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Abstract

Background: Recently, immunotherapy with anti-PD-1 antibodies has shown clinical benefit in recurrent Small Cell

Lung Cancer (SCLC). Since anti-PD-1 re-activates anti-tumor Cytotoxic T Lymphocyte (CTL) responses, it is crucial to

understand the mechanisms regulating HLA class |, and PD-L1 expression in HLA-negative SCLC. Here we addressed
the role of IL-27, a cytokine related to both IL-6 and IL-12 families.

Methods: The human SCLC cell lines NCI-N592, -H69, -H146, -H446 and -H82 were treated in vitro with different
cytokines (IL-27, IFN-y, IL-6 or a soluble IL-6R/IL-6 chimera [sIL-6R/IL-6]) at different time points and analyzed for
tyrosine-phosphorylated STAT proteins by Western blot, for surface molecule expression by immunofluorescence
and FACS analyses or for specific mMRNA expression by QRT-PCR. Relative quantification of mMRNAs was calculated by
the AACT method. The Student’s T test was used for the statistical analysis of experimental replicates.

Results: IL-27 triggered STAT1/3 phosphorylation and up-regulated the expression of surface HLA class | antigen
and of TAPT and TAP2 mRNA in four out of five SCLC cell lines tested. The IL-27-resistant NCI-H146 cells showed up-
regulation of HLA class | by IFN-y. IFN-y also induced expression of PD-L1 in SCLC cells, while IL-27 was less potent
in this respect. IL-27 failed to activate STAT1/3 phosphorylation in NCI-H146 cells, which display a low expression of
the IL-27RA and GP130 receptor chains. As GP130 is shared in IL-27R and IL-6R complexes, we assessed its
functionality in response to sIL-6R/IL-6. sIL-6R/IL-6 failed to trigger STAT1/3 signaling in NCI-H146 cells, suggesting
low GP130 expression or uncoupling from signal transduction. Although both sIL-6R/IL-6 and IL-27 triggered STAT1/
3 phosphorylation, sIL-6R/IL-6 failed to up-regulate HLA class | expression, in relationship to the weak activation of
STATI. Finally sIL-6R/IL-6 limited IL-27-effects, particularly in NCI-H69 cells, in a SOCS3-independent manner, but did
not modify IFN-y induced HLA class | up-regulation.

Conclusions: In conclusion, IL-27 is a potentially interesting cytokine for restoring HLA class | expression for SCLC
combined immunotherapy purposes. However, the concomitant activation of the IL-6 pathway may limit the IL-27
effect on HLA class | induction but did not significantly alter the responsiveness to IFN-y.
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Background

Small Cell Lung Cancer (SCLC) is an aggressive tumor
characterized by rapid and extensive metastatic dissem-
ination, recurrence after chemotherapy and poor prog-
nosis. Therefore, there is an urgent need of new
treatment modalities, and promising results have been
achieved in recent phase I-1I studies of immunotherapy
[1]. In general, immune checkpoint blockade through
monoclonal antibodies targeting PD-1, PD-L1, and/or
CTLA-4 have shown unprecedented activity in several
metastatic malignancies, including melanoma and Non-
Small Cell Lung Cancer (NSCLC) [2—4]. A recent phase
I-1I trial of the anti-PD-1 antibody nivolumab in patients
with recurrent SCLC showed a 10% response rate and a
32% disease control rate [5]. In addition, different sched-
ules of nivolumab in combination with ipilimumab
showed 19-23% response rates [5]. These results
prompted the National Comprehensive Cancer Network
to consider the nivolumab-ipilimumab combination in
the 2016 guidelines for SCLC treatment.

It is now well established that immune checkpoint
blockers re-activate pre-existing, silenced CTL cell re-
sponses against tumor neo-antigens, in metastatic mel-
anoma and NSCLC [6-8]. However, SCLC is a tumor
lacking HLA class I expression and, accordingly, should
be resistant to the activity of HLA-restricted CTLs [9].
Nonetheless, IFN-y is capable to restore HLA class I ex-
pression [10] and sensitivity to CTL-mediated recogni-
tion of SCLC [11, 12], as well as of other tumor cells
showing down-regulated HLA class I antigen expression
[13]. In view of its immune-modulatory and direct anti-
tumor effects, clinical studies of IFN-y have been per-
formed in different cancers, with some evidence of activ-
ity in ovarian and bladder cancer. However, no activity
was found in other cancers and adverse effects including
toxicity or even tumor progression have been recorded
(reviewed in [14]). These findings may relate, at least in
part, to the ability of IFN-y to activate immune-
regulatory loops, for example through the induction of
PD-L1 or indoleamine 2,3 dioxigenase (IDO) [15].

We recently reported that IL-27, a heterodimer cyto-
kine related to both IL-6 and IL-12 cytokine families [16,
17], has several functional activities in common with
IFN-y, in different cancer cells [18]. Indeed, IL-27 up-
regulates multiple components of the HLA class I anti-
gen presentation machinery in human cancer cells, thus
facilitating Cytotoxic T Lymphocyte (CTL) recognition.
Moreover, in lymphoid cells, IL-27 induces the expres-
sion of the transcription factor T-bet, an inducer of Thl
and CTL responses [19], which have been involved in
the anti-tumor activity of IL-27. IL-27 may also exert
direct anti-tumor effects through the inhibition of angio-
genesis and neoplastic cell proliferation in different can-
cers including acute myeloid leukemia [20], prostate

Page 2 of 12

cancer [21], and melanoma [22]. In addition, IL-27 in-
hibits the expression of stem cell and mesenchymal tran-
sition genes in NSCLC cells [23, 24]. In view of its
immune-enhancing activities and direct anti-tumor ef-
fects IL-27 has been considered as a potential anti-
tumor agent [25]. On the other hand, IL-27 induces the
expression of immune-regulatory molecules such as the
IL-18 natural inhibitor, IL-18BP [26], the tryptophan
catabolic enzyme IDO and PD-L1 [27], in neoplastic
cells. Therefore, IL-27 may have a dual role in anti-
tumor immunity [28] and shares several immune-
regulatory functions with IFN-y, in relationship to the
common usage of the STAT1 intracellular signaling
pathway [18, 19, 23, 29].

At the best of our knowledge, no studies have ad-
dressed the effects of IL-27 on SCLC cells, so far. In this
study we tested the effects of IL-27 on a panel of SCLC
cell lines and found that it is capable to restore HLA
class I expression through the up-regulation of peptide
transporters and other components of the class I antigen
presentation machinery in most SCLC lines tested. We
also explored the expression and signaling properties of
the IL-27 receptor complex, a heterodimer of IL27RA/
WSX1 and GP130 chains [30]. IL-27 and IL-6 share the
usage of the GP130 chain and downstream signaling
pathways through STAT1/3 [30]. In addition, serum IL-6
is elevated in SCLC in relationship with advanced stages,
worse prognosis and Neuron Specific Enolase (NSE)
levels, suggesting a possible role of IL-6 in SCLC pro-
gression [31], similarly to other cancers [32]. Therefore,
we also tested the possible effects of IL-6 on SCLC cells
and dissected the role of the GP130 molecule by the
usage of a sIL-6R/IL-6 synthetic ligand, similar to
“hyper-IL-6” [33], in both IL-27-responsive and unre-
sponsive SCLC cells.

Methods

Cells and treatments

The human SCLC cell lines NCI-H69, NCI-H146, NCI-
H446, NCI-H82 were purchased from ATCC and NCI-
N592 was kindly provided by Dr. J. Minna (NCI, Wash-
ington DC). Cells were grown in RPMI 1640, with L-
glutamine, 10% FCS and antibiotics (Lonza) and never
kept in culture for longer than 4 months, when an ali-
quot of the original stock was thawed. Treatments with
cytokines were performed with slight differences, ac-
cording to the final use of the stimulated samples. Con-
ditions were set on the bases of preliminary titration
experiments. For immunofluorescence and QRT-PCR
analyses, cells were seeded in 24-well plates in culture
medium at 5 x 10* cells/well and different cytokines
were added: IFN-y (1000 IU/ml, PeproTech, 300-02),
IL-27 (100 ng/ml R&D System, 2526-1L-010), IL-6
(50 ng/ml R&D System 206-IL-010) or recombinant



Carbotti et al. Journal of Experimental & Clinical Cancer Research (2017) 36:140

human IL-6Ra/IL-6 chimera [sIL-6R/IL-6] (50 ng/ml
R&D System 8954-SR-025). Treatments were carried out
for 48 h.

For the analysis of tyrosine-phosphorylated STAT pro-
teins, 1 x 10° SCLC cells were incubated in a test tube
at 37 °C with or without 50 ng/ ml of IL-27, 20 ng/ml of
IL-6, 40 ng/ml of sIL-6R/IL-6 in 0.5 ml of medium for
the 10, 30 or 60 min time points. Incubations for the 1,
2, 3 or 4 h time points were carried out in 1 ml culture
medium. Treatments for the 6, 18 and 24 h time points
were performed in 24-well plates, in 1 ml culture
medium. Cells were then rescued by centrifugation and
immediately processed.

Immunofluorescence

Immunofluorescence with anti-GP130 PE, anti-IL-27RA/
WSX1/TCCR APC (R&D Systems, Clones 28,126 and
191,116), anti-PD-L1 PE or Isotype Control PE (eBioscience
Bender, BMS-125983-41 and BMS-124724-41, respectively),
anti-human IL-6Ra FITC (R&D Systems, Clone 17,506
FAB227F-025) was performed according to manufacturer’s
instructions. Indirect immunofluorescence was performed
on 5 to 10 x 10* cells/sample with anti-HLA class I W6/32
mAb (ATCC) and FITC-labeled goat anti-mouse (Jackson
Immunoresearch, 115-096-068) according to standard
techniques. Cell fluorescence was analyzed by flow cytome-
try with a FACScan (Becton & Dickinson) using the Cell
Quest software or a Gallios (Beckman Coulter). Gating on
viable cells was performed using physical parameters and
10* gated events were acquired.

Western blot

Cells were lysed in lysis buffer (20 mM Tris-HCl pH 7.4,
1 mM EDTA, 150 mM NaCl, 1% Brij97) containing
2 mM Na Orthovanadate and protease inhibitors (Roche
Diagnostics, Complete Mini 04693124001). Lysates were
resolved under reducing conditions by SDS-PAGE (10%
or 13% acrylamide) and analyzed by Western blotting
using the following antibodies: rabbit anti-phospho-
STAT1 (pY701) and anti-STAT1 anti-sera (Cell Signaling
Technology, 9167 and 9172, respectively), murine anti-
phospho-STAT3 (pY705) and anti-STAT3 mAbs (BD
Transduction Laboratories, 612,356 and 610,190, re-
spectively), rabbit anti-SOCS3 (Cell Signaling Technol-
ogy 2932) and murine a-tubulin or [-actin mAbs
(Sigma-Aldrich T6074 and A2228, respectively). Proteins
were detected by ECL Prime (GE Healthcare, RPN2232)
and visualized by a chemiluminescence gel documenta-
tion and analysis system (MINI HD, UVITEC,
Cambridge).

RT-PCR analysis
Total RNA was isolated by the NucleoSpin RNA kit
(Macherey-Nagel, 740,955.250) and reverse-transcribed
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using the SuperScript III Reverse Transcriptase (Invitro-
gen, 18,064—071). Amplification was carried out by the
Mastercycler® ep realplex4 instrument (Eppendorf Inter-
national) using the iQTM SYBR® Green Supermix sys-
tem (Bio-Rad Laboratories, 170—8882). Quantification of
mRNAs relative to housekeeping gene was expressed as
1/ACT. Expression levels of mRNAs relative to un-
treated control were calculated by the AACT method.

Statistical analysis

Data are expressed as the mean * standard deviation
(SD) of triplicates. The Student’s T test was used for the
statistical analysis of experimental replicates. A value of
p < 0.05 was considered significant.

Results

IL-27 up-regulates surface HLA class | expression in SCLC
cells

In view of the defective expression of HLA class I mole-
cules in SCLC [9], we tested whether IL-27 could up-
regulate membrane HLA, as recently reported in other
tumor cell types [18]. To this end, we cultured a panel
of 5 SCLC cell lines for 48 h with IL-27 or IFN-y, a
known inducer of HLA expression, as control. SCLC
cells were then analyzed by indirect immunofluores-
cence and flow cytometry using the W6/32 mAb, which
recognizes HLA class I heavy chains in complex with
the B2-microglobulin. Four out of five IL-27-stimulated
cell lines showed up-regulation of HLA class I molecule
expression, while NCI-H146 cells appeared resistant
(Fig. 1la). All SCLC cell lines including the IL-27-
resistant NCI-H146 cell line efficiently responded to
IFN-y by up-regulating their surface HLA class I expres-
sion, in agreement with previous reports [10, 11]. In
general, the effect of IFN-y on HLA class I expression
was stronger than that of IL-27, even on IL-27-
responsive cell lines.

We tested also surface PD-L1 molecule, which is indu-
cible by both IL-27 [27] and IFN-y [15], in different
tumor cell types. As shown in Fig. 1b, IL-27 only weakly
induced PD-L1 expression in NCI-N592 and NCI-H446
cells, whereas IFN-y could increase PD-L1 expression in
all the five cell lines tested. Notably, IFN-y up-regulated
PD-L1 expression also in the NCI-H146 cells, which are
resistant to IL-27 effects.

The effect of IFN-y on HLA class I expression has
been related predominantly to the up-regulation of
TAPI and TAP2 gene expression [11]. Here, we show
that also IL-27 clearly up-regulated both TAPI and
TAP2 mRNA expression in the responsive cell lines, as
detected by QRT-PCR analysis (Fig. 2). These data sug-
gest that IL-27 may be exploited to restore HLA class I
expression in SCLC cells without inducing a strong PD-
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)

Fig. 1 Effect of IL-27 on surface HLA class | and PD-L1 expression in human SCLC cells. Cytofluorimetric analysis of membrane HLA class | (a) or
PD-L1 (b) expression in five SCLC cell lines, cultured in the presence of medium (baseline), IL-27 or IFN-y (induced), for 48 h. Isotype-matched Ig
control is indicated (ctrlg). Numbers in brackets represent Median Fluorescence Intensity (MFI) values calculated as median anti-HLA class | (W6/

32), or anti-PD-L1T mAb minus median Ig control

L1-mediated adaptive immune resistance, which is a
hallmark of IFN-y [15].

IL-27 signals through the STAT1 and STAT3 pathways in
SCLC cells

Next, we analyzed IL-27-mediated STAT signaling in
SCLC cells, in comparison with IFN-y. As shown in
Fig. 3a and Additional file 1: Fig. S1, IL-27 mediated
both STAT1 and STATS3 tyrosine phosphorylation in the
responsive NCI-H446, NCI-H69, NCI-N592 and NCI-
H82 cell lines. Conversely, no STAT1 and STAT3 phos-
phorylated forms were induced in the IL-27-
unresponsive NCI-H146 cells. The lack of IL-27 signal-
ing via STAT1 and STAT3 in NCI-H146 cells was fur-
ther confirmed by examining different time points of
stimulation (Fig. 3b). Differently from IL-27, IFN-y in-
duced a strong tyrosine phosphorylation of STAT1 while
STAT3 phosphorylation was undetectable in all the cell
lines tested, including the NCI-H146 cells (Fig. 3 and
Additional file 1: Fig. S1). To address the unresponsive-
ness of NCI-H146 cells to IL-27, we first analyzed the
IL-27R complex surface expression by immunofluores-
cence and flow-cytometry. As shown in Fig. 4a, NCI-

H146 cells expressed about 3-fold less IL-27Ra/WSX1
chain than the IL-27-responsive NCI-N592 cells, based
on Median-Fluorescence Intensity (MFI) values. The ex-
pression of the GP130 chain was also lower on the NCI-
H146 cell surface than on NCI-N592. Accordingly,
QRT-PCR analyses showed lower levels of IL27RA and
IL6ST (GP130) mRNA in NCI-H146 cells (Fig. 4b).

Probing GP130 receptor signaling by sIL-6R/IL-6 in IL-27-
responsive and -unresponsive SCLC cell lines

Since GP130 is a signaling receptor chain common to
several cytokines of the IL-12 and IL-6 family, including
IL-27 [30] and IL-6 [32], we tested the responsiveness of
these cells to IL-6 or to sIL-6R/IL-6, a chimeric protein
consisting of IL-6 linked to an extracellular portion of
IL-6Ra, similar to “hyper-IL-6” [33]. Hyper-IL-6 mimics
natural IL-6/IL-6Ra soluble complexes, which can dir-
ectly activate GP130-expressing cells in the absence of
surface IL-6Ra. Recombinant human IL-6 failed to acti-
vate STAT3 phosphorylation in NCI-N592, NCI-H69
and NCI-H146 cells, while it was capable of activating
STAT1/3 signaling in the NCI-H446 cell line (Fig. 5). In-
deed, IL-6Ra chain mRNA was less expressed in NCI-
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Fig. 2 IL-27 increases mRNA expression of TAP1 and TAP2 genes. QRT-PCR analysis of TAPT and TAP2 mRNA expression in IL-27- and IFN-y-
stimulated cells relative to untreated controls from five SCLC cell lines (NCI-N592, -H82, -H446, -H69 and -H146). Cells were cultured in the pres-
ence of medium, IL-27 (black histograms) or IFN-y (grey histograms) for 18 h. Data, normalized to GAPDH housekeeping gene, are expressed as
fold change relative to control. Error bars represent SD in one representative experiment out of two with consistent data
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P-STAT3 and total STAT3 proteins in SCLC cells cultured for 20 min with medium (CTR), IL-27 or IFN-y. Total STAT3 and a-tubulin served as loading controls.
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N592, NCI-H69 and NCI-H146 cells than in NCI-H446
by QRT-PCR analyses (Additional file 1: Fig. S2). Con-
versely, sIL-6R/IL-6 triggered STAT3 and to a much
lesser extent STAT1 tyrosine-phosphorylation in NCI-
N592, NCI-H69 and NCI-H446 cells (Fig. 5 and Add-
itional file 1: Fig. S3). However, sIL-6R/IL-6 failed to ac-
tivate STAT3 and STAT1 phosphorylation in NCI-H146
cells, further suggesting that, in these cells, unrespon-
siveness to IL-27 may be related to the very low expres-
sion of GP130 and/or its uncoupling with STAT
signaling.

sIL-6R/IL-6 fails to induce HLA class | expression and may
interfere with IL-27 effects

In view of the partially overlapping signaling properties
of IL-27 and IL-6, we tested the possible effects of sIL-
6R/IL-6 on HLA class I expression, in the IL-27- and
sIL-6R/IL-6-responsive cells. As shown in Fig. 6, sIL-6R/
IL-6 failed to induce HLA class I, which was up-

regulated by IL-27 tested in parallel, in NCI-N592, NCI-
H69 and NCI-H446 cells (Fig. 6a).

Recent data indicate that IL-6 may interfere with IL-27
functions due to the induction of SOCS3 expression,
which inhibits IL-27-mediated STAT signaling, in hepa-
tocellular carcinoma cells [29]. Therefore, we analyzed
whether IL-6 or sIL-6R/IL-6 may interfere with HLA
class I induction by IL-27 in three different SCLC cell
lines. Our data indicate that sIL-6R/IL-6 co-treatment
strongly inhibits (about 90 + 11%) IL-27-mediated HLA
class I expression in NCI-H69 cells, while IL-6 was inef-
fective (Fig. 6b). Conversely only a marginal inhibition
(10—20%) was observed in the other two cell lines tested
(NCI-N592 and NCI-H446 cells), indicating heterogen-
eity in the sIL-6R/IL-6 inhibitory effect in different
SCLC cells (data not shown). In addition, the use of an
anti-GP130 neutralizing antibody had similar inhibitory
effects on IL-27 activity, in NCI-H69 cells (Fig. 6b).
However, pre-treatment of NCI-H69 cells followed by
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removal of sIL-6R/IL-6 was not effective (Additional file
1: Fig. S4). These data suggest that sIL-6R/IL-6 may at-
tenuate IL-27 activity through a mechanism different
from the induction of JAK/STAT signaling inhibitors,
such as SOCS3, in the NCI-H69 model. Indeed, SOCS3
is constitutively expressed in NCI-H69 cells but its ex-
pression, as mRNA or protein, shows limited changes in
response to sIL-6R/IL-6 stimulation either at short-term,

i.e. after 1-4 h (Fig. 7a and b) or at longer times (Add-
itional file 1: Fig. S5).

It is well known that several common effects of IFNs
and IL-27 are mediated by STAT1 tyrosine phosphoryl-
ation, which is essential for the trans-activation of
STAT1-sensitive genes. Although IL-27 also activates
STAT3 phosphorylation, the STAT1-dependent, IFN-like
effects prevail, in different cellular models [18, 29]. We
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Fig. 5 Comparative analysis of STAT1 and STAT3 phosphorylation in
SCLC cell lines stimulated with different cytokines. a Western blot
analysis of tyrosine phosphorylated (P)-STAT1 and P-STAT3 proteins
in NCI-N592 and NCI-H69 SCLC cells cultured for 30 min with
medium (CTR), sIL-6R/IL-6 (hy-IL-6), IL-6, or IL-27. Total STAT3 or
STAT1 proteins and a-tubulin served as loading controls. b Kinetics
(10 or 30 min) of STAT1 and STAT3 phosphorylation in the IL-27-
sensitive cell line NCI-H446 cells cultured with medium alone (CTR),
sIL-6R/IL-6 (hy-IL-6), IL-6, IL-27 or IFN-y. ¢) Comparison of STAT1 and
STAT3 phosphorylation in the IL-27-sensitive cell line NCI-N592 and
in the IL-27-non-responsive NCI-H146 cells stimulated with medium
alone (CTR), sIL-6R/IL-6 (hy-IL-6), IL-6, and IL-27

then analyzed the effects of sIL-6R/IL-6 on IL-27-
mediated STAT signaling. As shown in Fig. 7, sIL-6R/IL-
6 is a stronger inducer of STAT3 than of STAT1 phos-
phorylation and, conversely, IL-27 mediates stronger
STAT1 and weaker STAT3 phosphorylation, in NCI-H69
cells (Fig. 7c). The simultaneous stimulation with sIL-
6R/IL-6 and IL-27 resulted in a strong phosphorylation
of both STAT1 and STAT3, thus altering the phospho-
STAT1/phospho-STAT3 balance.

Discussion

In this study we show, for the first time, that cultured
SCLC cells respond to IL-27 by activating STAT1, and
to a lesser extent STAT3, tyrosine phosphorylation and
by up-regulating HLA class I surface molecule expres-
sion. SCLC is an aggressive cancer, which usually shows
down-regulated expression of HLA class I molecules
and may therefore escape from immune recognition by
CTLs [9, 10]. SCLC cells express tumor associated anti-
gens, which can be recognized by CTLs including, for
example, the cancer/testis antigens MAGE-1 and -3
[11], the ion channel gBK [12], recoverin [34] and the
neuron-associated protein Hu [35]. Several lines of evi-
dence suggest that CTLs may play a protective role in
SCLC. Indeed, CTLs recognizing SCLC-associated anti-
gens have been isolated from patients with long-term
survival [36] eventually associated with concomitant
autoimmunity due to antigen sharing by SCLC and nor-
mal tissues [34, 35]. In addition, the recent finding that
SCLC patients respond to anti-PD-1 antibodies also sup-
ports a role for CTLs in SCLC immune control [5]. [FN-
y is able to restore HLA class I expression and SCLC
antigen recognition by CTLs, in vitro, through the in-
duction of different components of the antigen-
presentation machinery, among which are TAP1 and
TAP2 [11, 12]. However, IFN-y is a stronger inducer of
PD-L1 expression than IL-27, in SCLC and may there-
fore limit anti-tumor responses by PD-1 expressing
CTLs in vivo. In this respect, IL-27 may offer a better
chance to induce HLA class I expression with a limited
effect on PD-L1 induction.
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The induction of surface HLA class I expression by IL-
27 and IFN-y is related to the activation of the STAT1 sig-
naling pathway, which is an essential mediator of both
IFNs and IL-27 biological effects [19, 23, 26, 27]. Indeed,
recent studies by proteomics [18] or gene expression pro-
filing [29] in different cell types showed a broad overlap
between IFN-y and IL-27 effects, including the induction
of several components of the HLA class I antigen presen-
tation machinery. However, the NCI-H146 cell line was
completely unresponsive to IL-27 both in terms of HLA
class I induction and STAT1/3 signaling, suggesting het-
erogeneity in the response to IL-27 in different SCLC. In
such cases, IFN-y may be a more suitable agent to restore
CTL responses against SCLC, as also the IL-27-resistant
SCLC cells were sensitive to IFN-y induction. Our present
findings also suggested that IL-27 unresponsiveness could
be related to specific alterations in the IL-27R complex.
Indeed, the IL-27-resistant cell line NCI-H146 showed re-
duced expression of IL-27RA and GP130 receptor chains,
and failed to activate STAT3 signaling in response to sIL-
6R/IL-6, a direct agonist of GP130 [33].

IL-6 is a pro-inflammatory cytokine, which plays an
important role also in the progression and immune-

regulation in several types of cancers through the activa-
tion of the STAT3 pathway [37, 38]. Particularly, in
SCLC patients IL-6 levels were elevated in the circula-
tion and related to worse survival [31]. In addition,
phosphorylated STAT3 was constitutively expressed in
the SCLC tumors in vivo [39] and a very recent report
supports a role for IL-6 produced by tumor-associated
macrophages in the paracrine activation of STAT3, in
SCLC [40]. Finally, NCI-H446 SCLC cells can produce
IL-6 in response to Hypoxia-inducible factor la and ex-
press IL-6/STAT3-related genes [41]. Accordingly, in the
present report, we could not detect constitutive tyrosine
phosphorylation of STAT3 in all SCLC cell lines studied
but IL-6 induced STAT3 activation only in the NCI-
H446 cell line. The other SCLC cell lines failed to re-
spond to IL-6 but three of them showed STAT3 activa-
tion upon sIL-6R/IL-6 stimulation. sIL-6R/IL-6 is similar
to hyper-IL-6, an IL-6/IL-6Ra extracellular domain
chimera, which mimics natural, soluble IL-6/IL-6Ra
complexes and can directly activate the GP130 receptor
in cells lacking IL-6Ra [33]. Indeed, IL-6 signaling
through the GP130 chain requires the IL-6Ra, either as
cell surface-bound molecule or in a soluble form in
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Fig. 7 Analysis of SOCS3 expression and STAT1/3 phosphorylation
following treatment with IL-27, sIL-6R/IL-6 or both cytokines. a sIL-6R/IL-6
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changes of SOCS3 mRNA expression by QRT-PCR. Constitutive expression
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are expressed as 1/ACT. Error bars represent SD in one representative
experiment out of two with consistent data. b Western blot analysis
reveals constitutive SOCS3 expression (untreated control sample,
CTR), which is marginally effected by sIL-6R/IL-6 (hy-IL-6) stimulation,
at the indicated time intervals, in NCI-H69 cells. Tyrosine phosphorylated
(P)-STAT1 and P-STAT3 proteins are analyzed as control of signal trans-
duction. ¢ Western blot analysis of NCI-H69 cells treated for 30 min with
the indicated cytokines shows that IL-27 mediates stronger induction of
P-STAT1, which is not inhibited by concomitant stimulation with sIL-6R/
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complex with IL-6 [42]. Accordingly, the IL-6-
responsive cell line NCI-H446 expressed IL6RA gene,
which was less expressed in the IL-6-unresponsive,
sIL-6R/IL-6-sensitive NCI-N592, NCI-H69 and NCI-
H146 cells. Our present data may prompt further
studies to identify the potential role of natural IL-6/
IL-6Ra complexes in the in vivo activation of STAT3
and in the pathogenesis of SCLC.

Previous findings indicated that GP130 signaling, in-
duced by IL-6 ligands, may switch-off the responsiveness
to IL-27, through the induction of the suppressor of
cytokine signaling, SOCS3, in human hepatocellular car-
cinoma cells [29]. SOCS are P-STAT-inducible proteins,
which act as potent blockers of STAT protein signaling
in a feed back loop [43]. In view of the potential role of
IL-6 ligands in SCLC, we tested whether sIL-6R/IL-6
may alter IL-27 effects in SCLC cells. The interference
of sIL-6R/IL-6 was particularly evident in the NCI-H69
cell model, where the concomitant presence of sIL-6R/
IL-6 inhibited IL-27-driven surface HLA class I expres-
sion by 90%. However, the inhibitory effect of IL-6 sig-
naling seemed not related to SOCS3 induction in NCI-
H69 cells because: i) pre-stimulation with sIL-6R/IL-6
followed by removal shortly before IL-27 stimulation
failed to interfere with HLA class I induction, ii) SOCS3
is constitutively expressed by NCI-H69 cells and is not
further induced by sIL-6R/IL-6 and iii) IL-27 induces
STAT1 signaling also in the presence of sIL-6R/IL-6.
The role of SOCS3 in cancer is still controversial, be-
cause SOCS3 has been reported as a tumor-suppressor
or tumor-promoting molecule, in different tumors [44].
For example, in pancreatic cancer SOCS3 expression
correlates with a better prognosis and overexpression of
SOCS3 limits tumor growth, while SOCS3 silencing by
promoter methylation has opposite effects [45]. On the
other hand, constitutive SOCS3 expression has been re-
ported in human melanomas, where it can inhibit re-
sponsiveness to IFNs and may contribute to resistance
to IEN-treatment [46, 47]. Somehow surprisingly, this is
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not the case of NCI-H69 cells, which respond very well to
both IEN-y and IL-27, in spite of constitutive SOCS3 ex-
pression. An alternative explanation for the sIL-6R/IL-6-
mediated inhibition of IL-27 effects, is that the concomi-
tant signaling of sIL-6R/IL-6 and IL-27 alters the balance
between tyrosine-phosphorylated forms of STAT1 and
STAT3 (Fig. 7). Indeed, IL-27 is a weak inducer of STAT3
and a much better inducer of STAT1, whereas sIL-6R/IL-
6 is a strong inducer of STAT3. During simultaneous
stimulation by the two cytokines, phosphorylated STAT1/
STAT3 heterodimer formation may be favored [48]. Al-
though the functional role of such heterodimers is still
poorly understood, their formation may reduce the avail-
ability of phospho-STAT1 homodimers, which are media-
tors of IL-27 intracellular functions. In the case of IFN-y
signaling, the inhibitory effect of sIL-6R/IL-6 is negligible,
as [FN-y is a stronger inducer of STAT1 phosphorylation
than IL-27. Whatever the mechanism(s) of IL-6 interfer-
ence with IL-27 biological activity, it may be overcome in
therapeutic settings by the use of the IL-6/IL-6R blocking
agents [49] or STAT3 inhibitors [50].

Conclusions

In conclusion, our present data suggest that IL-27 might
be exploited in immunotherapy approaches in advanced
SCLC with down-regulated HLA expression. Previous
clinical studies showed that IFN-y therapy has no impact
on survival in patients with SCLC in remission after
standard therapies [51, 52] and this finding may relate to
the ability of IFN-y to induce immune-resistance
through the PD-L1/PD-1 pathway. IL-27 might be com-
bined with treatments aimed at restoring CTL re-
sponses, such as anti-PD-1/anti-PD-L1 therapy [5], and/
or with agents blocking the IL-6/STAT3 pathway. In this
respect IL-27 might be particularly useful at the onset of
anti-PD-1 treatment to enhance CTL recognition of
otherwise HLA class I-negative SCLC cells. At further
anti-PD-1 administrations, up-regulation of HLA class I
expression may rely on endogenous IFN-y production
by CTLs, once the immune response has been initiated.
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