistent
[11, 13]. Several reports supported its oncogenic role
in breast cancer [14], lymphoma [15] and prostate
cancer [16], while others had suggested an anti-
oncogenic activity in lung [17], colitis-associated
tumorigenesis [18] and skin tumorigenesis [19]. This
inconsistency could be attributed to the complexity of
Tpl2’s role in terms of specific organs, different stages
of carcinogenesis or the animal models used. How-
ever, there had no reports investigating the potential
contribution of Tpl2 to HCC development by using
Tpl2 knockout mouse model to date.
In the present study, we investigate the role of Tpl2

and its potential mechanisms in the development of
hepatic steatosis, inflammation and tumors including
HCC. Both wild-type and Tpl2 knockout male mice
were initiated with [diethylnitrosamine (DEN)] at 2
weeks of age, and 4 weeks later, both groups mice
were given the high carbohydrate diet (HCD) feeding
for 24 weeks to induce hepatic steatosis, inflammation
and HCC.

Methods
Animals, diet, carcinogen and study design
Tpl2 knockout mice were provided by Dr. Philip Tschilis
(Tufts University) and backcrossed into C57BL/6J mice
for >10 generations, as previously described [12, 20].
Genotype of animals was verified at weaning and again
before the animals were killed at the conclusion of the
experiment. Tpl2 mRNA expression was detected in
wild-type but not in Tpl2 knockout mice (data not
shown). All male C57BL/6J wild-type mice and Tpl2
knockout mice were injected i.p. with a single dose of 25
mg.kg−1 BW filter-sterilized, > 99.9 % purity DEN
(Sigma-Aldrich, St. Louis, MO) at 2 weeks after birth, as
previously described [21]. At 6 weeks of age, both wild-
type (n = 26) and Tpl2 knockout (n = 20) mice were
housed individually and fed a powdered, high carbohy-
drate, low fat diet [HCD, 12 % fat, 22 % protein, 66 %
carbohydrates based on total caloric content (Bio-Serv,
Flemington, NJ)] ad libitum for 24 weeks, as previously
described [22]. Mice were killed by terminal exsanguin-
ation under deep isoflurane anesthesia followed by vital
organ removal. All animal protocols and procedures
were conducted under the approval of the Institutional
Animal Care and Use Committee at the Jean Mayer
USDA Human Nutrition Research Center on Aging at
Tufts University. All animals received human care and
that study protocols comply with the institution's
guidelines.

Histopathology procedures and evaluation
Briefly, two investigators, blinded to the treatment
groups, identified/counted the liver tumors (tumor inci-
dence and multiplicity) on the surface of liver. The left
lobe of the mouse liver was fixed in 10 % buffered for-
malin solution (Thermo Fisher Scientific, Waltham
MA), processed and embedded in paraffin for serial sec-
tioning for pathological analysis. The remaining lobes of
the liver were divided into smaller portions, snap-frozen
in liquid nitrogen and stored at -80 °C.
Five-micrometer sections of liver tissue were stained

with hematoxylin (H) and eosin (E) (H&E) for histopath-
ologic examination. Two independent investigators,
blinded to treatment groups, examined the sections
under light microscopy and identified hepatic lesions
(including hyperplasia, hepatocellular adenoma and
HCC). Liver histopathology of non-tumor areas was
graded for steatosis magnitude (both macro- and mi-
cro- vesicular) and liver inflammation severity (inflam-
matory foci) as previously described [21]. Briefly, the
degree of steatosis was graded 0–3 [grading 0: <5 %
(normal), 1: 5 %-25 %, 2: 26 %-50 %, 3: >51 %] based on
the average percent of fat-accumulated hepatocytes per
field at 100 × magnification in 20 random fields. Inflam-
matory foci were evaluated by the number of inflamma-
tory cell clusters (mononuclear inflammatory cells) in
20 random fields at 100 ×magnification. The twenty fields
of view at 100 ×magnification represented 0.63 cm2 and
inflammatory foci counts were represented as the number
of foci per cm2. A ZEISS microscope with a PixeLINK USB
2.0 (PL-B623CU) digital Camera and PixeLINK μScope
Microscopy Software (Ottawa ON, Canada) was used for
image capture for all histological analyses.

RNA extraction and real time-PCR
RNA of liver tissue was isolated using TriPure Isolation
Reagent (Roche, NJ) according to the manufacturer’s in-
structions. cDNA was synthesized using M-MLV reverse
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transcriptase (Invitrogen, Grand Island, NY). Real-time
PCR reactions were carried out using SYBR green (Fast
Start Universal SYBR Green Master, Roche). Relative
changes in gene expression were determined using the
2-ΔΔCt method and normalized to the control of actin.

Western blot analysis
Hepatic whole cell lysate protein was extracted utilizing
previously described methods [23]. Protein concentrations
of the sample were assessed using the Bradford assay (Bio-
Rad, Hercules CA). The protein expression bands were
quantified using a densitometer (GS-710 calibrated im-
aging densitometer, Bio-Rad). The antibodies against
acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase 1
(SCD-1), total- and phosphor- AKT (p-AKT, t-AKT),
glucose regulated protein 78 (GRP78/Bip), total- and
phosphor- (Thr980) PERK (t-PERK, p-PERK), total- and
phosphor- (Ser51) eukaryotic translation initiation factor
2a (t-eIF2a, p-eIF2a), total- and phosphor- (Thr183/
Tyr185) JNK (p-JNK, t-JNK), total- and phosphor- ERK
(p-ERK, t-ERK) were all purchased from Cell Signaling
(Danvers, MA). The antibodies against sterol regulatory
element-binding protein-1c (SREBP-1c) and C/EBP ho-
mologues protein (CHOP) were purchased from Santa
Cruz Biotechnology (Dallas, TX).
Table 1 Study outcomes

Index Wild type group

Animal number (n) 26

Final body weight (g) 41.2 ± 3.2

Liver weight (g) 2.5 ± 0.8

Liver/body weights (%) 6.2 ± 2.4

Incidence of liver tumor (%) 100 % (26/26)

Liver tumor number/per animal 11 ± 6

Histopathology of hepatic lesion# n

Hyperplasia 26

Hepatocellular adenoma 26

Hepatocellular carcinoma 26

Incidence of inflammation foci (%) 65.4% (17/26)

Inflammation foci number (cm2) 2.2 ± 2.4

Hepatic steatosis (median) 2

Hepatic steatosis grading n

0 1

1 2

2 15

3 8
#Each animal has more than one type of lesions
Values are expressed as means ± SD. An Independent t-test was performed except
and Tpl2 KO mice, which is conducted by nonparametric test. For steatosis, 20 imag
twice to determine grade of steatosis (both macro- and micro-vesicular) by two blin
of the liver section occupied by fat vacuoles. Data are presented as median (gradin
between groups for ordinal variable (liver steatosis score)
For each given row, * indicates a significant difference between groups (P < 0.05)
Statistical analyses
Data are presented as mean ± standard deviation (SD)
for animal body weights, liver tumor numbers per ani-
mal and inflammatory foci, and nonparametric test
was performed except for the comparison of the final
body weights which was conducted using an inde-
pendent t-test. The incidence of hepatic lesions and
inflammation foci was compared by Chi-squares test.
Steatosis grading was presented as median (grading
range) and a non-parametric test was performed. Data
are presented as mean ± standard error of the mean
(SEM) for mRNA and protein levels, and t-test was
conducted. SPSS software was used for all statistical
analysis, and P < 0.05 indicated the significant differ-
ence when comparing between wild-type and Tpl2
knockout mice.

Results
Effect of Tpl2 ablation on body weight, liver weight and
hepatic tumorigenesis
Tpl2 knockout mice had significantly lower liver weight
and final body weight than those of wild-type control, al-
though there had no significant difference in the ratio of
liver weight/body weight between two groups (Table 1).
The tumor incidence on the surface of liver in Tpl2
Tpl2 knockout group

20

38.1 ± 5.9*

2.1 ± 0.3*

5.6 ± 1.1

75 % (15/20)*

10 ± 5

% n %

100 3 15*

100 12 60*

100 0 0*

20 % (4/20)*

0.6 ± 1.4*

1*

% n %

3.8 8 40

7.7 4 20

57.7 4 20

30.8 4 20

the comparison of incidence of liver tumor and inflammatory foci between WT
es at 100 ×magnification were captured for each section and blindly evaluated
ded investigators. The degree of steatosis was graded 0-3 based on the area
g range) and Nonparametric test was used to test for statistical significance
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knockout mice was significantly lower than wild-type
mice (75 % vs 100 % respectively, P < 0.05, Table 1). The
number of hepatic tumor had no statistical difference
between those two groups. The pathological analysis
demonstrated that all wild-type mice (26 out of total 26
mice) developed hyperplasia, hepatocellular adenoma
(Fig. 1c, 1d) and HCC (Fig. 1e, 1f ) after the 24-week
HCD feeding (Table 1). In contrast, the Tpl2 knockout
mice with positive tumor on the surface of the liver
(15 out of 20) developed only hyperplasia and hepato-
cellular adenoma, and no HCC detected (Table 1).

Tpl2 ablation decreased hepatic inflammatory responses
and suppressed the activation of JNK and ERK signaling
molecules
Hepatic inflammatory foci was detected in 65 % of the
wild-type mice but only in 20 % of the Tpl2 knockout
mice (P < 0.05; Table 1, Fig. 1b). Tpl2 knockout mice had
Fig. 1 Representative pathologic lesions in livers. Hepatic lesions were asse
inflammatory foci (Right); Middle Panel: Hepatocellular adenoma (low mag
x25 and x200)
significantly less hepatic inflammatory foci in contrast to
wild-type mice (0.6 vs 2.2, P < 0.05; Table 1), accompany-
ing with lower mRNA level of genes [Il-1β, interleukin-
18 (Il-18), monocyte chemotactic protein 1 (Mcp1),
NACHT, LRR and PYD domains-containing protein 3
(Nalp3) related to hepatic inflammation (Fig. 2a)]. In
addition, there was a significant decrease in the phos-
phorylation of JNK1/2 and ERK1/2, the downstream tar-
gets of TPL2-mediated inflammation signaling, in Tpl2
knockout mice as compared with wild-type mice
(Fig. 2b).

Tpl2 ablation alleviated hepatic steatosis, and down-
regulated protein and mRNA expression of molecules
involved in de novo lipogenesis (DNL) and endoplasmic
reticulum (ER) stress
Tpl2 knockout mice had lower steatosis grades com-
pared to wild-type mice (Table 1). Only one of 26 wild-
ssed by H&E staining. Upper panel: Normal (Left); Steatosis and
nification at x 25 and x100); Lower panel: HCC (low magnification at



Fig. 2 Effect of Tpl2 ablation on hepatic mRNA expression of genes related to inflammation (a) and protein phosphorylations of JNK1/2 and
ERK1/2 (b). a mRNA expression of genes related to inflammatory and macrophage markers in liver tissue in mice were detected by RT-PCR
analysis. Values are expressed as mean ± standard error of the mean (SEM). Actin was used as the control. b Proteins expression of JNK1/2 and
ERK1/2 from liver tissue of Tpl2 knockout or wild-type mice were detected by western blotting analysis. Values are mean ± standard error of the
mean (SEM). *Comparing with Tpl2 wild type group. Insets: Representative pictures of western blotting analysis
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type mice (3.8 %) had a steatosis grading of 0 compared
to 8 out of 20 Tpl2 knockout mice (40 %). In contrast,
15 out of 26 wild-type mice (57.7 %) developed steatosis
grade of 2 as compared to 4 out of 20 Tpl2 knockout
mice (20 %). Steatosis grades were statistically different
between the 2 groups (medians of 2 vs. 1 for wild-type
vs. Tpl2 knockout, respectively, P < 0.05, Table 1). In
contrast to wild-type mice, Tpl2 knockout mice had
significantly decreased proteins expression of ACC and
SCD1, two lipogenic proteins (Fig. 3a), and decreased
protein expression of SREBP1C (Fig. 3a), which is one of
the transcription factors that regulates expression of
genes involved in DNL. Meanwhile, we had detected the
decreased expression of phosphorylated AKT (Fig. 3b),
which is consistent with the decreased SREBP1c expres-
sion (Fig. 3a) and hepatic steatosis (Table 1) in Tpl2
knockout mice.
Increased ER stress can promote HCC development

and progression by activating the fibrogenic activity of
hepatic stellate cells with subsequent liver cirrhosis [24].
In the present study, Tpl2 knockout mice had decreased
hepatic PERK and eIF2α phosphorylation compared to
wild-type mice (Fig. 4), but Tpl2 ablation did not alter
the expression of the chaperon factor GRP78 that atten-
uates ER stress or PERK mediated pro-apoptotic protein
CHOP (data not shown).

Discussion
The role of hepatic inflammation induced by dietary fac-
tors, such as HCD and HFD, in promoting DEN-
initiated HCC development had been demonstrated in
previous studies [6, 22, 25]. The present study, for the
first time, revealed the significantly lower incidence of
hepatic tumor with no HCC development in HCD-fed,
Tpl2 knockout mice in contrast to wild-type mice which
all developed HCC. The significant difference in tumor
pathological types between Tpl2 knockout mice and
wild-type mice supported the critical role of Tpl2 as a
promoter in tumor progression from hepatic hepatocel-
lular adenoma to HCC. Furthermore, we provided a
strong evidence that the TPL2 ablation decreased hep-
atic inflammatory response and hepatic steatosis in Tpl2
knockout mice. These effects could inhibit the malignant
transformation of hepatocytes and the progression of



Fig. 3 Effect of Tpl2 ablation on hepatic protein expressions related
to lipid metabolism (a) and AKT phosphorylation (b). Proteins
expression related to lipogenesis (a) and AKT phosphorylation (b)
from liver tissue were determined utilizing Western blotting analysis.
Data are presented as mean ± standard error of the mean (SEM).
Actin was used as the control. *Comparing with Tpl2 wild type
group. Insets: Representative pictures of western blotting analysis

Fig. 4 Effect of Tpl2 ablation on hepatic ER stress biomarkers.
Proteins expression related to ER stress were examined by western
blotting analysis. Values are mean ± standard error of the mean
(SEM). Actin was used as the control. *Comparing with Tpl2 wild
type group. Insets: Representative pictures of western blotting analysis
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liver tumor by suppressing tumor-promoting micro-
environment and alleviating the malignant effects of
dys-regulation of lipid metabolism on HCC.
TPL2 mediated inflammatory response by phosphorylat-

ing ERK and JNK, two downstream targets of TPL2 signal-
ing pathway. In our study, the significant lower protein
levels of hepatic p-JNK and p-ERK in Tpl2 knock out mice
was consistent with the decreased hepatic inflammation,
which supported the role of activated ERK (p-ERK) and
JNK (p-JNK) in mediating the pro-inflammatory effect of
Tpl2. The decreased hepatic inflammation induced by
HCD feeding supported by the fewer hepatic inflammatory
foci detected and the lower levels of inflammatory cytokine
expression of Il-1β, Il-18, Mcp-1 and Nalp3 in Tpl2 knock-
out mice, as compared with wide type mice. This is also in
agreement with our previous study that Tpl2 knockout
mice fed HFD had lower levels of inflammation compared
to wild-type mice [12]. The present work further indicated
the role of Tpl2 in mediating hepatic inflammation and
HCC development induced by HCD.
Elevated hepatic DNL could promote hepatic steatosis

[26]. Interestingly, in our present study, Tpl2 ablation re-
sulted in a significant decrease of hepatic steatosis, and
the down-regulated protein expression of genes related
to DNL, such as ACC and SCD1, which was associated
the decreased protein expression of AKT phosphoryl-
ation and SREBP-1C.
Previous studies have suggested that AKT activation

is essential and sufficient to stimulate DNL and lipid
accumulation through the induction of SREBP-1C [27, 28].
Furthermore, the promoting role of dysregulated lipid me-
tabolism [29] and lipogenesis induced by activated AKT in
HCC development had been documented [30]. Thus, the
decrease in steatosis and AKT activation could further
explain the decreased HCC in Tpl2 knockout mice.
However, the exact role of Tpl2 in regulating the genes

related to DNL is unclear. It has been reported that the
regulation of lipid metabolism and hepatic steatosis me-
diated by the activation of JNK, the downstream target
of TPL2, is associated with activated ER stress, especially
in the PERK-eIF2a pathway [31]. Our observation of the
down-regulated expression of p-JNK, PERK and p-eIF2a
in Tpl2 knockout mice with the decreased hepatic stea-
tosis supported the involvement of ER stress in TPL2/
JNK mediated steatosis. Recent reports have demon-
strated that ER stress is closely associated with hepatic
lipogenesis with elevated DNL [26, 32, 33], and
population-based studies also support the positive regu-
lation of ER stress in hepatic lipogenesis [34, 35]. Since
newly synthesized unfolded proteins in the ER is a major
cause of activated ER stress and activated ER stress
could further induce lipogenesis, the vicious cycle could
result in the progression of steatosis [21]. In our present
study, the deceased expression of the lipogenic enzymes
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ACC, SCD1 and SREBP-1C could decrease the impact
of protein folding in the ER, and alleviate ER stress in
Tpl2 knockout mice. PERK-mediated signaling can also
promote apoptosis through inducing pro-apoptotic
CHOP expression, the no significant difference of the
protein level of CHOP suggested that HCD induced ex-
pression of PERK predominantly mediated lipogenesis,
but not pro-apoptotic effects in our present study. Fur-
thermore, the expression of GRP78, a chaperone protein
that attenuates ER stress [36], were not different be-
tween the Tpl2 knockout and wild-type mice, combining
with our observation that Tpl2 knockout mice had rela-
tively lower levels of PERK and p-eIF2a, the downstream
molecular of GRP78, than wild-type mice, we therefore
concluded that Tpl2 mediated hepatic lipogenesis by tar-
geting the axis of TPL2/JNK/ER stress/p-eIF2a, the
downstream of GRP78.
Our previous study had shown that HCD feeding

promoted DEN-initiated HCC development accom-
panying with the induction of the hepatic ER stress-
mediated PERK activation, which subsequently induced
the elevated expression of pro-survival markers AKT
and ERK1/2 [22]. Our present study demonstrated that
Tpl2 ablation decreased ER stress mediated PERK ex-
pression and eIF-2a activation, which might account
for the decreased tumor incidence. Since ER-dependent
cell fate is associated with the activation of JNK/ERK
[37], and the pro-survival role of activated ERK can be
mediated by AKT phosphorylation and the involvement
of PERK/eIF2a signaling [38–40], thus, in the present
study, the down-regulated activation of ERK, AKT and
PERK/eIF2a provided further explanation for the de-
creased incidence of HCC in Tpl2 knockout mice. The
exact relationship between TPL2 and ER stress requires
further investigation.
In summary, our present study demonstrated that

Tpl2 played significant role in DEN-initiated, NAFLD
associated HCC development by using Tpl2 knockout
mouse model. Both TPL2/ERK/JNK axis mediated
hepatic inflammation and TPL2/JNK/ERS/p-eIF2a axis
mediated hepatic lipogenesis synergistically promoted
HCC development. These data provided strong molecular
evidence supporting Tpl2 as a promoter in HCC develop-
ment. Interestingly, it has been shown that luteolin,
one of the common phytonutrients present in celery,
parsley, broccoli and herbal spices, could target Tpl2
and inhibit its activity in vitro [41]. Recent in vivo
studies also supported the preventive effects of luteo-
lin on DEN-initiated alcohol-promoted hepatic car-
cinogenesis in mice [42], and DEN-initiated HCC
development in rats [43]. Taking all into consider-
ation, dietary or pharmacologic interventions targeting
Tpl2 could be a potential direction for HCC preven-
tion in the future.
Conclusions
This is the first study to report that tumor progression
locus 2 (Tpl2) plays a significant role in promoting non-
alcoholic fatty liver disease and hepatocellular carcinoma
(HCC) development. Targeting Tpl2 might be a potential
direction for HCC prevention.
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