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Abstract

Background: Mounting evidence suggests that RAF-mediated MEK activation plays a crucial role in paradox MAPK
(re)activation, leading to resistance and therapeutic failure with agents hitting a single step along the MAPK cascade.

Methods: We examined the molecular and functional effects of single and combined BRAF (dabrafenib), pan-RAF
(RAF265), MEK (trametinib) and EGFR/HER2 (lapatinib) inhibition, using Western Blot and conservative isobologram
analysis to assess functional synergism, and explored genetic determinants of synergistic interactions.
Immunoprecipitation based assays were used to detect the interaction between BRAF and CRAF. The Mann-Whitney
U test was used for comparing quantitative variables.

Results: Here we demonstrated that a combination of MEK and BRAF inhibitors overcomes paradoxical MAPK
activation (induced by BRAF inhibitors) in BRAF-wt/RAS-mut NSCLC and PDAC in vitro. This results in growth
inhibitory synergism, both in vitro and in vivo, in the majority (65%) of the cellular models analyzed, encompassing cell
lines and patient-derived cancer stem cells and organoids. However, RAS mutational status is not the sole determinant
of functional synergism between RAF and MEK inhibitors, as demonstrated in KRAS isogenic tumor cell line models.
Moreover, in EGFR-driven contexts, paradoxical MAPK (re)activation in response to selective BRAF inhibition was
dependent on EGFR family signaling and could be offset by simultaneous EGFR/HER-2 blockade.

Conclusions: Overall, our data indicate that RAF inhibition-induced paradoxical MAPK activation could be
exploited for therapeutic purposes by simultaneously targeting both RAF and MEK (and potentially EGFR family
members) in appropriate molecular contexts. KRAS mutation per se does not effectively predict therapeutic
synergism and other biomarkers need to be developed to identify patients potentially deriving benefit from
combined BRAF/MEK targeting.
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Background

The Mitogen-Activated Protein Kinase (MAPK) pathway
is a key signaling pathway involved in the physiologic
regulation of cell growth, survival, differentiation, apop-
tosis and migration [1]. Aberrant activation of the MAPK
pathway has been implicated in the pathogenesis of many
human diseases, including cancer, in which MAPK activa-
tion may stem from either genetic aberrations targeting
RAS, B Rapidly Accelerated Fibrosarcoma (BRAF), or
Mitogen-activated protein kinase kinase (MEK) directly
or dysregulation of upstream acting Receptor Tyrosine
Kinases (RTK) [2, 3]. MAPK activation is finely regulated
at different levels; moreover, in addition to “inter-pathway”
crosstalks operating at multiple levels between MAPK and
other signaling cascades (e.g. Phospholnositide3-Kinase
(PI3K)/ Protein kinase B (AKT)/ mammalian Target of
Rapamycin (mTOR) [4, 5]) “intra-pathway” feedback loops
regulate Extracellular-signal-Regulated Kinase (ERK)
activity through phosphorylation, intracellular localization,
and complex formation [6-8]. As a result, inhibition of a
single step (either BRAF or MEK) of the cascade has met
with limited clinical success [9], presumably because of
the interruption of negative feedback loops leading to
downstream pathway (re)activation. Indeed, in some gen-
etic contexts, selective BRAF inhibition has been linked to
paradoxical MAPK activation, a phenomenon attributed
to the ability of BRAF inhibitors to activate RAF signaling
by promoting CRAF-BRAF dimerization, in BRAF wild-
type cells [10-12].

Over the past few years, a vertical combination of BRAF
and MEK inhibitors (dabrafenib/trametinib or vemurafe-
nib/cobimetinib) has demonstrated striking clinical efficacy
and has become a standard of care in patients with BRAF-
mut melanoma and lung cancer [13-16], although the
molecular mechanisms by which combined BRAF/MEK
inhibition results in synergistic anti-tumor activity are
still not completely clear and the same combinations
have not met with the same therapeutic success in
other BRAF-mut cancer type of different histological
origin [17]. On the other hand, RAF activation has been
shown to be crucial to RAS-mediated transformation
and its inhibition, by either isoform-selective or non-
selective inhibitors, appears to be essential for effective
downstream MEK/ERK inhibition [18] and strikingly
synergizes with MEK inhibition in controlling tumor
growth and overcoming resistance, particularly in KRAS
mutation-driven contexts [19, 20].

Here we analyzed the molecular and functional effects
of combined BRAF/MEK inhibition in cell line and
patient-derived preclinical models of Non-Small Cell Lung
Cancer (NSCLC) and Pancreatic Ductal AdenoCarcinoma
(PDAC) and found that selective BRAF inhibition causes
paradoxical MAPK activation that could be reversed by
simultaneous MEK blockade; functionally, a combination
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of dabrafenib (selective BRAF inhibitor) and trametinib
(selective MEK inhibitor) achieved strikingly synergistic
in vitro tumor growth inhibition in a proportion of the
models assessed; however, RAS mutational status appears
not to be sole determinant of functional synergism between
RAF and MEK inhibitors. Indeed, in Epidermal Growth
Factor Receptor (EGFR)-family driven models, paradoxical
MAPK reactivation appears to be sustained by RTK
signaling and may be reversed by EGFR/Human Epidermal
Growth Factor Receptor 2 (HER2)- blockade.

Methods

Cell lines

HCC827 cell lines were obtained from the American
Type Culture Collection (ATCC). Isogenic cells lines
HCT116 (HK2-6 and HKE-3) were kindly provided by
Dr. Shirasawa and performed by gene targeting technique
[21]; NCI-H1299 cell lines and relative clones (H1299 K4,
D2, C2, V9) were kindly donated by Dr. Broggini [22].
Lung Cancer Stem Cells (LCSC) were generated in vitro
as previously reported [23, 24].

Cell lines were routinely maintained in RPMI 1640 or
DMEM medium supplemented with 10% fetal bovine
serum (FBS), 2 mM L-glutamine, and antibiotics in a
humidified atmosphere with 5% CO, at 37 °C.

Drugs treatment and cell proliferation assay

Trametinib (GSK1120212), dabrafenib (GSK2118436) and
lapatinib (Tyverb) were kindly provided by GlaxoSmithKline
(Brentford, Middlesex, UK). Trametinib and lapatinib were
dissolved in DMSO as a 1 mM stock solution and stored at
- 20 °C, dabrafenib was dissolved in DMSO as a 10 mM
stock solution and stored at — 20 °C. RAF265 (CHIR-265,
R265) was obtained from Novartis Pharma (Basel,
Switzerland) and dissolved in DMSO as a 10 mM stock
solution and stored at - 20 °C. The final concentration
of both drugs was obtained by dilution with culture
medium. Effects on cell growth in response to different
treatments were monitored by Crystal Violet assay [24].
For Crystal Violet assay, a fixed number of tumor cells
were dispensed into 24-wells (NEST Biotechnology),
and the following day cells were treated at indicated
concentrations of drugs [24].

Xenograft experiments
Procedures relative to animal use and care were autho-
rized and certified by Italian Minister of Health (decree n.
67/97A, protocol 2560/97, Rome Health Service Unit).
Regina Elena National Cancer Institute and animal care
Unit approved the procedures involving animals (species,
quality and number of animals, discomfort/distress/pain
of animals, anaesthesia and euthanasia).

5x 10° MiaPaCa2 cells were intramuscularly injected
into immunodeficient athymic mice (6—8 week-old female).
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Four groups of animals with similar tumor volume were
created when the tumors reached palpability. The following
treatments were administered for two weeks: 1) daily
vehicle administration; 2) daily oral administration with
0.2 mg/Kg trametinib; 3) daily oral administration with
30 mg/Kg dabrafenib; 4) combination treatment (0.2 mg/Kg
trametinib + 30 mg/Kg dabrafenib). 6 animals composed
each group. Tumor weight (in mg) was estimated daily
based on the measurement of the longest perpendicular
diameters, as previously described [24]. Animals were
also daily monitored for food consumption, body-weight,
and behavior. Animals were sacrificed 27 days after tumor
cell injection. Differences between treatment groups were
analyzed by 2-tailed Student’s t test for unpaired samples;
statistical significance was set at p < 0.05.

Human pancreatic tumor and normal organoid culture:
Isolation, culture and proliferation assay

Human neoplastic organoid cultures were established from
resected PDAC specimens. Specimens from pancreatic
resections were digested enzymatically with collagenase/
dispase dissociation and then plated in Matrigel to gen-
erate pancreas organoid cultures, in human complete
medium [25]. PDAC organoids were then maintained
in human complete medium. For the 50% of cell growth
inhibition (ICsp) analysis, organoids were dissociated
into single cells by first triturating them in media
through a fire-polished glass pipette, and then by
enzymatic dissociation with 2 mg/ml dispase dissolved
in TrypLE (Life Technologies). Cells were counted and
diluted to 10 cells/pl in a mixture of complete media,
Rho Kinase inhibitor Y-27632 (10.5 uM final concentra-
tion, Sigma) and Growth factor-reduced Matrigel (GFR-
Matrigel, 10% final concentration). 100 pl of this mixture
(1000 cells/well) was plated in 96-well plates (Nunc),
whose wells had been previously coated with a bed of
GFR-Matrigel to prevent attachment of the cells to the
bottom of the plate. Cell viability in response to the differ-
ent drugs was measured using the CellTiter-Glo assay
(Promega Corporation) and Synergy 4 reader (Biotek).

Sanger sequencing for cell lines and organoids

DNA was extracted from cell lines using the QIAamp
DNA mini kit (Qiagen) and quantified with the Nanodrop
Spectrophotometer (Thermo). Primers for amplification
and sequencing of exon 2 of the KRAS gene (Fw: aggc
ctgctgaaaatgactgaata and Rw: ctgtatcaaagaatggtectgceac)
and of exon 15 of the BRAF gene (Fw: tcataatgcttgctctga
tagga and Rv: ggccaaaaatttaatcagtgga), PCR products
were purified using the Nucleospin kit and sequenced
by capillary electrophoresis using the BigDye Terminator
v3.1 cycle sequencing kit on 3130 Genetic Analyzer
(Applied Biosystem). Sequence traces were analyzed using
the Clustal W program (https://embnet.vital-it.ch/software/
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ClustalW.html). For organoids Sanger Sequencing see
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334572/
#SD15 [25].

Western blot (WB) analysis

For western blotting, total cell lysates were prepared as
described previously [26]. The proteins were fractionated
by SDS-polyacrylamide gel electrophoresis and transferred
to nitrocellulose membrane (Amersham, Arlington Heights,
USA). Membranes were probed with primary antibodies
and the signal was detected using peroxidase-conjugated
anti-mouse or anti-rabbit secondary antibodies (Jackson
Immunoresearch Labs, Inc., Baltimore, USA). The
enhanced chemi-luminescence (ECL) system (Amersham)
was used for detection. The following primary Antibodies
(Abs) were used: phosphorylated (Thr202/Tyr204) and
total ERK1/2, BRAF, phosphorylated (Tyr1173), phos-
phorylated (Tyr1068) and total EGFR, phosphorylated
(Tyr1248) and total HER2, phosphorylated (Ser217/221)
and total MEKI1/2, phosphorylated pP90™*** (Ser380)
(from Cell Signaling Technology Inc. Beverly, USA) and
CRAF (from Santa Cruz Biotechnology, Santa Cruz, CA).
To control the amount of proteins transferred to nitrocel-
lulose membrane, -actin, Hsp70 and Tubulin were used
and detected by anti p-actin mAb (clone AC-15, Sigma,
St. Louis, USA), anti Hsp70 mAb (from Calbiochem
Merck Biotechnology), and anti-Tubulin mAb (from
Abcam, Cambridge, MA, USA). Image detection was
performed with Amersham Hyperfilm ECL (Amersham,
Amersham, Chicago, IL; Figs. 1, 4, 7; Additional file 1:
Fig. S1). For the organoids, protein lysates were frac-
tionated by SDS-PAGE, transferred to a polyvinylidene
difluoride (PVDF) membrane and then blocked with
5% BSA in TBST (1% Tween 20, tris-buffered saline).
Proteins shown in Fig. 5 were detected on Kodak films
(Sigma-Aldrich, St. Louis, MO), using HRP-conjugated
secondary antibodies.

Immunoprecipitation (IP)

For immunoprecipitation cells were rinsed three times
with ice-cold PBS, scraped with CHAPS buffer (0.3%
CHAPS; 40 mM HEPES; 120 mM NaCl; 1 mM EDTA;
50 mM NaF; 10 mM Glycerol phosphate and 10X pyro-
phosphate) and lysed by incubation on ice for 30 min
after 4 h of treatments. RAF-1 antibody agarose conjugate
(Santa Cruz Biotechnology) was used as primary Abs and
incubated over night at 4 °C. The immunoprecipitates
were collected by centrifugation at 5000 rpm for 5 min
at 4 °C and after 2 wash in CHAPS buffer re-suspended
in 20 pl of the same buffer and Ladder buffer 4X. The
immune complexes were analyzed by Western blot ana-
lyses with mouse anti-CRAF antibody. Protein lysates were
also subjected to Western blot analyses with BRAF, CRAF
and PB-actin antibodies. Image detection was performed
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Fig. 1 Molecular analysis in KRAS-mut lung and pancreatic cell lines. a-d. Lung cancer cell line A549 and pancreatic cancer cell line MiaPaCa2
were treated with dabrafenib (@) and RAF265 (b) alone or in combination with trametinib (c-d) for 4 h at the indicated doses. The cells were
lysed and analyzed by Western Blotting using antibodies specific for the indicated proteins. Western blot with Hsp-70 specific antibody is shown
as protein loading and blotting control. @ A549 cells were treated with dabrafenib (10 uM) or RAF265 (10 uM) for 4 h. Endogenous CRAF was
immunoprecipitated and the immunocomplexes were blotted for BRAF or CRAF. BRAF and CRAF levels in total cell lysates are also shown

with Amersham Hyperfilm ECL (Amersham; Fig. 1;
Additional file 1: Figure S1).

Statistical analysis

The Mann-Whitney U test was used for comparing
quantitative variables. Results with two-tailed P values <
0.05 were judged to be statistically significant. Statistical
analysis was performed with SPSS 21.0 software (SPSS,
Chicago, IL). Synergism, additivity, and antagonism were
assessed by isobologram analysis with a fixed-ratio experi-
mental design using the Chou-Talalay method [27]. Results
were analyzed with the Calcusyn software (Biosoft,
Cambridge, United Kingdom) and Combination Index
(CI) were appropriately derived. By this method, an
average CI at the ED50, ED75, and ED90 < 1 indicates
synergism, = 1 indicates additivity, and >1 indicates
antagonism, respectively. For organoids analysis, IC5o and
the CI were calculated according to the Chou-Talalay
method using Compusyn. All the experimental methods
were performed in accordance with the institutional
National and International guidelines and regulations.

Results

Selective BRAF inhibition causes paradoxical ERK
activation in BRAF-wt/KRAS-mut contexts

First, we investigated the effects of BRAF and/or MEK
inhibition (using dabrafenib and trametinib, respectively)
on MAPK pathway activation in KRAS-mut lung and
pancreatic cancer cell lines (Additional file 1: Table S1). In
both A549 (KRAS-mut/BRAF-wt lung adenocarcinoma)
and MiaPaCa2 (KRAS-mut/BRAF-wt PDAC) exposure to
the BRAF-selective inhibitor dabrafenib for 4 h resulted in
the dose-dependent phosphorylation of MEK, ERK and
p90*°K, revealing a paradoxical MAPK activation (Fig. 1a);
such paradoxical activation was maintained or increased
up to 72 h (data not shown). Results in terms of MAPK
pathway activation were more variable in response to the
pan-RAF inhibitor RAF265; however, paradoxical ERK
activation was observed in both cell lines, but only at low/
intermediate concentrations (0.1 to 2.5 uM), with rela-
tively little changes occurring at the level of MEK and
p90*5X phosphorylation (Fig. 1b). Single-agent treatment
with the MEK inhibitor trametinib efficiently inhibited
ERK phosphorylation (Fig. 1c-d) and strikingly reduced
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RAF inhibition-induced ERK and p90*** phosphorylation,
thereby blunting the paradoxical effect (Fig. 1c-d). Similar
results were obtained in all the KRAS-mut lung (A427)
and pancreatic (PACA44, HPAFII, L3.6pl and PANCI)
cancer cell lines analyzed. Paradoxical activation of MEK/
ERK signaling following BRAF inhibition has been primarily
ascribed to the formation of BRAF/CRAF heterodimers
that stimulate ERK signaling [11]. To explore this possibility
in our system, we analyzed the formation of BRAF/CRAF
complexes in response to either dabrafenib or RAF265. As
assessed by IP/WB, both RAF inhibitors caused BRAF/
CRAF heterodimer formation in A549 cells (Fig. 1e); similar
results were obtained in the KRAS-mut pancreatic cancer
cell line HPAFII (Additional file 1: Figure S1).

Functional effects of simultaneous RAF and MEK
inhibition in BRAF-wt/RAS-Mut contexts

We then analyzed the functional effects of combined
BRAF and MEK inhibition on in vitro cell growth. In
RAS-mut lung (A549, KRAS-mut, and NCI-H1299,
NRAS-mut) and pancreatic (MiaPaCa2 and HPAFI],
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both KRAS-mut) cancer cell lines exposed to increasing
concentrations of dabrafenib, trametinib, or their com-
bination (at a fixed 1000:1 ratio) for 72 h, simultaneous
inhibition of both BRAF and MEK resulted in highly
synergistic growth inhibition (with CI ranging from
0.08 to 0.32, Fig. 2a-b and Additional file 1: Table S1);
functional synergism was confirmed using different
techniques for viability assessment (MTT, Additional
file 1: Figure S2A-B; TiterGlow, data not shown) and
appeared to be due to decreased proliferation, as shown
by greater accumulation of cells in the G1 and lower
percentage of cells in the S phases of the cell cycle, in
response to combined treatment (Additional file 1:
Figure S2C-D). More variable pharmacologic interactions
were observed in lung (A549 and NCI-H1299) and
pancreatic (MiaPaCa2 and HPAFII) cancer cell lines
with the combination of RAF265 and trametinib;
indeed, combined treatment was synergistic in A549 and
HPAFII (CIL: 0.64 and 0.28, respectively) and additive/
antagonistic in NCI-H1299 and MiaPaCa2 (CI: 2 and
1.10, respectively) (Fig. 2c-d).
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In vitro synergism with combined dabrafenib and tra-
metinib was further confirmed in PDAC xenograft models
in vivo, using the MiaPaCa2 cell line; indeed, as shown in
Fig. 3, combined dabrafenib and trametinib afforded
significantly greater tumor growth inhibition, as compared
to either agent alone (p for the comparison between com-
bination and dabrafenib: 0.02 at days 24 and 26 after treat-
ment start; p for the comparison between combination
and trametinib: < 0.01 from day 15 onward). We also ana-
lyzed the functional effects of combined dabrafenib and
trametinib in other lung (#=5) and pancreatic (n=6)
cancer cell lines characterized for KRAS/BRAF mutational
status (Additional file 1: Table S1). Combined treatment
resulted in synergistic growth inhibition in 2 out of 3
KRAS-mut NSCLC cell lines (Additional file 1: Figure S3)
but, was frankly antagonistic in two KRAS wild-type cell
lines (Additional file 1: Table S1). Similarly, combined
dabrafenib and trametinib resulted in growth-inhibitory
synergism in 5/6 pancreatic cancer cell lines (all carrying a
KRAS mutation, with the exception of T3 M4 and the
non-neoplastic cell line HPDE) and frank antagonism in
the KRAS-mut PANCI cell line (Additional file 1: Table S1
and Additional file 1: Figure S4).

Effects of combined BRAF/MEK inhibition in patient-
derived lung CSC and pancreatic cancer organoids

We next examined the molecular and functional response
to single and combined BRAF/MEK inhibition in a panel
of 6 LCSC lines (LCSC1, LCSC2, LCSC3, LCSC4, LCSC5,

Page 6 of 14

LCSC6) derived from patients with NSCLC of different
histological origin (large-cell neuroendocrine carcinoma:
LCSC1; squamous cell carcinoma: LCSC2, LCSC3 and
LCSC4; adenocarcinoma: LCSC5, LCSC6). As shown
in Fig. 4a and c for LCSC2 and LCSC3, selective BRAF
inhibition with dabrafenib resulted in paradoxical ERK
phosphorylation, while MEK inhibition with trametinib
strongly inhibited both basal and BRAF inhibition-induced
ERK activation. From a functional point of view, the com-
bination of dabrafenib and trametinib strongly inhibited
the in vitro growth of LCSC2 and LCSC3, resulting in a
highly synergistic pharmacologic interaction (CI 0.61
and 0.43 in LCSC2 and LCSC3, respectively; Fig. 4b
and d). Conversely, in the other LCSC tested single-agent
dabrafenib had variable growth-inhibitory effects, single-
agent trametinib was relatively ineffective, and their
combination did not afford increased growth inhibition
(Additional file 1: Table S1 and Figure S5).

Next, we explored the responses of patient-derived
PDAC organoids (Fig. 5a) to combined treatment with
dabrafenib and trametinib. We tested 4 neoplastic organoids
from individual patient T1, T5, T9 and T14 (all KRAS-mut;
Additional file 1: Table S1 and Fig. 5); the non-cancer orga-
noid N1 was used as control. As shown in Fig. 5b for the T1
organoid, selective BRAF inhibition with dabrafenib resulted
in paradoxical ERK phosphorylation, while trametinib
in combination with dabrafenib strongly inhibited
BRAF inhibition-induced ERK activation. Strongly syner-
gistic growth inhibitory effects were observed with the
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tumor weight was calculated. Results from one representative experiment out of two independent ones performed are shown. Asterisks indicate
statistically significant differences (p < 0.02 by 2-tailed Student's t test) for the comparison between * combination- and dabrafenib-treated mice
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Fig. 4 Effects of single and combined MEK and RAF inhibition in LCSC. a and c. Cells obtained from lung cancer spheres (LCSC) dissociation were
treated with trametinib (10 nM) and dabrafenib (10 uM) alone or in combination for 4 h. The cells were lysed and analyzed by Western Blotting using
antibodies specific for the protein above indicated. Western blot with Tubulin specific antibody is shown as protein loading and blotting control. b
and d. LCSC2 and LCSC3 cells were plated in 96-well flat-bottom plates; trametinib and dabrafenib were added at their final concentration (1-10 nM),
as single agents or in a fixed dose-ratio combination (1:1000). The results represent the average + SD of three independent experiments. Cl were
calculated by conservative isobologram analysis for experimental data and plotted against the fraction affected
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Fig. 5 Effects of single and combined MEK and RAF inhibition in patient-derived pancreatic organoids. a. Phase-contrast images showing an
organoid formation assay. Organoids were seeded as singles cells and treated after 48 h with different doses of trametinib (10 nM,), dabrafenib (10 puM)
and combination ratio 1:1000. Images were detected with EVOS Cell Imaging System (b). Patient-derived pancreatic organoid T1 (KRAS-mut) was
incubated with dabrafenib and trametinib alone or in combination for 24 h. Protein lysate were analyzed by Western Blotting using p-ERK antibody.
B-Actin is used as protein loading at blotting control. ¢. Patient-derived pancreatic organoid T1 was treated with increasing amounts of the dabrafenib
(0.1-10 pM) alone or in combination with trametinib (01-10 nM) ratio 1:1000, for 72 h. Cell viability was evaluated by Cell Titer Glo 2.0 assay. The table
shows the ClI of trametinib and dabrafenib in a normal pancreatic organoid N1 and in 4 different PDAC organoids KRAS-mut
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combination in 3/4 cancer-derived organoids obtained
from pancreatic resections, including T1 (CL: 1x 10"
Fig. 5¢c and Additional file 1: Table S1).

Efficacy of the combination of trametinib and dabrafenib
in isogenic cell lines with different KRAS mutational
background

In the entire panel of cell lines tested (Additional file 1:
Table S1), the association between KRAS mutational sta-
tus and functional response to combination treatment
did not reach statistical significance (p value according
to Mann-Whitney test 0.84; Additional file 1: Figure S6);
however, since the combination appeared to be synergistic
in the majority of KRAS-mut cell lines and the occurrence
of paradoxical ERK activation upon selective BRAF inhib-
ition was originally described in KRAS-mut contexts [11],
we investigated the effects of dabrafenib and trametinib,
alone and in combination, in two KRAS isogenic tumor
cell line models. In the HCT116 (KRASS3P"") colorectal
cancer cell line the combination had additive effects (CI:
1.1), which became frankly antagonistic in both HK2-6
(KRASEPP/G13P; CI 11.1) and HKE-3 (KRAS"”*; CI: 3.6)
(Fig. 6). Furthermore, in H1299 (NRAS-mut lung adeno-
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synergistic (CI: 0.13), enforced expression of different KRAS
isoforms (G12C, G12D, G12V) did not substantially modify
the nature of pharmacologic interactions between dab-
rafenib and trametinib, which remained synergistic in
all KRAS-mut clones, although to a slightly lesser extent
in H1299 V9 (KRAS"?", CI: 0.73, Fig. 6). Overall, these
results support the hypothesis that RAS mutational status
is not the sole determinant of functional synergism
between RAF and MEK inhibitors.

Potential role of RTKs in paradoxical MAPK activation

In Calu-3 (HER2-amplified, KRAS-wt, lung squamous
cell carcinoma), dabrafenib-induced paradoxical ERK ac-
tivation could not be abrogated by simultaneous MEK
inhibition (Fig. 7a-b) and pharmacological interactions
between the two drugs were highly antagonistic (CI:
19.3; Fig. 7c). We thus investigated whether EGFR family
members may be involved in paradoxical MAPK activa-
tion in RAS-wt, EGFR family-driven contexts. In Calu-3
(HER22-amplified) and HCC827 (EGFR-mut), in which
both EGFR and HER2 are constitutively active, selective
BRAF inhibition by dabrafenib induced a strong paradox-
ical activation of the MAPK cascade (p-MEK, p-ERK, and

carcinoma), in which combined treatment was clearly — p-p90°*X) (Fig. 7d). In these contexts, MAPK activation
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Fig. 6 Effects of combined BRAF/MEK inhibition in isogenic cell lines with different KRAS mutational background. Growth inhibitory interactions
between trametinib and dabrafenib were assessed in CRC cancer cells HCT116 and clones HKE-3 (KRASC?PC135) and HK2-6 (KRAS"*Y) and in
NSCLC cell line H1299 K4 (KRAS-wt) and clones C2 (KRASC'?) D2 (KRAS®™P) and V9 (G12V). Viability was then assessed after 72 h by Crystal violet
assay and pharmacologic interactions were evaluated using the Calcusyn software. Cl were plotted against the fraction affected
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(See figure on previous page.)

Fig. 7 Selective BRAF inhibition induces EGFR family-dependent MAPK hyperactivation in Calu-3 cells. a and b The NSCLC cell line Calu-3 (HER2-amplified,
KRAS-wt) was treated with increasing concentrations of dabrafenib (0.01-10 uM) alone a or in combination with trametinib (ratio 1:1000; b) for 4 h. The
cells were lysed and analyzed by Western Blotting using antibodies specific for the proteins indicated. Western blot with Hsp70 specific antibody is shown
as protein loading and blotting control. ¢ Calu-3 cells were treated with increasing concentrations of dabrafenib (0.01-10 uM) and trametinib
(0.01 nM=10 nM) alone or in combination for 72 h. Cell viability was assessed by Crystal violet assay and pharmacologic interactions were
evaluated using the Calcusyn software. The results represent the average + SD of three independent experiments. d Calu-3 and HCC827 (EGFR-

specific for the protein above indicated

mut) cells were treated with increasing concentrations of dabrafenib (0.1-10 uM) and lapatinib (0.1-10 uM) for 4 h. The proteins were
subjected to Western Blotting and analyzed for the indicated antibodies. e MiaPaCa2, A549 and A427 cells were treated with dabrafenib
(10 uM) and lapatinib (10 uM) alone or in combination for 4 h. The cells were lysed and analyzed by Western Blotting using antibodies

was found to be dependent on EGFR family activation:
indeed, the EGFR/HER2 inhibitor lapatinib strongly
reduced dabrafenib-induced MAPK activation (Fig. 7d).
Conversely, in KRAS-mut contexts (MiaPaCa2 pancreatic
cancer; A549 and A-427 NSCLC), EGER family activation
was dispensable for dabrafenib-induced paradoxical ERK
activation, as the addition of lapatinib to dabrafenib had
no appreciable effect on ERK activation (Fig. 7e). From a
functional point of view, in EGFR-dependent NSCLC
models (HER2-amplified, Calu-3; EGFR-mut, HCC827
and NCI-H1650) double EGFR/HER?2 blockade by lapati-
nib resulted in striking growth inhibitory effects in vitro,
which were not substantially increased by simultaneous
exposure to MAPK pathway inhibitors (either dabrafenib
or trametinib, Additional file 1: Figure S7).

Discussion

In this study, we investigated the potential of a combina-
torial treatment with small molecules targeting key com-
ponents of the MAPK pathway, namely BRAF and MEK,
in KRAS-mut NSCLC and PDAC. In line with current
literature, selective BRAF blockade resulted in paradoxical
downstream MAPK activation, which was reversed by
simultaneous MEK inhibition. In a consistent proportion
(21/32, 65%) of the models examined (both cell lines
and patient-derived lung CSC and PDAC organoids),
the “vertical” combination of dabrafenib and trametinib
(targeting BRAF and MEK) resulted in synergistic tumor
growth inhibition in vitro, mostly due to greater inhibition
of proliferation achieved with combined treatment. In the
MiaPaCa2 xenograft model, combined dabrafenib and
trametinib also resulted in significantly greater tumor
growth inhibition in vivo, as compared to each agent
alone. Pan-RAF inhibitors (such as RAF265) had more
variable effects in terms of both paradoxical MAPK ac-
tivation and functional synergism with MEK inhibitors.
Although the combination appeared to be synergistic in
the majority of KRAS-mut cell lines, no definitive mechan-
istic association between KRAS mutational status and func-
tional synergism with combined BRAF/MEK inhibition was
found, supporting the idea that RAS mutational status is
not the sole determinant of functional synergism between

RAF and MEK inhibitors. Indeed, in KRAS-wt contexts,
paradoxical MAPK activation in response to BRAF
inhibition may still occur and appears to be mediated by
upstream signaling through RTKs (namely EGFR family
members).

The majority of PDAC (~90%) and a high proportion
(25-40%) of NSCLC harbor oncogenic activation of
KRAS [28-31], which have been demonstrated to be
necessary to both initiate and maintain tumorigenesis
[32]. Mutant KRAS engages several downstream pathways,
including the MAPK signaling cascade, to execute its
oncogenic program [28]. While RAS mutations are an
established resistance factor to an array of targeted agents
[33, 34], clinical attempts at targeting RAS activity, either
directly or by targeting common downstream effectors,
have failed so far [35]. One appealing strategy would be to
target MAPK activation downstream of RAS: indeed, RAF
proteins have been shown to be indispensable for RAS-
dependent transformation and progression in several
cancer models [36—-38]; moreover, early evidence has
suggested that the presence of KRAS mutations might
portend sensitivity to MEK inhibitors [39-45]. However,
clinical translation of single-step RAF or MEK inhibition
in cancer has been hampered by complex feedback mecha-
nisms that are not only able to reactivate targeted pathways
following treatment [18, 46], but also specifically and dif-
ferentially operate in different tumor genetic backgrounds.
According to currently accepted mechanistic models, we
show here that exposure of KRAS-mutant cells (including
lung CSC and PDAC organoids) to BRAF-selective inhibi-
tors results in the paradoxical activation of the MEK/ERK
module, due to the formation of CRAF/BRAF dimers, as
previously reported [10-12]. Conversely, in BRAF'®%F
melanomas no BRAF/CRAF heterodimer formation was
observed and both BRAF- and MEK-selective inhibitors
efficiently shut down ERK activation (Cesta Incani et al,
2018, manuscript in preparation), even when used as single
agents. As a consequence, simultaneous RAF/MEK
inhibition has a strong mechanistic rationale in BRAF-wt
(and particularly in KRAS-mut) genetic contexts [18—20].
Our findings do support this concept, as striking growth-
inhibitory synergism was observed with dabrafenib and
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trametinib in the majority of NSCLC and PDAC models
tested (both cell lines and, most importantly, patient-
derived lung CSC and PDAC organoids). However, a few
important points remain to be clarified: 1) whether select-
ive or broad-spectrum RAF-isoform inhibition might be
more advantageous in combination with MEK inhibitors;
2) the role of KRAS-mut as a potential selection biomarker
for the “vertical” RAF/MEK inhibitor combination.
Literature data suggest that CRAF inhibition is crucial to
enable MEK inhibitors to effectively inhibit downstream
signaling to ERK1/2 [18] and that pan-RAF inhibitors
could more potently synergize with MEK inhibitors, as
compared with BRAF-selective inhibitors [20]. In our
hands, the pan-RAF inhibitor RAF265 had more variable
effects, as compared to the BRAF-selective inhibitor dabra-
fenib, on both paradoxical ERK activation and growth-
inhibitory synergism; such discrepancies may be due to
several different reasons, including the different dynamics
and dose-dependency of inhibition of individual RAF
isoforms, cellular ATP levels [10, 47], the specific genetic
background of the models tested, and the specific site of
action of the MEK inhibitors being combined [18]. Overall,
while the general strategy of inhibiting both RAF and MEK
along the MAPK cascade appears to be promising even
outside the clinically validated BRAF-mut genetic context
(see also earlier work conducted by our group in leukemia
models, [48]), the optimal selection of agents/mechanisms
of action of RAF and MEK inhibitors to be combined
remains to be addressed, taking into account the clinical
tolerability profile of individual agents/combinations.
Paradoxical MAPK pathway activation in response to
BRAF-selective inhibitors was initially closely linked to
RAS mutational status, in fact this effect was absent in
cells with wild-type RAS, while it was restored after the
introduction of an oncogenic RAS [49, 50]. Together
with evidence that “vertical” RAF/MEK blockade was
synthetically lethal in KRAS-mut contexts [19], such
background prompted us to select NSCLC and PDAC,
two diseases where KRAS mutations are frequent and
bear important clinical consequences, as the main target
of our analysis. However, synergism analysis across the
entire set of cellular models analyzed displayed no
significant correlation between RAS mutational status and
synergistic interactions between dabrafenib and trameti-
nib. Such observation was mechanistically corroborated
by evidence that pharmacological interactions between
BRAF and MEK inhibitors were not substantially modified
in isogenic cellular models of lung and colorectal cancer
differing for KRAS status. This observation is consistent
with evidence that paradoxical MAPK activation in
response to BRAF inhibition also occurs in KRAS-wt/
BRAF-wt genetic contexts (as shown in this report and in
[49]) and supports the idea that RAS mutational status is
not the sole determinant of combined treatment outcome.
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In that respect, complexities in evaluating the role of RAS
mutations in driving different tumor phenotypes are
highlighted by recent evidence showing that distinct evo-
lutionary routes, licensed by defined allelic states and/or
combinations of hallmark tumor suppressor alterations
(Cdkn2a, Trp53, Tgfp-pathway), direct variations of onco-
genic RAS dosage gain, to drive the early progression of
PDAC and shape its downstream biology [51].

RTKs (and EGFR family members in particular) are a
likely candidate to mediate paradoxical MAPK activation
in response to inhibition of a single step of the cascade;
indeed, EGFR family-mediated (re)activation of either
the MAPK pathway itself or other crosstalking pathways
(such as the PI3K/AKT axis) has been described in
several cancer models, with or without and underlying
BRAF or KRAS mutation [52, 53]. Consistent with these
data, here we show that in tumor cellular contexts that
are highly dependent on EGFR family signaling, such as
the HER2-amplified (Calu3) and EGFR-mutant (HCC827)
NSCLC cell lines, BRAF inhibition paradoxically reacti-
vated the MAPK pathway in an EGFR/HER2-dependent
manner; interestingly, we observed a similar EGFR family
feedback activation in response to either BRAF or MEK
inhibition in colorectal cancer cell lines and patient-
derived cancer stem cells [52] (Bazzichetto C., unpublished
results). In this specific context, EGFR/HER?2 inhibition by
lapatinib was able to shut down paradoxical MAPK hyper-
activation in response to dabrafenib, whereas in KRAS-
mutant cell lines, in which the need for EGFR family
activation is bypassed by constitutively active RAS,
lapatinib was ineffective in that respect. Based on this
evidence, co-targeting of EGFR family members upstream
and MAPK signal transducers (RAF, MEK) downstream
has been proposed as a promising therapeutic strategy
[52, 54, 55] and, in part, validated clinically in BRAF-mut
CRC [45, 56, 57]. However, we did not observe growth-
inhibitory synergism in vitro with combined lapatinib and
either dabrafenib or trametinib in HER2-amplified or
EGFR-mutant NSCLC models. This might be due to the
high intrinsic sensitivity of these models to lapatinib:
accordingly, recent data show that, in colorectal cancer
models, combined blockade of EGFR and MEK inter-
cepts heterogeneous mechanisms of acquired resistance
to anti-EGFR therapies and results in therapeutic syner-
gism only once resistance to anti-EGFR agents has ensued
[54, 58], suggesting that in highly sensitive models the
right setting to apply combinatorial strategies might be
treatment-resistant disease.

Conclusions

In conclusion, in this study we show that a “vertical”
combination strategy simultaneously targeting BRAF and
MEK shuts down BRAF inhibitor-induced paradoxical
MAPK activation and may result in therapeutic synergism
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Fig. 8 Working model of intra-pathway feedbacks and BRAF/MEK growth-inhibitory synergism. a In BRAF-wt/KRAS-mut contexts, selective BRAF
inhibition induces BRAF-CRAF dimerization, which hyperactivates the MAPK pathway, thus resulting in relative resistance to treatment. In
BRAF-wt/KRAS-wt contexts, paradoxical MAPK activation may be sustained by the RAS-dependent upstream signaling of RTKs (in particular
EGFR family members). b Upon allosteric MEK inhibition, the MAPK pathway downstream of a mutant KRAS is efficiently shut down; however,
MEK inhibition-induced removal of ERK-mediated feedback RTK inhibition may result in incomplete MAPK pathway inhibition or pathway
reactivation, again resulting in relative resistance to the drug. ¢ Combined BRAF/MEK inhibition results in efficient pathway blockade and a
synergistic effect on cell growth inhibition, particularly downstream of a mutant KRAS; however, as highlighted also in panel b, in KRAS-wt
contexts removal of ERK-mediated feedback RTK inhibition may result in RTK-dependent pathway (re)activation, thus resulting in only partial
blockade of downstream signaling. d Thus, in KRAS-wt contexts, triple RTK (EGFR family in the specific case discussed here)/BRAF/MEK
inhibition is hypothesized to completely prevent paradoxical MAPK activation; functional growth-inhibitory synergism will then vary according

in preclinical models (both cancer cell lines and patient
derived CSC and organoids) of RAS-mut NSCLC and
PDAC in vitro. However, as highlighted in Fig. 8, which
recapitulates our data in a coherent working model, the
genetic/molecular background of the cancer cell being
targeted crucially determines the outcome of drug interac-
tions: indeed, depending on KRAS status and EGFR family
dependence, combined BRAF/MEK inhibition may be suf-
ficient to prevent paradoxical MAPK activation and afford
synergistic growth inhibition or additional EGFR blockade
maybe required to completely shut down the pathway and
cell growth/survival. Further studies are needed, particu-
larly to identify potential biomarkers to select out patients
at highest chance of benefiting from such a promising
combinatorial strategy.

Additional file

Additional file 1: Supplementary Methods. Figure S1. RAF inhibition
induces BRAF/CRAF heterodimerization in KRAS-mut contexts. Figure S2.
Effects of trametinib, dabrafenib and their combination on cell growth

and cell cycle distribution in A549 and MiaPaCa2 cells. Figure S3. Effects
of trametinib and dabrafenib combination in lung cancer cells. Figure
S4, Effects of trametinib and dabrafenib combination in pancreatic
cancer cells. Figure S5. Effects of trametinib, dabrafenib and their
combination in LCSC. Figure S6. Statistical correlation between KRAS
status and pharmacological interactions. Figure S7. Effects of lapatinib in
EGFR/HER2 amplified lung cancer cell lines. Table S1. Summary of the
genetic status of the cell lines analyzed and response to treatments.
(PDF 2519 kb)
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