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Abstract

Background: Non—-small-cell lung cancer (NSCLC) is a heterogeneous disease, with multiple different oncogenic
mutations. Approximately 25-30% of NSCLC patients present KRAS mutations, which confer poor prognosis and
high risk of tumor recurrence. About half of NSCLCs with activating KRAS lesions also have deletions or inactivating
mutations in the serine/threonine kinase 11 (LKB1) gene. Loss of LKB1 on a KRAS-mutant background may
represent a significant source of heterogeneity contributing to poor response to therapy.

Methods: Here, we employed an integrated multilevel proteomics, metabolomics and functional in-vitro approach
in NSCLC H1299 isogenic cells to define their metabolic state associated with the presence of different genetic
background. Protein levels were obtained by label free and single reaction monitoring (SRM)-based proteomics. The
metabolic state was studied coupling targeted and untargeted mass spectrometry (MS) strategy. In vitro metabolic
dependencies were evaluated using 2-deoxy glucose (2-DG) treatment or glucose/glutamine nutrient limitation.

Results: Here we demonstrate that co-occurring KRAS mutation/LKB1 loss in NSCLC cells allowed efficient
exploitation of glycolysis and oxidative phosphorylation, when compared to cells with each single oncologic
genotype. The enhanced metabolic activity rendered the viability of cells with both genetic lesions susceptible
towards nutrient limitation.

Conclusions: Co-occurrence of KRAS mutation and LKB1 loss in NSCLC cells induced an enhanced metabolic
activity mirrored by a growth rate vulnerability under limited nutrient conditions relative to cells with the single
oncogenetic lesions. Our results hint at the possibility that energy stress induced by calorie restriction regimens
may sensitize NSCLCs with these co-occurring lesions to cytotoxic chemotherapy.
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Background

Non-small cell lung cancer (NSCLC) is a heteroge-
neous disease, with multiple different oncogenic driver
mutations representing potential therapeutic targets
[1-3]. Approximately 25% of NSCLC patients present
KRAS mutations, which confer poor prognosis and high
risk of disease recurrence [4, 5]. Currently, there are no
successful treatment strategies that target KRAS mu-
tant tumors [6—8]. Oncogenic KRAS has been shown to
be a key factor in promoting metabolic rewiring, although
the specific metabolic actors may differ depending on
tumour type and genetic context [9-12]. In NSCLC, ab-
normal activation of KRAS enhances glucose metabolism
to fuel oxidative phosphorylation and increases glutamine
metabolism, the latter feeding mitochondria and main-
taining the redox balance through glutathione biosynthesis
[13-16].

Approximately half of NSCLC patients with activating
KRAS lesions have also deletions or inactivating mutations
in the serine/threonine kinase 11 gene (LKBI/STKII)
[17-20]. Alterations in LKB1 are spread all along the gene
and comprise deletions, insertions, frameshift, nonsense
and missense mutations. As recently reported, STKi1/
LKBI mutations were in their overwhelming majority pre-
dicted to be deleterious for protein function [20]. LKB1 is
a tumor suppressor that phosphorylates and activates sev-
eral downstream targets to regulate signal transduction,
energy sensing and cell polarity [21, 22]. It has a pivotal
role in metabolic reprogramming and nutrient sensing,
mainly through its ability to activate AMP-activated
protein kinase (AMPK) [19, 23-26]. Inactivated LKBI is
found in a wide range of human cancers including those
of the pancreas, cervix and lung [27, 28].

The role of KRAS mutations and their potential asso-
ciation with other common genetic lung cancer lesions
(LKBI, TP53) has recently been investigated in different
cohorts of human lung adenocarcinomas using tran-
scriptional, mutational, copy-number and proteomic
data. These studies highlighted how LKBI inactivation
is significantly associated with KRAS mutations com-
pared to TP53 deletion and that co-occurrence of KRAS
mutation with inactivation of LKBI, TP53 or CDKN2A/
B genes generates different tumor subsets with distinct
biology, immune profiles, and therapeutic vulnerabil-
ities [29]. The co-occurrence of KRAS mutation and
LKBI loss has been demonstrated to confer poor prog-
nosis on advanced NSCLC patients mainly due to an
increase in metastatic burden [30]. These co-occurring
lesions also engendered resistance against anticancer
drugs in preclinical murine models of lung adenocarcin-
oma [31]. Studies in genetically engineered mice have
shown that the simultaneous presence of KRAS“*” muta-
tion and deletion of LKBI in the lungs dramatically in-
creases tumor burden and metastasis [31]. While many
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efforts have been made to understand the impact of indi-
vidual genetic alterations, such as those in KRAS or LKB],
on cellular metabolism, very little is known about any in-
fluence on metabolism of the simultaneous presence of
these two genetic alterations. The oncogenic cooperation
between the KRASS'?” mutant and loss of LKB1 expres-
sion was firstly characterized in pancreatic cancer, where
it disturbed one carbon metabolism and incited epigenetic
modifications thus supporting cancer growth [32]. In
NSCLC, co-occurrence of mutant KRAS and LKB1 loss
has been shown to impact on the urea cycle enzyme CPS1
providing an alternative pool of carbamoyl phosphate to
maintain pyrimidine availability thus imposing a growth
advantage on lung cancer cells [33]. Since both KRAS mu-
tations and LKBI inactivating alterations affect cellular
metabolism, it seems propitious to discern metabolic
effects induced by the single oncogenic events from those
elicited by their co-occurrence, with the ultimate aim to
potentially exploit metabolic dependencies for novel
therapeutic modalities. With these considerations in mind,
we knocked-out the LKBI gene in well-characterized
NSCLC cell clones harbouring KRAS wild type (WT) or
mutant G12C proteins [16, 34]. We obtained an isogenic
system in which KRAS mutation and LKBI inactivation
were individually or concomitantly present. The effects of
the genetic lesions individually or together on cell metab-
olism were investigated in these isogenic NSCLC cells by
means of an integrated survey of proteomics, stable and
dynamic metabolomics and functional in vitro strategies.

Methods

Cell culture, transfection and treatment
NCI-H1299-derived KRAS expressing clones have been
obtained as previously described [35, 36]. In these
clones, LKBI deletion has been achieved with CRISPR/
Cas9 technology. Briefly, KRASW' and KRASS'?*“
clones were transfected with all-in one CRISPR/Cas9 plas-
mid, containing both Cas9 cDNA and gRNA sequences,
specific for LKBI gene (Sigma-Aldrich). After 24 h, cells
were seeded at 1 cell/ml in Petri dishes, in order to obtain
single-cell originated clones. Growing colonies were then
detached using glass rings, expanded and checked for
LKBI deletion by PCR and sequencing. Proteins from
clones positive to LKB1 editing were extracted and west-
ern blot analyses were performed with anti-LKB1 anti-
body, to verify LKB1 protein loss. The selected clones
were tested also for the presence of modifications in the
Cas9 off-targets (sequences in the genome with less than
three mismatches compared to the Cas9 target sites) and
they did not show any Cas9-induced variation in these
sequences, thus confirming the lack of off-targets effects.
Clones were maintained in RPMI 10% FBS added with
500 pg/ml of G418. Cells were routinely checked for
mycoplasma presence by PCR.
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For growth curve analyses, cells were seeded at 10000
cells/ml in triplicates and after 24 h they were counted
every day with Multisizer counter (Beckman Coulter).
Growth curves were plotted as the total number of cells
at different time points and were the mean and standard
deviation of two independent experiments. Doubling
times were extrapolated from growth curves.

For 2-DG dose-response curve, cells were seeded in
96-well plates and, after 24h, treated with increasing
concentrations of 2-DG, dissolved in sterile-water and
diluted in medium just before use. Seventy-two hours after
treatment start, MTS assay was performed following
manufacturer’s instructions. Dose-response curves were
reported as percentage of cell viability compared to un-
treated controls and each data point consisted of at least
six replicates. Three independent experiments were per-
formed. The concentration inhibiting cell growth by 50%
(IC50) values were extrapolated from the dose-response
curves. IC50 values and 95% confidential intervals (CI)
were calculated using Graphpad Prism, non linear regres-
sion (curve fit) analysis. Growth curve analyses in nutrient
deprivation were performed by seeding the cells at the
same concentration (30,000 cells/ml) in 96-well, blank
plates in RPMI 1460 medium with 1% FBS, glutamine and
glucose free, implemented with different glutamine and
glucose concentrations.

Cell growth was analyzed with RealTime-Glo MT Cell
Viability Assay (Promega). Briefly, at the time of the
seeding, Real-time Glo reagents were added to the cells
and luminescence was read with GloMax Instrument
(Promega) 5, 22, 29 and 48 h after the time point “0”.
Time point “0” was read 1h after seeding, as suggested
by manufacturer’s instructions. For each clone, Lumines-
cence Units (LU) of the different time points were nor-
malized on time ‘0" LU. Growth curves were plotted as
Normalized LU and represented the mean and SD of
three independent replicates. Doubling times were calcu-
lated as described above.

Label free-single reaction monitoring (SRM) based assay
development

Single reaction monitoring (SRM) assay was developed
following the overall strategy reported [37-39]. Forty
seven metabolic enzymes involved in the major cellular
metabolic processes spanning from glycolysis to fatty
acid synthesis were chosen for their key role in the cellular
metabolic route on the basis of both the scientific
literature and the information stored in databases on pro-
tein function, such as UniProt (www.uniprot.org/) (Add-
itional file 1: Table S1). Four to six unique peptides
ranging from 6 to 20 amino acids in length containing
tryptic ends, no missed cleavages, doubly or triply
charged, were chosen for each of the selected proteins. All
of the peptides containing amino acid Met, Trp, Asn and
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GIln were avoided and only selected when no other
options were available [40]. Unique peptides observed in
the whole cell proteomic analysis were prioritized dur-
ing the peptide selection process. For those proteins for
which no peptides were found in the whole proteomic
analysis, prototypic peptides selection was based on
“PeptideAtlas” (www.peptideatlas.org) information. All
prototypic selected peptides were ranked by intensity
using Skyline v 3.6 [41] and tested in SRM mode to se-
lect the most suitable transition for the quantification
analysis. Two hundred (200) pg of protein extract
(three biological replicates of each isogenic cell line)
was submitted to digestion as reported above. Two (2)
pg of peptides were analysed on a triple-quadruple
mass spectrometer (Triple Quad 5500, AB SCIEX).
Chromatographic separation was achieved with a 1200
HPLC Agilent technology equipped with a 10-cm
Ascentist Express Peptide ES-C18 with a 2.1 mm inner
diameter (Supelco). The peptide mixture was separated
with a gradient from 2 to 60% acetonitrile in 24 min. In
total, 293 peptides representative of 47 proteins were
selected for quantification experiments. For 47 pro-
teins, the optimal SRM transitions of the peptides with
the highest signal-to—noise ratio in the fragment-ion
were selected from the tested prototypic peptide panel
(Additional file 2: Table S2 ).

SRM peptide quantification by liquid chromatography-
single reaction monitoring (LC-SRM)

SRM metabolic panels were measured in each isogenic
cell clone (three biological replicates/clone) in time sched-
ule SRM experiment. Four liquid chromatography-single
reaction monitoring (LC-SRM) methods were used for the
metabolic panel evaluation. At the end of the analysis
transition groups corresponding to the targets peptides
were extracted using Multiquant v 2.1 (SCIEX). SRM
peaks were manually inspected by checking for co-elution,
peak shape similarity, retention time. Only SRM peaks de-
tected in two out of three biological experiments with a
signal to noise ratio >3 for the two top transitions were
considered. Log2 peak area of each peptide was normal-
ised against the mean of the area of the corresponding
peptide among the different groups, in order to cope with
technical variation. Abundance information of each
protein among the experimental groups were obtained
computing the sum of intensities of each peptide of a data
protein [42, 43] (Additional file 3: Table S3). The sum of
normalized peptide area values among isogenic cell line
replicates showed a minimum median Pearson correl-
ation coefficient of 0.80 (data not shown), demonstrat-
ing the experimental reproducibility among biological
replicates. Statistical difference among experimental
groups was evaluated using two-way ANOVA and
Mann-Whitney-Wilcoxon Test (JMP pro 13, SAS).


http://www.uniprot.org
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Metabolomics analysis: '3C labeling studies

NSCLC cell clones (1 x10° cells) were cultured in
RPMI media supplemented with 10% dialyzed fetal
bovine serum and 10 mM [U—ISC]—labeled—glucose or 2
mM [U-'3C]-labeled -glutamine (Cambridge Isotopes
Laboratories). Cells were incubated 24h for the '3C
glucose and glutamine steady-state experiments and at
different time points (1, 2, 4 and 8h) for the *C glu-
cose and glutamine kinetics experiment. For the early
13C glucose incorporation, cells were incubated for 20
min. After labelling, cells were rinsed and metabolism
quenched by liquid nitrogen. Metabolites were ex-
tracted using MeOH:ACN:Water (50:30:20) and incu-
bated 20 min at — 80 °C. The lysates were centrifuged to
remove precipitated protein, and 8 pl of supernatant
were collected for liquid chromatography tandem-mass
spectrometry (LC-MS/MS) analysis. Atlantis T3 column
(3.5 um, 150 x 2.1 mm, Waters) was used for LC separ-
ation and the detection of metabolites was performed
using a Thermo Scientific LTQ-Orbitrap XL mass spec-
trometer with electrospray (ESI) ionization, examining
metabolites in both positive and negative ion modes,
over the mass range of 75-1000 m/z. The mobile phase
for elution was a gradient established between water
acidified with 0.1% formic acid (positive) 10 mM am-
monium formiate (negative) (A) and acetonitrile (B) at
a flow rate of 150 ul/min. Retention times of all metab-
olites of interest were validated using pure standards.
The measured distribution of mass isotopomers was
corrected for natural abundance of **C. Relative metabol-
ite abundance was calculated as percentage of total
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metabolite pool. For glucose and glutamine tricarboxylic
acid (TCA) contribution, the sum of all isotopologues of
the indicated metabolites was used. For '*Cg-glucose la-
belling data interpretation M + 3 lactate, M + 3 alanine
and M + 2 citrate derived from pyruvate were monitored.
For '*Cs-glutamine M + 4 citrate, succinate, fumarate and
malate derived from glutamate were monitored. Repre-
sentative isotopical trace labelling is shown in Additional
file 4: Figure S1.

Statistical analysis

Statistical analysis was done using both GraphPad PRISM
v7 software and JMP Prol3. Briefly, when we compared
two groups and one changing variable we used one-way
ANOVA followed by Mann-Whitney-Wilcoxon test. For
the experiments for which we analysed multiple groups
and one changing variable, one-way ANOVA followed by
Tukey-Kramer or Bonferroni was performed. When we
compared two or more groups with more than one chan-
ging variable (for example, whole cell proteomics, SRM
proteomics, untargeted metabolomics) we used two-way
ANOVA.

Results

Growth properties of cells with different genetic lesions
From our well-characterized NCI-H1299 derived clones
expressing KRASY™ or KRASS*“ 35, 36], we generated
two clones characterized by LKB1 loss taking advantage of
the CRISPR/Cas9 technology, which allows locus-specific
gene editing. As shown in Fig. 1a, the new clones resulted
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Fig. 1 Molecular and cellular determinants. a Representative Western blot analysis performed at basal conditions, of LKB1 protein levels in all
NSCLC NCI-H1299 isogenic clones (WT, S, K, KS). Ran was used as loading control. Three independent experiments were performed. b Growth
curve of NSCLC isogenic clones. Cells were seeded at 10000 cells/mL in 6-well plates and counted every 24 h. Growth curves of the individual
clones were plotted as number of cells at different time points and represented the average of three independent counts of three independent
experiments. Statistical analysis was performed using two-way ANOVA test and Bonferroni post-test for multiple comparisons and is reported in
the box below the figure. **p-value< 0.01, ***p-value< 0.001, ****p-value< 0.0001. No statistically significant differences were at 24 and 48 h

-~ WT
- K
- S
-+ KS Time
after seeding (h)
72 96
WTvs.K ns i
WTvs. S ns ns
T T T 1 WT vs.KS ok .
20 40 60 80 100 Kvs S -~
Time (h) = hs
Kvs. KS . .
Svs. KS . .




Caiola et al. Journal of Experimental & Clinical Cancer Research

in LKB1 loss. In the following, the oncologic genotype
combinations will be referred to as follows: KRAS™'/
LKB1Y" = “WT”; KRASS/LKB1Y" = “K”; KRAS™'/
LKB1'** = “S”; KRAS®">/LKB1'* = “KS”. Growth curve
analyses performed on the clones revealed that KS im-
pacted on in vitro cell growth. While the presence of a
single genetic alteration did not alter cell growth, the cel-
lular growth rate of the KS clone was reduced by 60%
compared to WT (Fig. 1b). Similar results were obtained
using another couple of independent S and KS clones.
Based on this, we decided to perform further studies on
single clones representative of the different genotype
combinations.

Whole cellular proteome of NSCLC clones harboring dual
or single lesions shows differences in proteins mainly
involved in metabolic modulation
A single run label-free mass spectrometry (MS) proteomics
workflow [44] of all isogenic cell clones identified 832 pro-
teins. Among these, 460 proteins (55%) were common
across all clones, only a few proteins (1.8%) were found to
be unique to each isogenic cell type (Fig. 2a and Additional
file 5: Table S4). Unsupervised hierarchical clustering of the
832 proteins resulted in two main groups distinguished by
the S expression status. Inside the S expressing group, there
was a sub-cluster based on K mutational status that was
not present in the S group (Fig. 2b). Principal component
analysis (PCA) supported the presence of two main protein
groups the separation of which was based on S status, sug-
gesting that the LKB1 expression status had a greater im-
pact on the cellular proteome than the acquisition of KRAS
mutation (Fig. 2c). In the cell clones with the differing
genetic make-ups the following numbers of proteins were
significantly altered relative to WT cells (Mann-Whitney-
Wilcoxon test p < 0.05), KS: 180, K: 278 and S: 126, Only
31 proteins were commonly deregulated between KS, K
and S cells (Additional file 4: Figure S2A). Functional
annotation (PANTHER v10, www.pantherdb.org) of the
deregulated proteins in the different clones suggests their
involvement mainly in the following functions: KS - cellular
component organization or biogenesis; K - cellular compo-
nent organization or biogenesis, protein metabolism and
folding, ferredoxin metabolism; S - RNA splicing
(Additional file 4: Figure S2B, C, D and Additional file 6:
Table S5). Considering the proteins commonly deregu-
lated between the different data sets (Additional file 4:
Figure S2A) significant overrepresentation was found for
the 40 proteins shared between K and KS which were
mainly involved in glycolysis. (Additional file 6: Table S5).
Biological annotation analysis converges to define a
metabolic proteome modulation as the main signature
characterizing both single and co-occurrent genetic
lesions.
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Metabolic enzyme configuration in dual lesion as
compared to the single lesion clones

In order to explore metabolic proteome alterations
under the different genetic conditions we particularly
monitored 47 metabolic enzymes involved in the major
cellular processes from glycolysis to fatty acid synthesis
(Additional file 1: Table S1). A label-free SRM-based
proteomic approach was used. Unsupervised hierarchical
clustering exploiting fold-changes of the selected en-
zymes revealed two clusters based on the molecular sta-
tus of the reference counterparts (WT or single lesions
K or S) (Fig. 2d). Univariate pairwise comparison (Man-
n-Whitney-Wilcoxon Test) revealed that the KS, K and
S subtypes harbour altered enzymes belonging to gly-
colysis, glutaminolysis and tryptophan catabolism. The
magnitude of the shifts in the KS, K and S groups were
comparable, with ranges of fold changes of abundance of
2.2-6, 2.2-4.2 and 2-4.5, respectively. Only the S and
KS constellations impacted on purine metabolism, while
K and S displayed deregulated urea cycle components
(Fig. 2e and Additional file 7: Table S6). KS harboured
13 deregulated enzymes relative to K clone. The abun-
dances of 4 of these, GOT1, GLUL, ODC1 and PISD,
differed two-fold or more from those in K. The first two
enzymes are involved in the synthesis of glutamate and
glutamine, fold-changes were 2.7 and -2, respectively.
ODCI1 (fold-change -2.2) is the first and rate-limiting
catalyst of polyamine biosynthesis. PISD (fold-change 3)
is engaged in phospholipid metabolism. In contrast,
when compared to S, KS harboured 9 altered proteins,
among which only MDH2, an enzyme involved in the
TCA cycle, showed consistent deregulation with a fold
change of - 2.9 (Fig. 2f and Additional file 7: Table S6).
The comparison of KS with K and S suggests that
co-occurrence of the two genetic lesions failed to gener-
ate major modifications in the metabolic enzyme asset
either in terms of numbers or magnitude of enzymatic
changes when compared to the cells with single lesions.

Cellular metabolism in dual and single lesion clones

We wished to obtain a functional landscape of the
activation state of the biochemical routes induced by KS.
To that end, a broad-based metabolomic analysis was
performed by combining untargeted (UT) and targeted
(T) strategies (Additional file 8: Table S7). Functional
enrichment analysis of the significant altered metabolites
(pair-wise comparison, Mann—Whitney p < 0.05 relative
to WT) suggests that KS had a greater impact on cell
metabolism in terms of number of both deregulated path-
ways and mapped metabolites than K or S. Deregulation
of metabolites belonging to the urea cycle, ammonia
recycling, methionine and arginine metabolism were
observed. Notably, KS retained the main metabolic routes
which were altered by the single genetic lesions, although
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Fig. 2 KS cells enclose/hold the metabolic enzymes induction triggered by the single lesions. a Venn diagram of the unique and shared
identified proteins among the NSCLC NCI-H1299 isogenic clones harbouring WT, K, S and KS genetic determinants. b Heat-map display of
unsupervised hierarchical clustering of the relative intensity (log2) of the identified proteins. ¢ Principal component analysis (PCA) using the
identified proteins. d Unsupervised hierarchical clustering of the fold change in abundance of metabolic enzymes identified by label Free-SRM
targeted proteomics in NSCLC NCI-H1299 isogenic clones. e Fold change in abundance of the significantly altered metabolic enzymes detected
through SRM label free analysis in NSCLC NCI-H1299 harbouring KS, K and S relative to WT clone. f Fold change in abundance of the significantly
altered metabolic enzymes detected through SRM label free analysis in NSCLC NCI-H1299 harbouring KS relative to K or S clone. Columns
represent protein fold change in abundance (mean + SD, 3 biological replicates). Red highlighted the most affected metabolic pathways based
on both the number of significantly deregulated proteins relative to the number of overall monitored proteins by SRM target proteomic strategy
and on the fold change of abundance (+ two-fold changes). Statistical analysis was performed using two-way ANOVA and Mann-Whitney-

abundance scores for each pathway were different when
compared to WT cells (Additional file 4: Figure S3A). The
capability of KS to differentially modulate biochemical
routes altered in cells harbouring the single genetic lesions
was further highlighted by the differential abundance
scores for the significantly enriched pathways (pair-wise
comparison, Mann—Whitney p < 0.05 relative to K or S)
(Additional file 4: Figure S3B).

By combining our multilayer data with known meta-
bolic networks, we assembled a metabolic map (Fig. 3)
depicting the distribution of changes in the abundance
of proteins or metabolites for the most enriched/inter-
connected pathways altered by KS, K or S. Figure 3a

shows comparable up regulation of the glycolytic en-
zymes ALDOA, GAPDH, PGK1l, PGAM1, PKM and
LDHA in all subtypes relative to WT. However, under
KS conditions glycolytic end-products lactate (lact) and
alanine (ala) were accumulated when compared to K or S
(Fig. 3a, b). Increased intracellular lactate in KS cells was
reflected by lactate accumulation in the medium (Fig. 3c),
reflecting highly active glycolysis. GLS1 was upregulated
in KS, K and S cells, whilst the glutaminolytic substrate
glutamate (glu) was upregulated only in KS but not K
or S cells (Fig. 3b). There were no major alterations
related to the TCA cycle in KS relative to WT, K or
S cells. (Fig. 3a, b).
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All genetic alterations impacted on the non-oxidative
phase of the pentose phosphate pathway (PPP) as evi-
denced by up-regulation of the TALDO1 protein.
Changes in its by-product (erythrose 4-p) was observed
only in KS and S cells. Serine (ser) and glycine (gly)
were significantly raised under KS conditions but only
modestly affected by the single lesions (Fig. 3a).

The two urea cycle enzymes OTC and ASL were up-
regulated in all clones, although the former signifi-
cantly only in KS. The induction of urea cycle
enzymes was associated with a change in metabolites.
Arginine (arg) and ornithine (orn) were increased in S,
and citrulline (cit) in KS cells. Putrescine, spermidine
and spermine, metabolites germane to polyamine

metabolism, were increased under all three genetic
conditions (Fig. 3a). Proteomic and metabolomic data
integration highlighted that cells with both lesions,
whilst being characterized by the same central cellular
metabolic routes of their single lesion counterparts,
were able to exploit such routes through a heightened
metabolites production. To explore whether the meta-
bolic landscape observed in our isogenic clones was
also present in endogenously mutated lung adenocar-
cinoma cell lines, we analysed the metabolic profiling
of five cell lines namely H23 (KS), H1792 (K), H358
(K) H1563 (S) and H1993 (S). We confirmed that
alterations in the glycolytic end-product lactate and
the glutaminolytic substrates glutamine (gln) and
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glutamate (glu) under KS (H23) rather than K (H1792,
H358) or S (H1563, H1993) genetic configuration oc-
curred also in these lung adenocarcinoma cell lines
(Fig. 4).

Differences in use of the glycolytic and glutaminolytic
axes as carbon source between dual and single lesion
clones

To further decipher changes in metabolic state triggered
by the single and the dual genetic lesions, we performed
metabolic tracing studies with '*C isotope labeled glu-
cose [U-3C¢] and glutamine [U-3C;]. In all clones
13C-derived glucose or glutamine were readily converted
to pyruvate or glutamate which were then incorporated
into TCA cycle intermediates, indicating active oxidative
phosphorylation independent of genetic backgrounds
(Fig. 5a). Specifically, about 50% of the '*C-derived glu-
cose carbon was recovered from citrate, an early step
component of the TCA cycle, whilst about ~25% were
incorporated into later step components, such as
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succinate, fumarate and malate. Indeed, 75% of the
13C-derived glutamine carbon enriched latter TCA inter-
mediates, and contributed to the remaining ~ 50% recov-
ered from citrate, indicating that glutamine and not
glucose, supports in the main the latter steps of the TCA
cycle and maintains mitochondrial oxidative phosphoryl-
ation (OXPHOS) on glucose-independent feeding.

Kinetic profiling analysis of incorporation of '*C-derived
glucose or glutamine after incubation for 1 to 8h
showed a prominent use of both glucose and glutamine
as source of carbon under KS conditions when com-
pared to K, S or WT. Notably, production of both lac-
tate and alanine was increased in the KS as compared
to K or S clones (two-way ANOVA, Tukey’s multiple
comparisons test) suggestive of differential extent of
glycolysis (Fig. 5b). To investigate in depth the metab-
olism of glucose in KS clones we analysed the isotopic
enrichment of '>C-glucose after 20 min. Intracellular
13C-glucose and labelled lactate and alanine derived
from it were significantly increased in KS and S relative

P
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to K and WT clones (Additional file 4: Figure S4).
Therefore KS clone retained the property of S cells to
incorporate glucose and exploit the glycolytic axis.

In all clones "*C glutamine-derived TCA metabolites
corroborated functional TCA cycling to maintain oxida-
tive phosphorylation and anabolic processes. The kinetic
profile of >C glutamine indicates that the K and KS
clones exploited the latter part of the TCA cycle more ro-
bustly than the S or WT clones, as reflected by a higher
level of labelled succinate, fumarate and malate in the
former (Fig. 5c). Citrate derived from labelled glucose or
glutamine was altered in S and K but not KS clones (Fig.
5b, ¢). Ammonia production was increased in KS and K
relative to S or WT cells, indicative of increased glutami-
nolysis (Fig. 5d). Mitochondrial and glycolytic functional-
ities under stress were determined using the XF Glycolysis
and Mito Stress Test in all the isogenic clones (WT, K, S,
KS) assayed under the same oxygen culturing conditions.
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KS cells were characterised by lower spare respiratory cap-
acity after exposure to mitochondrial stressors compared
to Kor S cells (Additional file 4: Figure S5A, B). Moreover,
lower glycolytic capacity and reserve was featuring KS
compared to K clones (Additional file 4: Figure S5C, D).
These findings suggest differential abilities of KS cells in
responding to ATP demands under conditions of mito-
chondrial and glycolytic stress.

Effect of glycolysis inhibition and nutrient deprivation on
cell growth

Given the differences in exploitation of the energetic axis
between KS and S or K clones, we investigated their meta-
bolic vulnerability to metabolic stress. The viability of KS
cells was more affected by perturbation of the glycolytic
pathway via treatment with 2-deoxy glucose (2-DG) than
that of K, S or WT cells (Fig. 6a). Respective IC50 values
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(in mM) were 0.8412 (C.I 0.7583-0.9331), 1.496 (C.L
1.366-1.639) 2472 (CIL 2.336-2.617) and 3461 (CL
3.143-3.811).

To corroborate the differences in dependencies on en-
ergy sources between the cells, growth was studied using
media containing different glucose (glu)/glutamine (gln)
combinations: either standard, absent (0%) or low (10%)
(Fig. 6b and Additional file 4: Figure S6). Without glucose
and glutamine neither clone was viable. Glutamine-free
conditions were detrimental to all clones even in the pres-
ence of glucose, although WT cells were able to replicate
within 48 h under these conditions. These results show
that glutamine was essential for cell growth and survival.
Under conditions of low (1.1 mM) glucose, low (0.2 mM)
or standard (2 mM) glutamine were sufficient to rescue K
and S cells growth at their standard rate, whilst this rescue
does not seem to occur, or to occur at lower extent in KS
clones. In incubates with standard (11 mM) glucose and
low glutamine, KS cells grew at their standard rate. Absence
of glucose in the presence of low (0.2 mM) or standard (2
mM) glutamine reduced growth in K and S clones when
compared to their standard rates. This phenomenon was
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more evident in KS clones. Overall KS clone displayed a
statistically significant growth defect in presence of
energetic stress caused by both glycolysis inhibition and by
nutrients limitation (glucose/glutamine) than those harbor-
ing single oncogenic lesions and the parental clones.

Discussion

Here we investigated how concomitant KRAS mutation
and LKBI loss in NSCLC-NCI-H1299 clones affect
cellular metabolism by systems-level analysis combining
metabolic enzyme abundance survey with static and
dynamic metabolic profiling data. Cells with either single
lesion showed active energy metabolism via exploitation
of a functional glycolysis axis and an active mitochondrial
machinery capable of oxidizing pyruvate and glutamine,
although cells lacking LKB1 showed a preference for gly-
colysis whilst KRAS mutated cells preferred mitochondrial
respiration, as previously reported [14, 22, 24]. We show
that cells with both lesions, whilst being characterized by
the metabolic traits of their single lesion counterparts,
were able to exploit these metabolic routes through a
heightened metabolites production. This metabolic ability
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was characterizing not only our KS isogenic clone but also
the endogenously mutated adenocarcinoma cell lines H23.
Enhanced metabolic production was particularly promin-
ent with regards to the glycolysis end-products lactate and
alanine and the glutaminolyic substrate glutamate despite
the same magnitude of induction in metabolic enzymes as
in the single lesion. The mismatch between the enzyme
level and the metabolite abundance is in line with the re-
ported role of protein post-translational modifications
(PTMs) in regulating enzyme activity and the response to
changes to external conditions or internal states [45, 46].
Using detailed analyses of '>C isotopologues of cit-
rate, succinate, fumarate, and malate, we uncovered for
the first time in NSCLC cells a glucose-independent
glutamine-driven TCA cycle under conditions of stand-
ard glucose concentration in the medium. Cells directed
glucose-derived carbon skeletons mainly towards citrate
synthesis, while glutamine-derived succinate, fumarate
and malate drove the latter steps of the TCA cycle for
ATP production and supported citrate production to fuel
anabolic processes. Until now a glucose-independent
TCA cycle in the presence of normal glucose has been
identified only in haematological cancer cells [47, 48].
Glucose-independent TCA feeding was an intrinsic
characteristic of all genetic backgrounds investigated
here (i.e. KS, K, S, WT), whilst entry of glutamine, after
conversion to glutamate, into the TCA cycle and its
oxidation to succinate, fumarate and malate were facili-
tated in cells with KRAS mutation (K) or both lesions
(KS). These data, together with the observed increase
in ammonia production, suggest more efficient glutami-
nolysis in KS and K than in S or WT cells. Our observa-
tions are consistent with the findings of Kim et al. [33]
which demonstrated how NSCLC cells with KS and K
lesions rely on CPS1 protein addiction for proliferation.
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CPS1 controls the first step of the urea cycle, a reaction
in which excess nitrogen containing compounds are in-
corporated into the cycle to be processed. The CPS1
addiction of KS cells might reflect an adaptive down-
stream metabolic configuration necessary to metabolize
the ammonia pool generated from enhanced glutamine
catabolism in the mitochondria.

Most importantly, the greater rate of functionality of
TCA and glycolysis in the KS cells was associated with
both lower mitochondrial spare respiratory capacity (SRC)
and lower glycolytic reserve. Since the SRC depicts the
extra mitochondrial capacity of a cell to produce energy
under stress conditions or increased cellular work [49-51]
our observations, indicate that in the presence of double
lesions (KS), cells achieve the maximum metabolic cap-
acity, which cannot be further raised to compensate the
increase ATP demand under OXPHOS and glycolytic re-
striction. The decreased metabolic plasticity in presence
of co-occurring lesions was further demonstrated by
the greater susceptibility towards survival impedance
caused by 2-DG treatment or glucose/glutamine limita-
tions. The increased metabolic rate demonstrated by us
in the cells harbouring both genetic lesions relative to
single lesion, failed to improve their cellular fitness, but in-
stead was accompanied by reduced growth rates com-
pared to those of WT or single lesion cells (graphically
represented in Fig. 7), supporting the role of metabolic
flexibility for long-term cellular survival and function [52].
Undoubtedly cells in culture lack the capabilities and
properties imparted on them by the genuine in vivo envir-
onment, which can importantly modulate the metabolic
phenotype of cancer cells [15, 53]. We previously demon-
strated that metabolic traits observed in KRAS-mutated
NSCLC cells in culture translate into a murine model of
human NSCLC cell xenografts [54].
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Patients with NSCLCs characterized by mutated
KRAS in conjunction with LKB1 loss are associated
with a progressively poor prognosis [55]. Nutrient star-
vation is an emerging strategy to reduce metabolite
availability to tumor cells generating environments that
can reduce the capability of cancer cells to adapt and
survive and thus improving the effects of cancer ther-
apies. In a wide range of animal cancer models multiple
cycles of fasting cycles plus chemotherapy drugs pro-
mote differential stress sensitization, potentiate the
activity of chemotherapeutics resulting in long-term
cancer-free survival [56—58]. Our results hint at the
possibility that energy stress induced by nutrient limita-
tion via calorie restriction regimens or diets [59] may
sensitize NSCLC tumors harbouring these lesions towards
chemotherapy, thus potentially improving prognosis.

Conclusions

Co-occurrence of KRAS mutation and LKBI loss in
NSCLC cells induced an enhanced metabolic activity
mirrored by a growth rate vulnerability under limited
nutrient conditions relative to cells with the single onco-
genetic lesions. This observation hints tentatively at the
possibility that the findings presented here are indeed
relevant also under conditions in vivo.
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