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Abstract

Background: We have previously shown that the eukaryotic elongation factor subunit 1B gamma (eEF1Bγ) interacts
with the RNA polymerase II (pol II) alpha-like subunit “C” (POLR2C), alone or complexed, in the pol II enzyme.
Moreover, we demonstrated that eEF1Bγ binds the promoter region and the 3’ UTR mRNA of the vimentin gene.
These events contribute to localize the vimentin transcript and consequentially its translation, promoting a proper
mitochondrial network.

Methods: With the intent of identifying additional transcripts that complex with the eEF1Bγ protein, we performed
a series of ribonucleoprotein immunoprecipitation (RIP) assays using a mitochondria-enriched heavy membrane
(HM) fraction.

Results: Among the eEF1Bγ complexed transcripts, we found the mRNA encoding the Che-1/AATF multifunctional
protein. As reported by other research groups, we found the tumor suppressor p53 transcript complexed with the
eEF1Bγ protein. Here, we show for the first time that eEF1Bγ binds not only Che-1 and p53 transcripts but also their
promoters. Remarkably, we demonstrate that both the Che-1 transcript and its translated product localize also to
the mitochondria and that eEF1Bγ depletion strongly perturbs the mitochondrial network and the correct localization
of Che-1. In a doxorubicin (Dox)-induced DNA damage assay we show that eEF1Bγ depletion significantly decreases
p53 protein accumulation and slightly impacts on Che-1 accumulation. Importantly, Che-1 and p53 proteins are
components of the DNA damage response machinery that maintains genome integrity and prevents tumorigenesis.

Conclusions: Our data support the notion that eEF1Bγ, besides its canonical role in translation, is an RNA-binding
protein and a key player in cellular stress responses. We suggest for eEF1Bγ a role as primordial transcription/translation
factor that links fundamental steps from transcription control to local translation.
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Background
The eukaryotic elongation factor 1 subunit gamma
(eEF1Bγ), also known as the pancreatic tumor-related
protein, is a part of the eEF1 multiprotein macromol-
ecular complex. The eEF1 holoenzyme plays a role in
protein synthesis by recruiting the aminoacyl-tRNAs to
the A site of the ribosome [1]. Using the current no-
menclature for higher eukaryotes, eEF1 consists of two
different sub-complexes: eEF1A and eEF1B. eEF1A

(formerly eEF1α) is a single polypeptide, whereas eEF1B is
a multimer of eEF1Bα (formerly eEF1β), eEF1Bδ (formerly
eEF1δ), and eEF1Bγ (formerly eEF1γ). There is evidence to
indicate that eEF1Bγ stimulates, but is not required for, the
catalytic activity of eEF1Bα [2, 3]. Indeed, eEF1Bγ appears
dispensable for translation, and its absence does not seem
to affect the global rate of translational elongation [4, 5].
Nevertheless, multiple non-canonical roles for eEF1Bγ are
emerging, some of which can be regulated by phosphoryl-
ation driven by several protein kinases [6]. A role of eEFB1γ
in the oxidative stress response pathways is justified by the
presence in the N terminus of a conserved sequence resem-
bling the glutathione-binding region of the theta class of
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glutathione S-transferase (GST) enzymes, which are in-
volved in the detoxification of oxygen radicals. The over-
expression of the eEF1Bγ gene product has been reported
in several tumors, including pancreatic, breast, colon, and
gastric tumors [7–11]. There is growing evidence that the
elongation step is also regulated in response to environ-
mental cues, supporting the idea that deregulation of trans-
lational control serves as a common mechanism by which
diverse oncogenic pathways promote cellular transform-
ation and tumor development [12, 13]. In a wider context,
aberrant proliferation of cancer cells is supported by adap-
tation to nutrient microenvironment mediated by a dy-
namic metabolic reprogramming [14]. Importantly, the
level of eEF1Bγ upregulation was shown to positively cor-
relate with tumor aggressiveness, presumably due to an al-
tered redox balance [2, 15, 16]. eEF1Bγ displays an affinity
for membrane and cytoskeleton elements, and it can prop-
erly anchor the different subunits of the EF1 complex to
the cytoskeleton [2, 6, 17]. Interestingly, Al-Maghrebi et al.
(2002) demonstrated the RNA-binding properties of
eEF1Bγ by showing for the first time its binding to
the 3’ UTR of vimentin mRNA [18], suggesting that
eEF1Bγ could exert many of its biological functions
through the binding of a pool of mRNAs. In addition, hu-
man eEF1Bγ was recently identified in a proteomic screen
as a member of the pre-mRNA 3’ end cleavage complex
[19]. In this context, eEF1Bγ could participate in the an-
choring and translation of a set of mRNAs that are prefer-
entially translated on cytoskeletal- or membrane-bound
ribosomes, such as vimentin mRNA. Vimentin has been
recently reported to have a regulatory role in supporting
the morphology, organization and function of mitochon-
dria [20, 21]. Importantly we previously demonstrated that
eEF1Bγ partially co-localizes with mitochondria [5]. Yoo’s
research group showed that hCdc73, a component of the
human RNA polymerase II-associated factor complex
(PAFc), binds and destabilizes p53 mRNA via eEF1Bγ, thus
acting as a binding platform [22]. They proposed that mis-
regulation of this interaction may lead to tumor progres-
sion. Liu et al. reported a new role for eEF1Bγ in the
activation of the NF-Kb signaling pathway, through target-
ing the mitochondrial antiviral adaptor protein (MAVS),
which bridges viral RNA recognition and downstream sig-
nal activation [23]. The Esposito research group showed
that the TNF receptor associated protein (TRAP1), a mito-
chondrial member of the HSP90 family, which is involved in
the protection of oxidative stress, selectively binds
eEF1Bγ, and, remarkably, both TRAP1 and eEF1Bγ are co-
upregulated in human colorectal cancers [24]. We have pre-
viously shown that eEF1Bγ interacts with the RNA polymer-
ase II (pol II) alpha-like subunit “C” (POLR2C), alone or
complexed, in pol II [25–27]. The POLR2C/POLR2J hetero-
dimer (also called RPB3/RPB11) is reminiscent of the α sub-
unit homodimer of bacterial RNA polymerase [28]. In

bacteria, the alpha subunit homodimer associates with σ fac-
tors that mediate promoter recognition [29–31]. Moreover,
eEF1Bγ has been described to bind the vimentin 3’ UTR,
and we have shown that it also binds the promoter region of
the vimentin gene [5, 18]. These results suggest that eEF1Bγ
has a role in shuttling/nursing vimentin mRNA (and pre-
sumably a specific set of mRNAs) from their gene locus to
their appropriate cellular compartment for translation. On
the basis of eEF1Bγ sub-cellular localization and its involve-
ment in RNA metabolism and mitochondria/cytoskeleton
organization, herein, using a mitochondria-enriched heavy
membrane (HM) fraction, we identified, by ribonucleopro-
tein complex immunoprecipitation (RIP assay), several novel
transcripts that complexed with eEF1Bγ. Among the isolated
mRNAs, we found genes involved in translation and in
mitochondrial/cytoskeleton metabolism. In particular, we
found the mRNA of the pol II binding protein Che-1/AATF,
and we confirmed the presence of the p53 transcript [22].
Che-1 plays a role in multiple fundamental processes, in-
cluding control of transcription, cell cycle regulation, DNA
damage responses and apoptosis [32–34]. Recent studies
suggest that Che-1 protein level dysregulation could be rele-
vant for the transformation process. Che-1 is found upregu-
lated in several leukemia cell lines and in patient with
chronic lymphocytic leukemia [33].
Loss or mutation of the oncosuppressor p53 is strongly

associated with the susceptibility to cancer and to malig-
nant tumor progression [35, 36]. Notably, Che-1 directly
binds p53 and is an important regulator of p53 activity [37].
Moreover, Che-1 enhances the oncogenic potential of the
mutated forms of the oncosuppressor p53 (mtp53) [34, 38].
Here, we show for the first time that eEF1Bγ binds to

the Che-1 and TP53 promoter regions. In addition, we
describe a novel mitochondrial localization for the Che-
1 protein, and we show that Che-1 needs mitochondrial
integrity for correct localization. We suggest a role for
eEF1Bγ as a primordial transcription/translation factor
that links the fundamental steps between transcription
control and local translation.

Methods
Constructs
The myc-tagged pCS2-eEF1Bγ (Myc-eEF1Bγ) (UniProtKB:
P26641) construct and its derived deletion mutants were
generated by PCR amplification or sub-cloning [5].
The MS2 system vectors were generously provided by

Dr. Robert Singer (Albert Einstein College of Medicine,
NY). The reporter transcript constructs (Report mRNAs)
were obtained by subcloning, in the pMIR-REPORT™-
Luciferase plasmid, the 12 repetitions of MS2 RNA stem
loop, amplified from pSL1180 vector, and the selected 3’
UTR, amplified from a cDNA library, using the appropri-
ate primers (Additional file 1, Table S1). All constructs
were DNA-sequenced by Eurofins Genomics.
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Cell culture and transfections
HeLa human cervical cancer cells and HCT116 human
colon carcinoma cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10 % foetal
bovine serum (Gibco-BRL, Grand Island, NY, USA). hSH-
SY5Y neuroblastoma cells were grown in DMEM supple-
mented with 15 % foetal bovine serum. All cell cultures
were maintained at 37 °C in a humidified atmosphere of
5 % CO2. Transient transfections were performed using
Lipofectamine or Lipofectamine 2000 reagents (Thermo
Fisher Scientific, Inc., Waltham, MA, USA), according to
the manufacturer’s instructions.
The siRNA-mediated interference experiments for eEF1Bγ

expression were performed by transfecting SMART pool-
specific or non-specific control pool double-stranded RNA
oligonucleotides (GE Healthcare Dharmacon Inc., Lafayette,
CO, USA) using Lipofectamine 2000.
Drug treatment with doxorubicin (1 μM) (Sigma-

Aldrich Co., St. Louis, MO, USA) was carried out by in-
cubating cells with the indicate concentration of the drug
in fresh media for either 1 h or 2 h before analysis.

Sub-cellular fractionation
The mitochondria-enriched heavy membrane (HM) frac-
tion were obtained as previously described [39]. Briefly,
HeLa cells (~6 × 106) were harvested in lysis buffer
(250 mM sucrose, 20 mM Hepes, pH 7.5, 10 mM KCl,
1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA) and complete
protease inhibitor (Roche, Indianapolis, IN, USA). The
cells were disrupted by twelve passages through a 25-gauge
needle. The HM fractions were obtained by centrifugation
at 10,000 g for 10 min. The HM pellet was resuspended in
high stringency buffer (50 mM Tris–HCl pH 7.4, 250 mM
NaCl, 5 mM EDTA, 10 % glycerol, 0.5 % Igepal-CA 630)
plus a proteinase inhibitor cocktail (Complete™, Roche, In-
dianapolis, IN, USA).
The mitochondrial fraction was purified from HeLa and

hSH-SY5Y cells (~2 × 107) using a Qproteome Mitochon-
dria Isolation Kit (Qiagen, Hilden, Germany) as previously
described [5].

Immunoblotting
Whole-cell lysate was obtained as previously described,
and sub-cellular fractionations (see above) were analyzed
by western blotting [5]. The publicly available software
ImageJ (National Institutes of Health, USA) was used to
quantify the densitometry of the immunoblot bands.

RIP assay
Mitochondria-enriched heavy membrane (HM) fraction
or whole-cell extracts were prepared as above in the
presence of RNase inhibitors (Thermo Fisher Scientific,
Inc., Waltham, MA, USA). For the immunoprecipitation
assay, the protein lysate was pre-cleared for 1 h at 4 °C

with Protein A/G-Agarose beads (Roche, Indianapolis,
IN, USA) and then immunoprecipitated overnight with
the anti-eEF1Bγ rabbit polyclonal antibody or with anti-
myc monoclonal antibody. A “no-antibody” immunopre-
cipitation was performed as a negative control. The beads
were washed five times for 5 min at 4 °C with a high strin-
gency buffer and once in PBS buffer. The beads containing
the immunoprecipitate samples were collected and resus-
pended in buffer R (50 mM Tris–HCl pH 7, 10 mM DTT,
5 mM EDTA, 1 % SDS) [40]. A portion of immunoprecip-
itation was processed for western blot analysis. RNA was
extracted using TRIzol® reagent (Thermo Fisher Scientific,
Inc., Waltham, MA, USA) according to the manufacturer’s
instructions. RNAs were converted to cDNAs and ran-
domly amplified using a Full Spectrum™ Complete Tran-
scriptome RNA Amplification Kit (System Biosciences,
Mountain View, CA, USA) according to the manufac-
turer’s protocol. cDNA was run on a 2 % agarose gel, and
the portion between 200 and 500 bp was isolated and
cloned into pGEM-T vectors using a pGEM®-T Easy Vec-
tor System (Promega, Madison, WI, USA) according to
the manufacturer’s instructions. The obtained clones were
analyzed by EcoRI digestion, and the selected clones were
sequenced by Eurofins MWG Services.

RNA extraction, retrotranscription and quantitative real-
time PCR (qPCR)
Total RNA from HeLa and hSH-SY5Y cells was extracted
using TRIzol® reagent according to the manufacturer’s in-
structions and was then reverse transcribed using a High
Capacity cDNA Reverse Transcription kit (Thermo Fisher
Scientific, Inc., Waltham, MA, USA). A quantitative real-
time PCR (qPCR) assay was performed in triplicate in a
96-well format in an ABI Prism 7000 Sequence Detection
System (Applied Biosystems, Foster City, CA, USA) using
the SYBR Green PCR Master mix. GAPDH or MT-ND2
was used for the normalization of mRNA, and the relative
expression was calculated using the comparative Ct
method (2-ΔΔCt). Primer sequences used in this study are
shown in Additional file 1: Table S1.

Chromatin immunoprecipitation (ChIP) assay
A chromatin immunoprecipitation assay was performed
as previously described [41]. Equal amounts of chromatin
from each sample were immunoprecipitated overnight with
anti-eEF1Bγ rabbit polyclonal antibodies. The immunopre-
cipitated sonicated chromatin was amplified using human
Che-1-specific primers, human thymidine kinase (TK)-spe-
cific primers and human p53-specific primers. The PCR
conditions were as follows: 30 cycles at 95 °C for 45 s, 60–
67 °C for 30 s, 72 °C for 30 s and a final extension at 72 °C
for 5 min.
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Polysome profile analysis
The polysomal profile analysis was performed as previ-
ously described [42]. Briefly, cells were homogenized in
lysis buffer (10 mM Tris–HCl pH 7.5, 100 mM NaCl,
10 mM MgCl2, 1 % Triton X-100, 30 U/ml RNasin). Ly-
sates were incubated on ice for 5 min and then centri-
fuged at 12,000 rpm for 5 min at 4 °C. Supernatants
were immediately loaded onto a 10 ml 15–50 % (w/v)
sucrose gradient and centrifuged at 37,000 rpm for
180 min at 4 °C at in a Beckman SW41 rotor. For EDTA
treatments, 100 mM EDTA was added to the cytoplas-
mic extracts before stratification on a sucrose gradient.
Free ribosomal subunits (60S and 40S), monosomes
(80S), large polysomes, and the very light mRNPs were
detected by UV absorbance at 254 nm using a BioLogic
LP system (BioRad Inc., Hercules, CA, USA). Each gra-
dient was collected in 9 fractions, and the proteins were
precipitated with a mix containing 50 % ethanol, 25 %
methanol and 25 % acetone and were then processed for
western blot analysis.

Immunofluorescence and confocal laser scanning
microscopy
Cells were fixed with 4 % formaldehyde in PBS, perme-
abilized in 0.2 % Igepal-CA 630 (Sigma Chemical Co., St.
Louis, MO, USA) for 10 min, and blocked with 1 % BSA
in PBS at room temperature. Samples were incubated se-
quentially with the appropriate primary and secondary
antibodies. Slides were mounted with ProLong with
DAPI (Thermo Fisher Scientific, Inc., Waltham, MA,
USA) or Hoechst 33258 solution (Sigma Chemical Co.,
St. Louis, MO, USA). To label mitochondria, cells were
incubated with 250 nM of MitoTracker® Red CMXRos
M7512 (Thermo Fisher Scientific, Inc., Waltham, MA,
USA) according to the manufacturer’s instructions and
then were fixed and incubated with anti-Che-1 rat poly-
clonal antibodies. Slides were examined by conventional
epifluorescence microscopy (Olympus BX51). Images
were captured using a digital camera SPOT RT3 and
merged using the IAS2000 software. For confocal laser
scanning microscopy, slides were examined with a
confocal system TCS-SP5 (Leica Microsystem, GmbH
Wetzlar, Germany).

RNA-FISH combined with immunofluorescence
HeLa cells were processed for immunofluorescence in
the presence of RNase inhibitors, with secondary anti-
body incubation subsequent to FISH to prevent denatur-
ation of the antibodies. FISH was performed using a
FITC labeled oligonucleotide probe (Additional file 1:
Table S1) [43, 44]. The cells were fixed in 4 % parafor-
maldehyde in PBS (pH 7.4) for 30 min and washed three
times with PBS and 0.2 % Igepal-CA 630 for 5 min. The
slides were then permeabilized by treatment with 70 %

ethanol overnight at 4 °C. The cells were rehydrated for
5 min in 50 % formamide, 2× SCC (300 mM NaCl,
30 mM sodium citrate, pH 7.0) and pre-hybridized with
hybridization buffer (50 % formamide, 10 % dextran sul-
fate, 2 mM vanadyl-ribonucleoside complex, 40 μg E. coli
tRNA, 2× SSC) for 1 h at 37 °C. Then, cells were incubated
overnight with 30 ng FITC labeled DNA oligonucleotide
probe in 40 μl hybridization buffer at 37 °C. The coverslips
were washed twice in 2× SCC/50 % formamide at 37 °C
and twice in 1× SCC at room temperature. The coverslips
were incubated with anti-FITC primary antibodies (to
amplify the signal) and the appropriate secondary anti-
bodies in 1 % blocking reagent solution (Roche, Indianapo-
lis, IN, USA) at room temperature and mounted with
ProLong with DAPI. The slides were examined by conven-
tional epifluorescence microscopy (Olympus BX51). The
images were captured using a digital camera SPOT RT3
and merged using IAS2000 software. Co-localization ana-
lysis was performed using Image J software (Image J, Colo-
calization Coloc 2, Intensity correlation quotient (ICQ)).
The ICQ value is calculated based on Li's intensity correl-
ation analysis, which is considered a stable method for co-
localization analysis as it allows the discrimination of
coincidental events in a heterogeneous situation. ICQ var-
ies from −0.5 (exclusion) to 0.5 (complete co-localization)
[45]. Region-of-Interest (ROI) were drawn around single
cells. Background and threshold correction were applied
for each ROI.

Antibodies
The following antibodies were used: anti-eEF1Bγ rabbit
polyclonal antibody (Bethyl Laboratories, Inc. Montgom-
ery, TX, USA), for western blotting and immunoprecipita-
tion; anti-eEF1Bγ mouse monoclonal antibody (Abnova,
Taipei City, Taiwan), for immunofluorescence; anti-myc
monoclonal antibody (9E10 clone, hybridoma-conditioned
medium), for western blotting and immunoprecipitation;
anti-Tom20 rabbit polyclonal antibody (Santa Cruz Bio-
technology, Santa Cruz, CA, USA), for western blotting
and immunofluorescence; anti-SMN mouse monoclonal
antibody (BD Transduction Laboratories, San Jose, CA,
USA), for western blotting; anti-L7 rabbit monoclonal
antibody (Abcam, Cambridge, UK), for western blot-
ting; anti-S6 rabbit polyclonal antibody (Cell Signaling
Technology, Danvers, MA, USA), for western blotting;
anti-γ-tubulin monoclonal antibody (Merck Biosciences,
Kenilworth, NJ, USA), for western blotting; anti-Che-1
rabbit polyclonal antibody [46], for western blotting; anti-
HSP60 monoclonal antibody (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), for western blotting; anti β-actin
(Sigma-Aldrich Co., St. Louis, MO, USA), for western blot-
ting; anti-FITC mouse monoclonal antibody (Sigma Chem-
ical Co., St. Louis, MO, USA), for RNA-FISH. For Che-1
rat antiserum production, Wistar rats were immunized four
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times with 250 μg of the purified His tag Che-1 protein
every week using Freund’s adjuvants (Difco, Detroit, MI,
USA); antiserum was collected 5 days after the last injection.
All procedures were carried out in accordance with the eth-
ical guidelines for animal care of the European Community
Council (directive 2010/63EU). Housing of the animals
meets the behavioral needing of the specie and was
supervised by the Responsible Veterinarian. The secondary
antibodies conjugated to horseradish peroxidase were pur-
chased from GE Healthcare (GE Healthcare, Chicago, IL,
USA). Alexa-Fluor-488 or Alexa-Fluor-594-conjugated sec-
ondary antibodies were purchased from Thermo Fisher Sci-
entific (Thermo Fisher Scientific, Inc., Waltham, MA, USA).

Results
eEF1Bγ binds specific mRNAs and their gene promoter
regions
The eEF1Bγ protein has been shown to associate with both
the vimentin promoter and vimentin 3' UTR mRNA, thus

influencing the cellular shape and mitochondria localization
[5, 18]. Here, with the intent of identifying additional tran-
scripts complexed with the eEF1Bγ protein, we performed
a series of ribonucleoprotein immunoprecipitation (RIP)
assays. A scheme of the RIP assay protocol is shown in
Fig. 1a. The HeLa cell mitochondria-enriched HM frac-
tion was immunoprecipitated with anti-eEF1Bγ polyclonal
antibodies (Fig. 1b). The co-immunoprecipitated RNA
was purified and retro-transcribed. The cDNA output was
randomly amplified, size selected and cloned. Fig. 1c
shows the resulting HM-cDNA library. Interestingly,
among the mRNAs complexed with eEF1Bγ, we iso-
lated the Che-1/AATF mRNA. The RT-PCR analysis,
shown in Fig. 1d, demonstrated the presence of Che-1
mRNA in eEF1Bγ RIP assay output.
Although in a specific subcellular fraction, we confirmed

the presence of vimentin and p53 transcripts, as previ-
ously reported [18, 22]. Additional file 2: Table S2 shows a
list of selected individual clones randomly sequenced from

b c

d e

Fig. 1 eEF1Bγ binds specific mRNAs and their gene promoter regions a Schematic representation of the RIP assay. b HeLa cell extract, enriched
in heavy membrane (HM) fractions, was immunoprecipitated with anti-eEF1Bγ rabbit polyclonal antibodies or with no antibodies (no-Ab). c HM-cDNA
library: the RIP assay cDNA output was randomly amplified, size selected and finally cloned. d RIP assay output from each sample were analyzed by
semi-quantitative RT-PCR performed using primers specific for human Che-1 3’ UTR. Human p53 3’ UTR and human vimentin 3’ UTR were also amplified
as positive controls. e eEF1Bγ binds to the Che-1 promoter and TP53 promoter at the endogenous chromosomal site. Chromatin immuno-precipitation
(ChIP) was performed in HeLa cells using anti-eEF1Bγ rabbit polyclonal antibodies or with no antibodies (no-Ab). Immunoprecipitates from each sample were
analyzed by PCR performed with primers specific for the human Che-1 promoter and for the human TP53 promoter. The thymidine kinase human promoter
was amplified as a negative control. A sample representing linear amplification of the total input chromatin (input) was included in the PCR as a control
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the mitochondria-enriched heavy membrane (HM)-cDNA
library. Additional file 3: Figure S1A shows the RT-PCR
validation of some of the individual clones. The finding of
the Che-1 transcript in the eEF1Bγ RIP assay output is
consistent with the presence of eEF1Bγ on the Che-1 pro-
moter that we have communicated in our previous manu-
script [5]. As shown in Fig. 1e, by DNA ChIP analysis in
Hela cells, we confirmed the presence of eEF1Bγ on the
Che-1 promoter, and, importantly, we showed for the first
time the presence of eEF1Bγ on the TP53 gene promoter.
The ChIP experiments were also performed on hu-
man neuroblastoma hSH-SY5Y cells, confirming the
data (Additional file 4: Figure S2A).

eEF1Bγ co-localizes with specific mRNAs
It has been shown that in vimentin 3’ UTR mRNA,
eEF1Bγ binds an RNA element named the “Y shaped
structure”, which exhibits striking sequence homology
across species [47, 48]. Moreover, Sasvari et al. demon-
strated a role for eEF1Bγ in Tomato bushy stunt virus
(TBSV) replication by interacting with a stem-loop

structure at the 3’ end of the viral RNA [49]. Interest-
ingly, as shown in Fig. 2a, the human Che-1 3′ UTR
mRNA is characterized by a stem-loop secondary struc-
ture folded according to the dynamic programming algo-
rithm originally proposed by Zuker and Stiegler [50]. To
visualize and validate the interaction between eEF1Bγ
and the Che-1 3 ’UTR, we performed an MS2 assay [51].
Figure 2b (left panel) shows a schematic representation
of the MS2 assay. Briefly, the MS2-GFP system is based
on two components: a fusion of the MS2 coat protein
with the GFP protein carrying a nuclear localization sig-
nal NLS (MS2-GFP) and a reporter transcript (Report
mRNA) containing multimers of the RNA stem-loop,
recognized by the MS2-GFP protein, upstream of the 3’
UTR of the mRNA of interest. MS2-GFP chimeric pro-
tein, over-expressed alone in mammalian cells, shows a
nuclear localization, whereas when it binds to the RNA
stem-loop, it tends to move in the cytoplasmic compart-
ment. As shown in Fig. 2b (right panel), MS2-GFP pro-
tein expressed in HeLa cells alone or with the 3′ UTR of
Che-1 or vimentin was analyzed in the presence or
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Fig. 2 eEF1Bγ co-localizes with specific mRNAs a The human Che-1 3′ UTR was folded according to the computer algorithm of Zuker and Stiegler
to yield a structure of minimum free energy [65]. b Schematic representation of the chimeric bacteriophage MS2 coat protein fused to the GFP
protein (MS2-GFP) and the reporter transcript containing multimers of the RNA stem-loop, recognized by the MS2-GFP protein, upstream of the
3’ UTR of the mRNA of interest named: “Report mRNA” (left panel). The MS2-GFP protein was expressed in HeLa cells either alone or with the Report
mRNA carrying the 3′ UTR of Che-1 or vimentin mRNAs (upper panel). In the lower panel, MS2-GFP was co-expressed with myc-eEF1Bγ protein and
with the Report mRNA carrying either the 3′ UTR of Che-1 or the 3′UTR of vimentin transcripts (right panel). c Co-localization of endogenous eEF1Bγ
protein and either Che-1 or vimentin endogenous mRNAs in HeLa cells. Expression of eEF1Bγ was detected by indirect immunofluorescence using
polyclonal eEF1Bγ antibodies (red), whereas Che-1 and vimentin mRNAs (green) were detected by RNA-FISH. Nuclei (blue) were stained with DAPI.
Intensity correlation quotient (ICQ) shown in the bar graph was calculated using Coloc 2 plugin in the Image J/Fiji software and indicates whether the
intensity of co-staining varies in synchrony over space. The values indicated represent an average over at least 10 cells from different images and the
error bars indicate standard error
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absence of myc-eEF1Bγ. Only in the presence of myc-
eEF1Bγ a clear dot fluorescent pattern is observed in the
cytoplasmic compartment. Additional file 3: Figure S1B
shows additional MS2 assays performed on different
mRNAs complexed with eEF1Bγ (see Additional file 2:
Table S2). As shown in Fig. 2c, to visualize co-localization
of endogenous eEF1Bγ protein and endogenous Che-1 or
vimentin mRNAs, we performed RNA-FISH analysis com-
bined with indirect eEF1Bγ-immunofluorescence in HeLa
cells. We quantified eEF1Bγ/3’UTR mRNA co-localization
by measuring intensity correlation quotient (ICQ) values
as shown in the bar graph.

Characterization of the eEF1Bγ mRNA binding property
Taking into account that eEF1Bγ acts as an RNA-
binding protein, we assessed the eEF1Bγ distribution in
a polysomal profile in HeLa cells (Fig. 3a, right). Cyto-
plasmic extracts were subjected to ultracentrifugation in
a sucrose density gradient in the presence or absence of
EDTA. The EDTA treatment dissociated the large and
small ribosomal subunits and virtually disrupted all poly-
ribosomes. In our experimental conditions, eEF1Bγ pro-
tein was mainly retained in slow-sedimenting fractions
that were enriched in ribonucleoprotein particles
(mRNPs) (Fig. 3a, left). We also tested the distribution
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of the survival motor neuron (SMN) protein because it
has been demonstrated that this RNA-related protein as-
sociates with polyribosomes [42, 52]. The protein com-
position of each collected fraction was validated using
S6 and L7 antibodies to monitor the small and large
ribosomal subunits, respectively. The eEF1Bγ protein is
a multi-domain polypeptide that harbors a GST like do-
main on the N-terminus and an eEF1G super-family do-
main at the carboxyl terminus (ref: pFAM 00147). In
addition, in the carboxyl terminus, there is a region with
74 % homology to the sigma-70 factors ECF subfamily
signature (ref: PDOC00814). To identify the eEF1Bγ do-
main/s responsible for Che-1 and p53 mRNA interac-
tions, a series of eEF1Bγ deletion mutants fused to the
myc tag was constructed (Fig. 3b). HeLa cells were tran-
siently transfected with myc-eEF1Bγ or with its deletion
mutants to perform a RIP assay analysis. The immuno-
precipitations, performed using myc-tag antibodies, were
analyzed by western blotting as shown in Fig. 3c (left
panel), and co-immunoprecipitated mRNAs were ex-
tracted and converted to cDNA. Che-1 and p53 mRNAs
co-immunoprecipitated with the indicated constructs
were plotted in a graph. The data are expressed as per-
cent precipitation relative to the input mRNAs. The
mean background level is illustrated by the horizontal
line in the graph [53]. By RT-PCR, the cDNA output
confirmed the presence of both Che-1 and p53 tran-
scripts in full-length eEF1Bγ and their limited presence
in deletion mutants eEF1Bγ−ΔNH2 and eEF1Bγ−ΔX.

Che-1 protein mitochondria localization and eEF1Bγ
depletion effects
We previously demonstrated that eEF1Bγ contributes to
govern the correct localization of vimentin intermediate-
filament protein, which is known to be involved in cell
morphology and organelle positioning [5]. Because the
Che-1 protein was observed in both the nucleus and
cytoplasmic organelles [33, 54, 55], we examined Che-1
sub cellular localization in more detail. In Fig. 4a (left
panel), using the rat Che-1 antibody in a dual-label im-
munofluorescence assay with mitochondrion-selective
dye MitoTracker (red), we detected novel localization of
Che-1 protein in mitochondria. To further verify the
Che-1 mitochondrial localization, we used the mito-
chondrial marker Tom20 in a dual-label immunofluores-
cence assay in hSH-SY5Y cells. Extensive co-localization
between endogenous Che-1 and Tom20 is revealed by the
merged-color image (Additional file 4: Figure S2B). West-
ern blot analysis of the mitochondria-enriched heavy mem-
brane (HM) fraction, prepared from HeLa cells, clearly
confirmed a Che-1 mitochondrial association (Fig. 4a, right
panel). Che-1 mitochondrial localization was also observed
in the mitochondrial fraction prepared from hSH-SY5Y
cells (Additional file 4: Figure S2C). To investigate the

possible effects of eEF1Bγ depletion on mitochondrial
Che-1 expression levels, quantitative real time PCR (qPCR)
and western blot analyses were performed with HeLa cells.
In our experimental conditions, eEF1Bγ knockdown did
not produce any significant change in Che-1 expression
levels (both RNA and protein levels) in mitochondria-
enriched HM fractions (Fig. 4b, c). The same results were
obtained using a purified mitochondrial fraction (Fig. 4b, c).
We also checked transcript and protein levels of Che-1
upon eEF1Bγ depletion by analyzing the whole-cell lysate.
Histograms presented in Additional file 3: Figure S1C and
S1D show almost no changes in Che-1 levels. Similar re-
sults were obtained when qPCR was performed on repre-
sentative mRNAs co-immunoprecipitated with eEF1Bγ
(Additional file 2: Table S2 and Additional file 3: Figure
S1C). Equivalent results were obtained for eEF1Bγ siRNA
in the hSH-SY5Y cell line (Additional file 4: Figure S2D and
E). Next, we investigated the mitochondrial localization of
Che-1 by indirect immunofluorescence with both anti-
Tom20 antibodies and rat anti-Che-1 antibodies in HeLa
cells treated with eEF1Bγ siRNA. Figure 4d shows the
results of mitochondrial fragmentation, swelling and
disorganization. The mitochondrial network was severely
compromised (fragmented) and the co-localization Che-1/
Tom20 was partially lost.

eEF1Bγ in cellular responses to genotoxic stress
Because our data on eEF1Bγ depletion indicated almost
no changes in the Che-1 and p53 levels, we investigated
the possible impact of eEF1Bγ in stress pathways shared
by Che-1 and p53, such as genotoxic stress induced by
treatment with doxorubicin (Dox). To this end, we ex-
amined the effect of eEF1Bγ depletion on Che-1 and p53
mRNA and protein levels in HCT116 cells during Dox-
induced DNA damage. As shown in Fig. 5a, quantitative
real time PCR (qPCR) analysis indicated that HCT116
cells transiently transfected with either siRNA-eEF1Bγ
or siRNA-Control and treated with 1 μM Dox at one
hour and two hours did not display significant changes
of both p53 and Che-1 mRNA levels. Only a slightly de-
crease of Che-1 and p53 transcripts was detected when
Dox treatment was coupled with eEF1Bγ depletion.
Western blot analysis indicated that HCT116 cells tran-
siently transfected with either siRNA-eEF1Bγ or siRNA-
Control and treated with 1 μM Dox at one hour and
two hours produced an evident decrease of p53 protein
accumulation and a slight decrease of Che-1 protein ac-
cumulation (Fig. 5b) [33, 56].

Discussion
It is clear that eEF1Bγ, in addition to its canonical role
in the translation elongation complex, displays RNA
binding ability [18, 22, 48]. In particular, eEF1Bγ has
been shown to bind the vimentin 3’ UTR, and we have
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shown that it also binds the promoter region of the
vimentin gene [5, 18]. Here, to identify further func-
tional pathways in which eEF1Bγ is involved, we put our
efforts in the isolation and characterization of additional
mRNAs recognized by eEF1Bγ protein, using the RIP assay
technology. To this end, we focused on the mitochondria-
enriched heavy membrane (HM) subcellular fraction with
the idea of assessing eEF1Bγ involvement in mitochondrial
and cytoskeletal metabolisms. Among the isolated mRNAs,
we mainly found genes involved in cytoskeleton transport/
organization, translation and mitochondrial metabol-
ism. We confirmed the presence of vimentin and p53

transcripts, already reported [18, 22]. By serendipity, we
found the mRNA of the pol-II binding protein Che-1/
AATF. The human Che-1 3′UTR is characterized by the
presence of a conserved RNA stem-loop structure that
could be the target of eEF1Bγ protein. By use of different
imaging techniques (MS2-GFP and FISH combined with
immunofluorescence), we visualized the co-localization/
interaction of endogenous eEF1Bγ with endogenous Che-
1 or vimentin mRNAs in peculiar granules accumulated
in the cytoplasm around the nucleus.
The polysomal profile analysis reveals that the eEF1Bγ

protein is mainly present in the ribosome free mRNPs-
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enriched fractions. These data together support the no-
tion that the ability of eEF1Bγ to bind selected mRNAs
is fundamental to carrying out its non-canonical roles. A
further eEF1Bγ non-canonical role resides in its ability
to recognize specific gene promoters. We have previ-
ously shown that eEF1Bγ binds the promoter region of
the vimentin gene, and here, we showed that eEF1Bγ is
also found in both Che-1 and TP53 promoters regions.
These results suggest a role for eEF1Bγ in nursing/traf-
ficking selected mRNAs from the gene locus to the local
product translation site.
These findings are consistent with the following no-

tions: 1) eEF1Bγ binds the p53 transcript and controls
its stability, and we show here that eEF1Bγ also binds
Che-1 mRNA; 2) Fanciulli and colleagues demonstrated
that Che-1 directly interacts with p53 and is involved in
regulating p53 expression [37]; and 3) both Che-1 and
eEF1Bγ directly bind to the alpha-like pol II heterodimer.
More precisely, eEF1Bγ binds to the subunit POLR2C
(RPB3), whereas Che-1 contacts the small subunit POLR2J
(RPB11). These two subunits form a core subassembly unit

of pol II and are considered the functional counterpart of
the bacterial RNA polymerase alpha subunit homodimer.
In bacteria, the alpha subunit homodimer associate with σ
factors that mediate promoter recognition [29–31].
With the aim of characterizing the eEF1Bγ protein do-

main responsible for mRNA binding, we used a series of
eEF1Bγ deletion mutants in RIP assay. In our assays, only
two deletion mutants retained minimal Che-1 and p53
mRNA binding ability, thus suggesting that eEF1Bγ pro-
tein integrity is required for proper RNA binding activity.
Data reported in the literature have indicated a very

wide Che-1 protein distribution, including the nucleolus,
nucleus, cytoplasm, Golgi apparatus, centrosome and focal
adhesion [33, 54, 55]. We have shown for the first time
that Che-1 localizes at the mitochondria. Indeed, Che-1
has been reported to ameliorate mitochondrial dysfunc-
tion associated with the accumulation of superoxide [57].
Is it possible that eEF1Bγ is important for transportation
of the Che-1 mRNA to the mitochondria, and once the
mRNA is there, eEF1Bγ is dispensable for its translation.
Garg’s research group recently demonstrated that Che-1
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cooperates with miR-2909 in the regulation of mitochon-
drial uncoupling protein 2 (UCP2), a critical protein
whose dysregulation is involved in the pathogenesis of a
number of human diseases, including cancer [58, 59]. The
connection between eEF1Bγ, Che-1 and p53 proteins and
their transcripts indicated, for these genes, involvement in
closely related pathways. Indeed, p53 is involved in regula-
tion of the mitochondrial metabolism, playing multiple
roles depending on its wild-type/mutation status and
translocation into the mitochondria [60–62]. As wells as
for Che-1, eEF1Bγ could also participate to p53 localization
and/or translation. In this scenario, eEF1Bγ affecting Che-1
and p53 RNA metabolism, could be an important player
within functional networks interconnecting Che-1 and p53
proteins. The depletion of eEF1Bγ induces mitochondrial
fragmentation and disorganization; this phenomenon cor-
relates with an aberrant Che-1 protein sub-cellular distri-
bution, as we already described for vimentin intermediate
filaments [5]. Because in a steady-state condition eEF1Bγ
depletion produces almost no changes in Che-1 levels, we
investigated the possible impact of eEF1Bγ in stress path-
ways in which both Che-1 and p53 are involved such as
DNA damage [33, 63, 64]. In a Dox-induced genotoxic
stress in HCT116 cells, eEF1Bγ depletion decreases p53
protein accumulation and slightly impacts also on Che-1
accumulation. Importantly, Che-1 and p53 proteins are ef-
fectors of the DNA damage response machinery that is re-
sponsible for maintaining genome integrity and preventing
tumorigenesis. Our data are in agreement with the role of
eEF1Bγ in cellular stress responses, suggesting that the
DNA damage response pathway will be fundamental in
further investigations of non-canonical eEF1Bγ functions,
pointing also at elucidating eEF1Bγ role in tumorigenesis
and cancer progression.

Conclusions
Using the RIP assay with eEF1Bγ in the mitochondria-
enriched HM fraction, we isolated several novel mRNAs
involved in cytoskeleton transport/organization, transla-
tion and mitochondrial metabolism. Among the eEF1Bγ
complexed transcripts, we found the mRNA that encodes
Che-1 protein and we confirmed the presence of the p53
transcript. Importantly, we demonstrated that eEF1Bγ
binds to both Che-1 and TP53 gene promoters. We de-
scribed for the first time Che-1 mitochondrial localization.
In a Dox-induced DNA damage assay, we show that
eEF1Bγ depletion significantly decreases p53 protein accu-
mulation and slightly impacts also on Che-1 protein accu-
mulation. Taking into account that eEF1Bγ is able: 1) to
bind directly pol II, 2) to bind to target gene promoters, 3)
to bind their transcripts, 4) to accompany the mRNAs to
the correct translation site and 5) to participate/enhance
translation elongation through its detoxification GST-
domain and through its ability to anchor cytoskeleton, we

suggest for eEF1Bγ a role in cellular stress responses
as primordial transcription/translation factor that links
fundamental steps from transcription control to local
translation.
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Additional file 1: Table S1. Oligos used in the present study. (DOC 56 kb)

Additional file 2: Table S2. Different mRNAs associated to eEF1Bγ.
(DOC 42 kb)

Additional file 3: Figure S1. A. RIP assay output was analyzed by semi-
quantitative RT-PCR with specific primers to validate some of mRNAs co-
immunoprecipitated with eEF1Bγ and they are listed in Table S2. B. The
myc-eEF1Bγ and MS2-GFP fusion proteins were expressed in HeLa cells
with the report mRNA carrying both the MS2 binding site and the indicated
3′ UTR. C. RIP assay-eEF1Bγ mRNAs (Additional file 2: Table S2) analyzed by
quantitative real time PCR (qPCR) in HeLa whole-cell lysates treated with
siRNA as shown. The gene expression ratio between mRNAs and GAPDH are
shown as the mean ± SD from three independent experiments performed in
triplicate. D. Representative western blot of HeLa whole-cell lysates treated
or un-treated with siRNA as shown. The antibodies that were used
are indicated. Densitometric analysis represents the mean ± S.D. of 3
independent experiments (right panel). (PDF 208 kb)

Additional file 4: Figure S2. A. Chromatin immunoprecipitation was
performed in hSH-SY5Y cells using anti-eEF1Bγ rabbit polyclonal antibodies
or no-Ab as a control. Immunoprecipitates from each sample were analyzed
by PCR performed with primers specific for the human Che-1 promoter and
for the human TP53 promoter. The thymidine kinase human promoter was
amplified as a negative control. A sample representing linear amplification
of the total input chromatin (input) was included in the PCR as a control.
B. Co-localization of endogenous Che-1, performed with the anti-Che-1 rat
polyclonal antibody (green), and the mitochondrial marker Tom20 (red), in
hSH-SY5Y cells. Extensive co-localization (yellow) between Che-1 and
Tom20 is visualized by the merged-color image. The boxed area represents
a high magnification image of co-localization. Nuclei were labeled with
DAPI (blue). Scale bars: 10 μm. C. Western blot analysis of hSH-SY5Y
whole-cell lysate and mitochondrial enriched fraction. The quality of
mitochondrial-enriched fractions was monitored using anti-HSP60
monoclonal antibodies and anti-Tom20 rabbit polyclonal antibodies.
D. Quantitative real time PCR (qPCR) analysis of the eEF1Bγ and Che-1
mRNAs in hSH-SY5Y cells (siRNA-Control and siRNA-eEF1Bγ). The gene
expression ratio between eEF1Bγ and GAPDH and between Che-1 and
GAPDH are shown as the mean ± SD from three independent experiments
performed in triplicate. E. Representative Western blot of hSH-SY5Y whole-
cell lysates treated or un-treated with siRNA as shown. The antibodies that
were used are indicated. (PDF 199 kb)
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