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Abstract

Background: Some membrane proteins can translocate into the nucleus, defined as nuclear localized membrane
proteins (NLMPs), including receptor tyrosine kinases (RTKs). We previously showed that nuclear MET (nMET), a member
of RTKs, mediates cancer stem-like cells self-renewal to promote cancer recurrence. However, it is unknown that nMET
or mMET, which is the ancestor in the evolution of cancer cell survival and clearance. Here, we aim to study the NLMP
functions in cell death, differentiation and survival.

Method: We applied the systematic reanalysis of functional NLMP and clinical investigations of NMET from databases.
In addition, we used soft agar assay, immunoblotting, flow cytometry, and immunofluorescence confocal microscopy
for examinations of NMET functions including stem-like cell formation, cell signaling, cell cycle regulation, and
co-localization with regulators of cell signaling. ShRNA, antibody of recognizing surface membrane MET based
treatment were used to downregulate endogenous nMET to uncover its function.

Results: We predicted and demonstrated that nMET and nEGFR are most likely not ancestors. NMET overexpression
induces both cell death and survival with drug resistance and stem cell-like characters. Moreover, the paradoxical
function of NMET in both cell death and cell survival is explained by the fact that nMET induces stem cell-like cell
growth, DNA damage repair, to evade the drug sensitization for survival of single cells while non-stem cell-like NMET
expressing single cells may undergo clearance by cell death through cell cycle arrest induced by p21.

Conclusion: Taken together, our data suggest a link between nuclear RTK and cancer cell evolutionary clearance via
cell death, and drug resistance for survival through stemness selection. Targeting evolved nuclear RTKs in cancer stem
cells would be a novel avenue for precision cancer therapy.
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Introduction
Cellular translocation of proteins is one of the important

signal (NLS) which is usually recognized by adaptors o/
importins [2] to be imported to nucleus passing nuclear

events of communication between cellular compartments.
Most proteins can reach their targets by specific regula-
tion of localization being under the co-translational or
post-translational stage [1, 2]. For nuclear localization,
several proteins translocate by diffusion-retention mech-
anism. Other proteins may possess nuclear localization
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pore. Some membrane proteins may translocate to nu-
cleus and exert various functions such as transcriptional
regulation [2, 3]. These proteins may be defined as nuclear
localized membrane proteins (NLMPs). One of the big
family members of NLMP is receptor tyrosine kinase fam-
ily (RTK) which can be translocated into nucleus [3, 4].
RTKs are originally identified as transmembrane pro-
teins, which act as receptors and modulate an intracellu-
lar signal transduction to initiate pathways of cascade
that transfer signal molecules from the membrane to
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differential compartments [5]. A large number of sub-
families of human RTKs are therapeutic targets in many
types of cancers [5]. It has been shown that RTKs can
enter the nucleus through nuclear pore and importins
[6—8]. Nuclear translocation of RTKs have been shown
to be associated with therapeutic resistance, transcrip-
tional regulation and signaling related to DNA replica-
tion and DNA damage repair [9, 10]. MET kinase of
RTK, which refers to hepatocyte growth factor receptor
family member, usually localizes at membrane (mMET)
but containing a cytoplasmic tail [11]. MET has also
been reported in many cancers to be localized into the
nucleus [12, 13]. Nuclear translocation of MET can be
through NLS or cleavage [14, 15]. It has been shown that
nuclear MET (nMET) can regulate nuclear Ca?* or YAP
signaling to stimulate cell proliferation [12, 13] or induce
SOX9 and p-catenin to enhance cancer stem-like cells’
self-renewal for cancer recurrence [14]. It has been dis-
covered that total MET induce tumor-initiating, which
mediates therapeutic resistance and tumor recurrence
[16]. RTKs inhibitors are widely used in conventional
therapy. However, in many cancers, RTKs may induce
crosstalk-signaling pathways [17] to develop drug resist-
ance [17, 18]. Based on cancer stem cell (CSC) hypothesis,
the population of cells expresses high heterogeneity as
small part of cells with self-renewal abilities of CSCs. The
smaller population of CSCs exists, the higher probability
of fast adaptation to microenvironment [17, 18]. Eventu-
ally, resembling Darwin’s theory of evolution through nat-
ural selection, namely, only cells, which can resist to the
stressed microenvironment, will survive [18]. Here using
nMET as a case, we tested whether nuclear RTK is essen-
tial in cancer evolution through clearance and Darwin’s
“Survival of the Fittest” theory via cancer stemness.

Materials and methods

Alignment analysis

To find main functions of NMLP proteins, Google
Scholar, Nucleotide and Protein databases were screened
for transmembrane proteins with NLS. To determine the
evolutionary relationship between NLS and TM domains
human sequences were used as reference and EGFR, MET
alignments were performed as described previously [19].
Multiple sequence alignment with Uniprot was followed
by editing, analysis, and further construction of 2 phylo-
genetic trees (membranous and nuclear MET) using
Jalview software [20—23] followed by counting the number
of mutations in amino acids of NLS and TM sequences
using published data as references [24, 25]. Finally, graphs
were obtained to observe the trend in NLS/TM evolution.
In brief, MET sequences of NLS are H1068-H1079,
HVVIGPSSLIVH [24]; and transmembrane sequences
are 933-955 (https://www.uniprot.org/uniprot/P08581)
GLIAGVVS ISTALLLLLGFFLWL.
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STRING database was used to compare protein-
protein interaction maps for both mMET and nMET
[26, 27] using whole protein sequence of MET. For
nMET interaction map additional partner proteins, such
as YAP [28], were inserted into request before running
of STRING program, because there is a low number of
research papers dedicated to nMET protein. STRING
program generated proteins were divided into 3 orders,
according to its interaction extent with MET protein.

Cell lines, cell culture, transfection, and MET knockdown
PC3, MCF7, C4-2B, HEK293, HelLa cells (ATCC) were
grown in RPMI 1640 (ThermoFisher Scientific) or
DMEM (Invitrogen, USA) with 10% FBS (Invitrogen).
For cell transfection with plasmids, Lipofectamine 3000
with Lipofectamine 2000 (ThermoFisher Scientific) was
applied. The plasmids pLenti-cytoMetGFP with nuclear
MET-GFP genes and pLenti-MetGFP with full length
MET-GEP genes were gifts from David Rimm (Addgene
plasmid # 37561 and 37560). The plasmids express a
truncated form of MET which predominantly localizes
to nucleus or full length MET which predominantly lo-
calizes to membrane and hardly in cytosol or nucleus
[14, 26]. MET knockdown in cells was performed as
described previously [14].

Immunofluorescent staining and microscopy

Cells were fixed for 20 min using 4% formaldehyde
solution in 1xPBS followed by washing with PBS and 1 h
blocking. Then cells were stained with primary anti-
bodies (15-18h in 4°C). Cells were washed with PBS
before incubation at room temperature with diluted
secondary antibodies (Life Technologies) with dilution
buffer containing 0.3% Triton™ X-100 (Sigma-Aldrich)
for 1 h. Finally, cells were stained with DAPI and mounted
with Fluoromount Aqueous Mounting Medium (Sigma-
Aldrich). Images of samples were taken, processed, and
analyzed with Carl Zeiss LSM 780 confocal micro-
scope and Zen software (Zeiss).

Western blotting

Protein samples were collected from cells using NP40
Cell Lysis Buffer (Life Technologies) with Protease In-
hibitor (100x, Thermo Scientific) for 30 min. SDS-PAGE
gel electrophoresis was performed by running at 100 V
in Tris/Gly/SDS running buffer, transferring on 0.45 um
PVDF membrane (Millipore) at 90 V or overnight at 60
V in 1x transfer buffer (Tris/Glycine/Methanol) followed
by 1h incubation in blocking buffer (2% BSA diluted
with 1xPBST). Antibodies used are: [B-actin (AC-74,
Sigma), p21 (Santa Cruz), p53 (Santa Cruz), YH2AX
(Cell Signaling), Caspase 3 (Santa Cruz), MET (Cell
Signaling), MET (Abcam), PARP (Cell Signaling), Bcl-2
(Sigma), RAD51 (Abcam), SOX2(Cell Signaling), OCT4
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(Cell Signaling). After incubation with secondary anti-
bodies and washing with PBST, membranes were ana-
lyzed using LI-COR Odyssey imaging system and Image
Studio Lite software.

Cell growth, cell cycle and soft agar assays

Cells were treated with MET antibody (Santa Cruz) on
24-well plates, cultured for additional 3days with
different concentrations of drugs, fixed, and washed 3
times. Crystal violet staining was performed after fixing
of cells, followed by 5 times washing with water. For cell
cycle assay, cells were transfected by plasmid containing
vehicle or nMET (Addgene) as described above and
subjected to fixation by 70% ethanol followed by proto-
col provided by the manufacture using Muse® Cell Cycle
Assay Kit (Cat# MCH100106, Merck) with Muse cell
analyzer and analysis (Merck).

For growing colonies in soft agar [29] in 6 well plates,
cells were resuspended in 0.4% agarose top layer and
seeded on 0.6% agarose base layer. The operation was
under sterile conditions by mixing medium containing
20% FBS in 6-well plates and cells were grown for
3—4 weeks (37°C, 5% CO,) with further feeding medium
with or without membrane MET recognized antibody
(Abcam, EP1454Y) for inhibiting mMET treatment.
Finally, formed colonies were stained with Crystal Violet,
or directly observed and counted under light microscope.

Clinical data search and analysis

The survival rate of patients was assessed using PubMed
database. The following keywords were used as “nuclear
translocation/localisation of receptor tyrosine kinase in
patients, clinical data”. This allowed to obtain published
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data to study the relation between the nuclear localized
receptor tyrosine kinase and patients’ survival or prog-
nosis [30—47].

Results

Systematic analysis suggests the paradoxical function of
NLMP: Both cell death and survival

To gain insights into the main functions of nuclear lo-
calized membrane proteins (NLMPs) we searched data-
base and found about 60 NLMPs, which have detailed
references (Additional file 1: Table S1). We further sum-
marized their functions through a database search. We
found that dominant roles of these NLMPs are tran-
scriptional regulation and cell death accounting for 21%
and 15%, respectively, along with other highly ranked
roles such as cell signaling pathways (5%), and drug
resistance (2.5%) (Fig. 1 and Additional file 1: Table S1).
Thus, NLMPs possibly induce both cell death and drug
resistance for survival. The paradoxical functions of
NLMPs possibly fit Darwin’s theory of evolution and
therapeutic survival induced by cancer evolution.

Evolutionary origin of nuclear MET protein

Having elucidated nucleotide sequences of nMET and
mMET proteins by using Uniprot database, Jalview and
sequence alignment tools, we endeavored to uncover the
evolutionary origin of nMET. For this purpose, we ex-
amined sequences that encode for nuclear localized sig-
nal (NLS) and transmembrane (TM) domain among 66
different species and tested the degree of point muta-
tions in NLS and TM sequences from different animal
species compared to human sequences. Using EGFR as
control, we found that both NLS and TM of MET are
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Fig. 1 Functional analysis of nuclear localized membrane proteins in different biological activities using database. Functions of different nuclear
localized membrane proteins were summarized using reported data. Nuclear localized membrane proteins were searched from the literatures of
PubMed and google scholar and analyzed with biological functions
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conserved among species and showed parallel evolution
based on overall mutation events in all species tested
(Fig. 2a-d). However, NLS undergoes more accelerated
evolution than mMET (Fig. 2a-d). Thus our data suggest
that nMET may have been evolved from mMET, because
of preserved stability of TM sequence in nearly 40% of
all selected species. Moreover, nMET and mMET
showed distinct interaction maps (data not shown),
suggesting the different evolutionary paths of the two
forms of MET.

Nuclear MET induces both cell death and survival
signaling

To test whether nMET also paradoxically induces both
cell death and survival, we examined the association
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between nMET and cell survival signaling pathways
including apoptosis, anti-apoptosis, DNA damage and
DNA repair in two cell lines, HeLa and HEK293. As
shown in Fig. 3a-d, in HeLa cells treated with Doxorubi-
cin (Dox) at 100 nM, nMET colocalizes with DNA dam-
age marker yH2AX and DNA repair protein RAD51. In
addition, endogenous nMET correlates with p21 expres-
sion (Fig. 3e, f). Importantly, nMET high cells showed
round shape with high levels of p21 expression and de-
tached trend which may undergo cell death (Fig. 3e, f).
Furthermore, cell cycle analysis with high levels of
endogenous nMET expressing individual cells showed
that nMET may mediate cell cycle arrest in prostate
cancer PC3 cells (Fig. 4a). While the potential cell death
induced clearance of nMET highly expressed cells, may
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Fig. 2 Phylogeneticly evolutionary analysis of NMET and nEGFR in different species. Alignment of sequences of nuclear localization signal (NLS)
and transmembrane domain (TM) domain of EGFR (a, ¢) and MET (b, d) were analyzed and mutated sequences were counted and hit. The
phylogenetic trees were constructed by methods described in main text using database [19-23]
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a Hela + DOX

MET associates with p21 in the dead cell or attached cell

Fig. 3 Nuclear MET associates with DNA damage and p21. a-b Nuclear MET of GFP fusion protein colocalizes with DNA damage and repair
marker in Hela cells upon drug treatment by doxorubicin (DOX). ¢-d Nuclear MET correlates and colocalizes with p21 in PC3 cells. e-f Nuclear

Hela + DOX

balance the overall cell population, to resistant the
changes in the cell cycle of the whole population. Stem-
ness may be the results of selection and clearance induced
by nMET (Fig. 4b). To test the hypothesis, we counted the
total population of cell cycle by DNA content with flow
cytometer. We found that overall nMET overexpression
did not induce whole population changes in cell cycle but
for single cells, the dynamics in DNA content distribution
patterns were slightly different upon nMET overexpres-
sion (Fig. 5a-c). The dead cell populations also showed
different patterns in scatter graphs of cell cycle analysis
(Fig. 5a-c) in three cell lines we tested. Thus our data
suggest that subsets of cells overexpressing nMET may

undergo cell cycle arrest with quick clearance and the
overall population of cells have not been undergone
changes in cell cycle. Few number of nMET expressing
survived cells may undergo evolution.

Next, to further test our hypothesis, we investigated
levels of cell death and survival proteins in nMET
overexpressed cells. As shown in Fig. 5d, nMET overex-
pressed cells showed higher or lower levels of cleaved Cas-
pase 3, increased DNA damage marker yH2AX but also
increased survival protein Bcl-2, dysregulated p53 and
dysregulated cleavage of PARP. The paradoxical dysregu-
lation of cell death and survival may suggest that nMET
expressing cells may undergo clearance and survival for
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cell dynamic transformation. Thus our data suggest
that nMET induces both cell death and cell survival
signaling. Moreover, cell cycle arrest associated with
nMET overexpression may be essential to the dysreg-
ulation of the cell death and survival for cells repopu-
lation and evolution.

Nuclear MET drives drug resistance and stemness for cell
survival in subsets of cells

To understand how nMET might mediate drug resistance,
we first tested the effect of Dox on cell survival (Fig. 6a-b).
We first treated PC3 prostate cancer cells with the drug
for 24 h. As shown in Fig. 6a, MET was localized in the
nucleus upon drug treatment. Surprisingly, MCF7 breast
cancer cells survived upon treatment with Dox, but Dox
became effective when cells were treated with the anti-
body against MET (Fig. 6b). Thus our data suggest that

drug resistance may allow clearance of nMET positive
cells while survived cells might be nMET overexpressing
cells which may have been undergone evolution.

To further test whether nMET is involved in stem
cell-mediated evolution for drug resistance in survival, we
first examined the potential of nMET and mMET in col-
ony forming ability, a character of cancer-stem like cells.
We found higher number of colonies in nMET overex-
pressed C4-2B cells compared to vector control and
mMET transformed cells (Fig. 6¢). Next, we found moder-
ate expression levels of endogenous nMET in prostate
spheres formed by androgen receptor (AR)-insensitive
cells of C4-2B cell line but not in 2-D cell culture condi-
tion (Fig. 6d and reference [14]). Spheres of C4-2B also
exhibited stem cell-like properties expressing stem cell
markers OCT4 and SOX2 (Fig. 6e). Given that CSCs have
characteristics of anti-cancer drug-mediated survival [18],
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high expression levels of nMET in spherical shape are in
line with the potential role of nMET in drug resistance
and survival through stemness. Finally, knockdown of
MET decreased cancer cell colony formation, and upon
additional inhibition of membrane MET by cell surface
recognized MET antibody (Abcam), combined with
knockdown of MET indicating predominantly nMET
downregulation by knockdown, decreased colony for-
mation efficiency significantly (Fig. 6f-i). Collectively,
our data suggest that nMET might be essential in
mediating drug resistance, and transformation which
is in agreement with our previous finding that nMET
mediates cancer stem-like cell self-renewal to promote
cancer recurrence [14].

Nuclear receptor tyrosine kinases correlate with poor
prognosis based on database search and reanalysis

To further investigate the correlation of nuclear RTK
with the drug resistance, advanced cancer or prognosis,
we searched database and summarized the results of
published cohort studies. As shown in Fig. 7a and
Additional file 1: Table S2, many studies have shown
that RTK inhibitor or other types of drug resistance is
mediated by crosstalk pathways even between RTK
members. This finding may suggest more crosstalk in
RTK evolution through TM and NLS. Most importantly,
many studies suggest that nuclear RTK correlates with
drug resistance, or decreased survival (Additional file 1:
Table S2 and their references). Based on the counting
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Fig. 6 Nuclear MET mediates stemness and drug resistance. a Nuclear MET expression in PC3 cells upon drug response to doxorubicin (DOX).
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and hits from individual studies, nuclear RTK may rep-
resent the poor prognosis in cancer patient survival. In
summary, database analysis and our in vitro experimen-
tal data suggest that nuclear RTK may resemble the
cancer evolution from cell death, clearance, and fitted
survival through stemness (Fig. 7b).

Discussion

Cumulative data from different sources demonstrate that a
majority of membrane-bound NLMP proteins are involved
in transcriptional regulation, apoptosis, cell migration, and
drug resistance (Fig. 1). In our study we focused on MET, a
receptor tyrosine kinase family protein, which was reported
to have two different forms in cells depending on cellular
context — transmembrane and nuclear forms with a nuclear
localization signal. In normal tissues following native ligand

binding of hepatocyte growth factor, membranous MET
regulates sensory neuron development, morphogenesis, em-
bryogenesis, tissue regeneration and wound repair [48, 49].
Nuclear localization of MET is found in many cancer types,
for instance, melanoma, breast, hepatocellular, and prostate
carcinomas suggesting a more complex and multifunctional
role of MET in oncogenesis [50-52]. In our study we
proposed a model of the paradoxical functions of nMET in
cancer cell death for clearance of mislocalized MET to sus-
tain membrane MET function, and meanwhile, for survival,
cancer stem cells may be the driver for aggressively evolved
cancer through cancer stemness and differentiation.

Our experimental data demonstrated the association
of the nMET with elevated expression of DNA damage
and DNA repair-associated cellular biomarkers, yH2AX
and RAD51 which are crucial molecular players in
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further induction of apoptosis. This finding suggests
nMET is critical in regulation of the cell death. This is
consistent with other reports that under certain stress
stimuli C-terminal cleavage of cytoplasmic fragment of
MET leads to apoptosis in epithelial cells [53, 54]. Our
experimental results demonstrate that cells expressing
high levels of nMET showed elevated expression of
death signaling but also elevated Bcl-2 for survival.
Moreover, endogenous nMET correlates with expression
and colocalizes with an inhibitor of cell cycle, p21. Add-
itionally, elevated expression levels of p21 and nMET
were found to be linked to round morphology in cells
which is typical of apoptotic cells. These results along with
others further prove that nMET plays essential roles in
cancer cell death and survival. To date, it is not known
how nuclear RTK might function to regulate both cell sur-
vival and cell death in cancerous cells. There are many
molecular switch mechanisms such as post-translational
modifications including phosphorylation which may re-
verse the functions of signaling target. PTEN/AKT is one
such switching pathway [55] which acts via phosphoryl-
ation and/or dephosphorylation of target molecules. In
our previous report [56] we and our collaborators demon-
strated that AKT is inhibited by MET inhibitor as a down-
stream target of MET in prostate cancer mouse model
and cell lines. Thus AKT may be a switch to determine
cell fate as death or survival. Further experiments are

expected to explore the downstream effects of nMET and
crosstalk with AKT pathways. Our previous reports sug-
gest nMET is a phosphorylated form [14]. However,
nMET is also reported as non-phosphorylated form [54].
One explanation might be the differential cleaved forms
through different sites in different studies as truncated
forms of nMET still contain kinase domain but kinase ac-
tivity depends on the cleavage sites to maintain the intact
of kinase domain.

Studies showed that MET, either full-length or cleaved
MET may localize into cell nucleus by various mecha-
nisms and under different cellular states and conditions
[10, 51, 52]. In light of these observations we conducted
a number of experiments to investigate the function of
two different forms of MET. Our experimental data
indicates that in PC3 cells MET is localized in the nucleus
in response to treatment with doxorubicin. Our more data
suggest that extracellular stress may promote MET nu-
clear translocation to regulate DNA damage, enhance
DNA repair to prevent cell death. A number of mecha-
nisms proposed by other groups show drug resistance
acquirement by cancer cells [5, 57, 58]. However, of
particular importance are tumor-initiating/ stem-like cells
which are essential for the castration-resistant prostate
cancer and other cancer types of recurrence [59, 60].
Nowadays, androgen deprivation therapy is routinely used
to treat prostate cancer. However, there has been a rise in
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castration-resistant cancer in patients treated with this
type of therapy. This phenomenon might be responsible
for development of the cancer stem-like cells under select-
ive pressure of androgen deprivation. Our experimental
results revealed that C4-2B cells form sphere-like struc-
tures which are characteristics of stem cells and are resist-
ant to doxorubicin treatment. Further analysis showed
that these cells express OCT4 and SOX2 transcription
factors which are typically associated with embryonic stem
cells pluripotent potential and self-renewal [61]. Using
immunofluorescent staining we found localization of
MET in the nucleus of stem-like prostate spheres. Our
data suggest a function of nMET in cancer stem-like cell
induced drug resistance. Thus MET is most likely involved
in mediating therapy resistance in cancer cells through
promoting survival of cells exhibiting stem cell-like prop-
erties. Such mechanism further suggests that nMET might
also promote cancer cell evolution when cells are sub-
jected to selective pressures such as anticancer drugs.
More research is needed to elucidate exact mechanisms of
regulation of these dynamic processes. It is still not clear
how nMET induces cancer stem cells. Based on our recent
findings on MMP family protein evolution and transloca-
tion, more studies are needed to elucidate both NLMP
and disease evolutions [62]. Recently we found YAP is also
a shuttling protein localized in cytosol, nucleus and mem-
brane and is regulated by nuclear protein ARF [63]. In
addition, MMP nuclear localization correlates to ARF ele-
vation in prostate cancer cells [64]. However, whether
oncogenic-like ARF regulates NLMP during cancer pro-
gression as a general mechanism remains elusive [65].
Thus, more research is required to fully comprehend
complex regulations and interactions that may occur
between NLMP/nMET and other molecules in the nu-
cleus. This would be the direction of our future re-
search along with further investigations of dynamics
of evolved NLMP/nRTK in drug resistance and stem-
ness during cell clearance.

Conclusions

This is the first conceptual link between nuclear RTK/MET
kinases to cancer evolution and clinical investigation in-
cluding cancer stem-like cells in drug adaption and resist-
ant survival which fits the Darwin theory. This link
resolved the paradox on both cell death and survival in
heterogenesis of cancer cell evolution and recurrence.

Additional file

Additional file 1: Table S1. Nuclear localized membrane proteins were
searched from the literatures of PubMed and google scholar and
analyzed with biological functions. Table S2. Drug resistance pathways
and survival rate dependence on nuclear localization in RTKs. Thistable
reveals different receptor tyrosine kinase (RTK) families and pathways by
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which they induce drug resistance. The RTKs with localization to nucleus
are indicated with “+" sign. The survival rate of patients was assessed by
using PubMed database, where we entered the following keywords as
“nuclear translocation/localisationof in patients, clinical data”. This allowed
us to observe the relation between the translocation of proteins and
survival rate. NA states for the absence of evidence regarding particular
criteria. (PDF 338 kb)
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